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ABSTRACT 

Joint Computation Offloading and Prioritized Scheduling in Mobile Edge 

Computing 

by Lingfang Gao 

 

With the rapid development of smart phones, enormous amounts of data are 

generated and usually require intensive and real-time computation. Nevertheless, 

quality of service (QoS) is hardly to be met due to the tension between resource-

limited (battery, CPU power) devices and computation-intensive applications. Mobile-

edge computing (MEC) emerging as a promising technique can be used to copy with 

stringent requirements from mobile applications. By offloading computationally 

intensive workloads to edge server and applying efficient task scheduling, energy cost 

of mobiles could be significantly reduced and therefore greatly improve QoS, e.g., 

latency. This paper proposes a joint computation offloading and prioritized task 

scheduling scheme in a multi-user mobile-edge computing system. We investigate an 

energy minimizing task offloading strategy in mobile devices and develop an effective 

priority-based task scheduling algorithm with edge server. The execution time, energy 

consumption, execution cost, and bonus score against both the task data sizes and 

latency requirement is adopted as the performance metric.  Performance evaluation 

results show that, the proposed algorithm significantly reduce task completion time, 

edge server VM usage cost, and improve QoS in terms of bonus score. Moreover, 

dynamic prioritized task scheduling is also discussed herein, results show dynamic 

thresholds setting realizes the optimal task scheduling. We believe that this work is 

significant to the emerging mobile-edge computing paradigm, and can be applied to 

other Internet of Things (IoT)-Edge applications. 
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1. INTRODUCTION 

 Mobile applications are abundant in nowadays, more and more mobile 

applications are seeking for fast and customized service. These applications are more 

likely to be resource-demanding applications, such as video chat, online gaming, 

requires real-time communication and intensive computation. However, due to 

resource limitation (battery lifetime, storage capacity, CPU power) of mobile devices, 

users are not satisfying the service compared to desktop [1]. Moreover, intensive 

computation and real-time transmission also implies heavy CPU processing and 

wireless transmission, causing significant energy cost of mobile devices [1].  Issues 

with battery consumption of mobiles, response time, freshness, accuracy, and quick 

delivery are potentially affected. Many researchers have made great efforts on 

delivering high quality service to users and saving energy for mobile devices. One 

popular solution for mobile devices is computation offloading: applications take 

advantage of resource-rich infrastructures by deploying computation to these 

infrastructures [2]. Furthermore, researchers have recognized offloading computation 

to cloud can significant reduce power consumption of mobile devices [3, 4]. While 

Offloading application to a remote cloud works well for non-time critical applications, 

such as pictures, videos, and documents, it is not ideal when supporting a real-time 

mobile solution [5]. Latency and network availability impact cloud based computation 

offloading.  

Mobile edge computing (MEC) is a promising solution to cope with the above 

challenge. MEC provide cloud-like service within the mobile edge network [6]. Instead 

of pushing up data to remote clouds, edge computing aims to process part of the 

mobile's workload on edge nodes, which serves as computing agent closer to users 

between mobile devices and cloud servers.  MEC has several advantages compared to 

traditional mobile cloud computing (MCC), such as short latency and low energy 
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consumption [7]. MEC is a feasible solution to satisfy the ever-increasing 

comprehensive requests demanded by users.  

Since part of workload from mobile devices are deployed to edge servers in 

MEC, efficient task scheduling schemes also needed to be considered. Efficient task 

scheduling policy would gain high system throughput to improve Service Level 

Agreements (SLA) [8]. Priority of tasks is of great importance in scheduling because 

some jobs with stringent latency requirement should be served earlier than other jobs 

in the system. An appropriate task scheduling algorithm must consider priority of tasks 

especially in a relatively resource limited edge server. 

In this paper, we address issues of computation offloading and task scheduling 

in mobile-edge computing. A joint solution combining optimal computation offloading 

and prioritized task scheduling model is proposed for a multi-user MEC system. 

Briefly, in mobile layer, an optimal computation offloading model with energy 

consumption constraints is used to decide the offloading fractions of mobile 

applications. In particular, whether to and how much to offload computation tasks to 

edge server is determined by mobile energy condition and latency requirement. In the 

edge layer, tasks coming from mobiles devices are queued and served by a prioritized-

based task scheduling policy. Service sequence is determined by subscription priority 

requirement and latency deadline. 

The rest of the paper is organized as follows. In next section, we review related 

works on computation offloading and task scheduling, especially on those reduce 

power consumption for mobile devices. Section 3 and 4 presents the architecture of the 

MEC system and the major algorithms employed in MEC. Evaluation and analysis of 

algorithms are conducted in Section 5 and Section 6. We conclude the paper in Section 

7. 
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2. RELATED WORK 

 Computation offloading in mobile devices and task scheduling in edge server 

are two main challenges in MEC system. However, MEC is a new introduced 

paradigm; therefore, edge oriented resource management is not yet addressed that 

much. In this section, we briefly review few computational offloading policies and task 

scheduling approaches for energy conservation and meeting time constraint in MEC 

architecture. 

2.1 Computation Offloading 

Many researches are focusing on computation offloading in MEC for energy 

saving and performance enhancement. Huang, Wang, and Niyato [9] proposed an 

adaptive offloading algorithm. With dynamic data rate adjusting techniques, mobile 

execution energy consumption with time constraint was minimized. Xie and Dan [10] 

studied a dynamic size-controlled algorithm for computation offloading in a 

collaborative MCC system. A joint allocation of tasks and resources for MEC system 

was proposed by Sardellitti, Scutari, and Barbarossa [11], a tradeoff between energy 

consumption and tardiness was discussed. Yousefpour et al., [12] proposed an QoS-

aware based offloading method to discuss tradeoff between energy and latency. More 

recently, the optimization of energy-delay of MEC system with varied applications 

have been carried out by Lyapunov optimization algorithm, which investigating 

offloading scheme, task allocation, CPU cycle requirement and network [13]. 

Furthermore, tradeoff between mobile power and processing delay for multi-user MEC 

systems was investigated via implementing a dynamic network and computational 

resource allocation [14]. Although energy conservation is attractive for MEC system, 

performance guaranteed is important for real-time mobile applications.  However, 

there has been very little research report on the performances guaranteed, e.g., under 

the constraints of computing capability, transmission bandwidth, and task latency 

requirement while minimizing energy consumption. 
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2.2 Priority Task Scheduling in Edge Computing 

QoS requirements are especially critical for mobile applications, such as priority 

of user's request, speed of delivery and service cost. Prioritized task scheduling in edge 

computing plays an important role in edge computing, as it significantly reduces 

service time and improves SLA. A priority based service scheduling algorithm was 

proposed by Dakshayini and Guruprasad [15]. The model gained high throughput of 

the cloud and significantly reduced service time by making an efficient provision of 

cloud resources. We adopted this priority based algorithm for task scheduling in edge 

layer, as described in Section 3.3. Ignole and Chana [16] introduced a multilevel 

priority-based task scheduling in cloud computing environment. The proposed 

scheduling policy prioritized tasks based on dynamic threshold values, and 

considerably reduced makespan. Besides, Ghanbari and Othman [17] recently reported 

a priority based job scheduling algorithm. The proposed algorithm is according to 

multiple criteria decision-making model based on the theory of Analytical Hierarchy 

Process (AHP). Choudhari and Moh [18] applied a proposed prioritized task 

scheduling in the fog layer of a client-fog-cloud computing system, their study reveals 

that the proposed algorithm significantly reduced the response time and the cost of the 

system.  

3.  MOBILE-EDGE SYSTEM ARCHITECTURE 

            The general structure of mobile-edge computing system can be represented in 

Fig. 1. We consider multiple mobile devices in one mobile-edge computing system. 

The edge server is regarded as a mini data center installed at a wireless access station. 

Each mobile user is subscribed to this closer edge server. Tasks from mobile users are 

incoming through wireless channel. A similar MEC architecture was reported by Tao 

and Ota [19]. Task offloading can help mobile users to improve computation 

performance and reduce energy consumption of mobile devices.  
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           Fig. 1 A multi-user mobile edge computing system 
 

             This model consists of two layers: mobile client and edge server layer. In this 

general structure, there is much room for various task allocation schemes, specifically 

where to handle and how to handle tasks. This is where the various allocation methods 

and scheduling strategies come into play. Here, we design three task allocation models 

in our MEC architecture, including (i) all local process model, (ii) all offload process 

model, and (iii) partial offload process model. The succeeding sections present and 

discuss different allocations and scheduling ways of managing tasks in the context of 

MEC. 

3.1.  Task Model 

 In this study, we consider an independent task T = {t1, t2, …, tj} for each mobile 

user. A task t submitted by a mobile user n can be modeled by a collection of 

parameters, i.e., tn = {cn, dn, Tn, Pn}, where cn, dn, Tn, and Pn denotes required CPU 

cycle per bit of tasks, task data size, deadline requirement, and subscribed priority 

value of task tn , respectively. We let ln denotes the offloading data size of mobile n, 

𝛼"	denotes the fraction of task offloading for each mobile user n, where ln = dn	𝛼". 

Further, we define a desired power consumption 𝐸%," for each mobile device, from 

which we can calculate the energy requirement baseline for each mobile. 
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3.2.  Optimization Offloading Decision Model 

All local and all offloading model are pretty straightforward. However, in 

partial offload process model, how to decide the optimal offloading fraction of tasks 

for each mobile user is the main issues to be addressed herein. In this section, we 

formulate offloading decision problem as an energy efficiency optimizing problem 

under latency requirement constraint for MEC system, which is adopted from Tao's 

research [19].  

We first introduce the all local process model. Tasks are computed locally, no 

task transmission needed. Hence, energy consumption of all local process just relates 

to task data size and CPU requirement. Here we define 𝐸' as the all local computation 

energy consumption as shown in (1), 𝑡",'	as the all local computation completion time 

shown in (2), 

                                             𝐸' = 	𝑓"𝑐"                                                               (1) 

                                𝑡",' = 	
,-
.-

                                                     (2) 
                          
where 𝑓" denotes power consumption per CPU cycle for mobile n, ℎ" denotes 

computing capability of mobile n.  

In all offload process model, there is no mobile energy consumption for 

execution in mobile devices, only energy consumption for transmission considered in 

the system shown in Eq. (3). Completion time in offload process model contains 

transmission time and execution time shown in (4). Energy consumption and 

completion time of all offload process model can be defined as 𝐸0 and 𝑡",0, 

                                       𝐸0 = 	
1-2-
3-

= 𝑝"𝑡"	                                                          (3) 

                            𝑡",0 = 	
1-
3-
+	 ,-

.-6
                                                                            (4)                                                                                                                             

where 𝑝"	denote the transmission power for mobile n, 𝑟" is the transmission rate of 

mobile n, which can be defined as (5), 
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                            𝑟" = 𝐵	𝑙𝑜𝑔<	(1 +	
2-?-@

AB	C
)                                                     (5)   

Let B denote the bandwidth of the wireless channel, 𝑔" is the channel gain of the edge 

server. 

Based on the above model, we can formulate energy consumption of partial 

offload process model. We define 𝛼" as task offloading fraction to edge server. Hence, 

the energy consumption of each mobile n contains local execution consumption and 

partial offloading tasks transmission consumption as shown in (6), 

                       𝐸" = 	𝐸0𝛼" + 𝐸'	 1 −	𝛼" = 	𝑝"𝑡"𝛼" +		 𝑓"𝑐"	(1 −	𝛼")                                   (6) 

The completion time of each mobile n also includes local execution time and 

partial offloading transmission time, which can be calculated as (7), 

                                                  𝑡" = 	 𝑡",' 1 − 𝛼" +	𝑡",0𝛼"                                                    (7) 

The goal of the optimization problem is to minimize energy consumption of 

mobiles. Therefore, our model aims to calculate the optimal task offloading fraction 

for each mobile n under the constraints of edge server computing capability, 

transmission bandwidth, and task latency requirement as well. The problem is a 

convex optimization problem [20]. We use Lagrange method to derive a task allocation 

scheme. Energy efficient offloading optimizing problem can be formulated as: 

min
{J-,K-}

[	1-2-
3-

"
NOP 𝛼" +	𝑓"𝑐"	(1 −	𝛼")]                                                             (8) 

s.t.     ,-
.-

1 −	𝛼" + 1-
3-
+	 ,-

.-6
𝛼" −	𝑇" 	≤ 0     ∀𝑛,                                                   (9) 

1-2-
3-

𝛼" +	𝑓"𝑐" 1 −	𝛼" −	𝐸%,"	 	≤ 0						∀𝑛                                                   (10) 

𝑐"𝛼""
NOP 	≤ 	 ∁                                                                 (11) 

𝑟" 	≤ 𝐵"
NOP                                                                              (12) 

where ∁ denotes edge server CPU computing capability. 
The optimal problem (8) is a convex optimization problem. We define an 

increasing and convex function ℎ(𝑥) = 	𝑁Z𝐵(2
\
] − 1) (while 𝑥 > 0), adopted from 
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Tao's research [19]. Therefore, the transmission power 𝑝" can be calculated as (13), 

and Eq. (6) can be rewritten as Eq. (14) 

𝑝" =
P
?-@
ℎ('-

K-
)                                                                                                   (13) 

𝐸" = 	𝐸0𝛼" + 𝐸'	 1 −	𝛼" = 	𝑝"𝑡"𝛼" +		 𝑓"𝑐"	(1 −	𝛼") 

						= 	 K-
	?-@
ℎ '-

K-
𝛼" +	 𝑓"𝑐"	(1 −	𝛼")                                                                     (14) 

Since function ℎ(𝑥) is convex, and its multiplier function K-
?-@
ℎ '-

K-
 is also convex. 

Therefore, the sum of convex equations, remains convex. To solve this convex 

problem, we define a partial Lagrangian function ℒ 𝛼, 𝑡, 𝜆, 𝜇  shown in (15), 

ℒ 𝜕, 𝑡, 𝜆, 𝜇 = 	
𝑡"
𝑔"<
ℎ
𝑙"
𝑡"

𝛼𝑛 + 	𝑓"𝑐"	 1 − 	𝛼𝑛 + 	𝜆 	
𝑐"
ℎ"

1 −	𝛼𝑛 +
𝑑"
𝑟"
+ 	
𝑐"
ℎ"d

𝛼𝑛 − 	𝑇"  

																															+	𝜇[K-
?-@
ℎ '-

K-
𝛼𝑛 +	 𝑓"𝑐"	 1 − 	𝛼𝑛 − 	𝐸%,"	]                                                   (15) 

where 𝜆	 ≥ 0	𝑎𝑛𝑑	𝜇	 ≥ 0 are the dual Lagrange multiplier linked to constraints of 

completion time and energy consumption. Let 𝛼"∗ 	denotes optimal solution which 

always exist. Then we apply KKT condition and transform Eq. (15) to following 

equations: 

Jℒ
Jh-
∗ = 1 + 	𝜇 K-

?-@
ℎ '-

K-
− 1 + 	𝜇 𝑓"𝑐" + 	𝜆

,-
.-6
−	 ,-

.-
                                                        (16) 

Jℒ
Ji-
∗ = 𝛼𝑛∗ 	

?-@
+ 	𝜇𝛼𝑛∗ 	 ℎ '-∗

K-∗
−	 '-

∗

K-∗
ℎj '-∗

K-∗
+ 	𝜆𝛼𝑛∗ 	                                                  (17) 

Jℒ
Jk
∗ = 	

,-
.-

1 −	𝛼" + 1-
3-
+	 ,-

.-6
𝛼" −	𝑇"                                                              (18) 

Jℒ
Jl∗
= 	 K-

?-@
	ℎ '-

K-
+	𝑓"𝑐"	 1 −	𝛼" −	𝐸%,"	                                                              (19) 

𝛼"	𝑎𝑛𝑑	𝑡𝑛 can be derived from above equation. Based on this, the optimization 

problem is computed based on the dual function g(𝜆, 𝜇) = 𝑚𝑖𝑛ℒ(𝛼, 𝑡, 𝜆, 𝜇) and Lambert 

function, adapted and adjusted from Tao's research [19]. Finally, we conduct the result 

of  𝛼"∗  as shown in (20), 
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                                  𝛼"∗   =	 o-.-.-6p	,-.-6

q-
6q-r-
s-

	t	,-.-p	,-.-6
                                      (20) 

From the above derive we can conclude that optimal computation offloading 

fraction is tightly related to task's latency requirement and task data size. 

3.3.  Prioritized Task Scheduling Model 

Offloading tasks coming from mobile users may have various latency 

requirements that needed to be satisfied. Here, we enhance an existing priority based 

scheduling algorithm in edge server layer based on Dasshayini and Guruprasad's 

research [15]. Parameters used for prioritized scheduling model can be found 

following, 

• Three priority queues Qv, Qw, and Qx, corresponding to three subscription 

catalogues (SB CAT) of task: 3 = High, 2 = Medium, 1 = Low. 

• Two thresholds 𝑇P	𝑎𝑛𝑑	𝑇<for latency requirement at levels. 

• The maximum tolerable waiting time of each task i can be calculated as (21), 

                            	𝑤𝑎𝑖𝑡N = 𝐿𝑅N − 𝐶N                                               (21) 

where 𝐿𝑅N denote latency requirement of task i, 𝐶N is current time 

• 𝑇d}K,N is estimated service time of task i. 

  Task will be placed in one of three queues based on subscription catalogues and 

latency requirement. 

  In the above parameters, thresholds 𝑇P and 𝑇< are set and adjust based on 

experiments. Thresholds are used to reorder the tasks based on their latency 

requirements and subscribed priority levels. As 𝑇P and 𝑇< have signify different (𝑇P < 

𝑇<), the maximum waiting time, 𝑤𝑎𝑖𝑡N is used to check against estimated service time 

𝑇d}K,N and 𝑇P, 𝑇<. Therefore, all the tasks have stringent latency requirement will be 

inserted into high priority queue. Tasks which have low latency requirement will be 
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added into medium or low priority queues, so that tasks have higher priority are 

processed first. 

4. PROPOSED ALGORITHM 

In this section, the proposed prioritized offloading in mobile-edge computing is 

described herein. The proposed algorithm called Joint Computation Offloading and 

Prioritized Scheduling Algorithm, which extends Tao's research [19] by implementing 

optimization offloading decision algorithm in mobile layer and an enhanced version of 

prioritized scheduling algorithm [15] in edge layer. The algorithm consists of two 

parts. Part A in mobile layer, each mobile randomly generates a task, and within the 

mobile device, offloading fraction is calculated by the optimal offloading decision 

model described in Section 3.2. Part B in edge layer, edge server process all the 

offloading tasks coming from mobile users and order them in a priority queue based on 

the latency requirement and subscription catalogues, or terms of priority levels 

presented in Section 3.3. Below, the high-level description of the algorithm is 

presented. 

A. Energy-Efficient Task Offloading Algorithm in Mobile Layer 
1: for each mobile user n 
2:      for each task 𝑑N in mobile n 
3:            Calculate the optimal offloading fraction 𝛼" by (20) 
4:            Offload 𝑑N	×		𝛼" tasks to edge server;  
5:            Execute 𝑑N × (1 − 	𝛼")		tasks at local mobile   
5:      end for 
6: end for 

B. Prioritized Task Scheduling Algorithm in Edge Layer 
1: for each task in edge server queue 
2:       Task manager in edge server check maximum waiting time 	𝑤𝑎𝑖𝑡N by (21); 
3:       if 𝑤𝑎𝑖𝑡N 	≤ estimated service time 𝑇d}K,N, then 
4:                Place 𝑡𝑎𝑠𝑘N in QH; 
5:       else if 𝑇d}K,N	+ 𝑇P ≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<., then  
6:                if SBCAT ==1, then 
7:                      Place 𝑡𝑎𝑠𝑘N in QH; 
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8:               if SBCAT ==2, then 
9:                     Place 𝑡𝑎𝑠𝑘N in QM; 
10:             if SBCAT ==3, then 
11:                   Place the 𝑡𝑎𝑠𝑘N in QL;  
12:     else if 𝑤𝑎𝑖𝑡N	  > 𝑇d}K,N + 𝑇<, then 
13:            if SBCAT ==1 and is QH not full, then 
14:                     Place 𝑇d}K,N in QH; 
15:                 else 
16:                     Place the 𝑇d}K,N in QM; 
17:           else if SBCAT ==2 and is QM not full, then 
18:                    Place the 𝑇d}K,N in QM; 
19:                 else 
20:                    Place the 𝑇d}K,N in QL; 
21:          else if SBCAT ==3, then 
22:                    Place the 𝑇d}K,N in QL; 
23:     end if 
24: end for 

The above algorithm can be described as, mobile devices calculate the optimal 

computation offloading fractions for each batch of task in Step A. Within this step, 

fraction of 𝛼"∗  tasks are offloaded to edge server, fraction of (1 −	𝛼"∗ 	)		tasks are 

executed in local mobile. For those tasks offloading to edge server, execute algorithm 

B. 

Algorithm B processes all offloading requests from 2000 mobile devices, in this 

step, maximum waiting time 𝑤𝑎𝑖𝑡N is calculated and compared with estimated 

execution time 𝑇d}K,N. If 𝑤𝑎𝑖𝑡N	is less or equal to 𝑇d}K,N, the task is placed in to highest 

priority queue QH regardless of subscription catalogues. Next, 𝑤𝑎𝑖𝑡N is compared 

against 𝑇d}K,N	plus threshold value 𝑇P and 𝑇d}K,N	plus threshold value 𝑇<, if 𝑤𝑎𝑖𝑡N greater 

is between them, place task into the queue based on its subscription catalogues. Last, 

check 𝑤𝑎𝑖𝑡N with 𝑇d}K,N	plus threshold value 𝑇<.  Place task in its original subscription 

catalogue if the corresponding queue has space, otherwise downgrade one queue level. 
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We try to guarantee that high priority tasks will be executed first by applying this 

algorithm. 

5. SIMULATION SETTING 

To evaluate the different task allocation designs and algorithms in a mobile-

edge computing scenario, we use CloudSim as simulator [21]. Algorithms shown in 

Table 1were implemented and compared the simulation results through CloudSim. In 

order to evaluate how the prioritized scheduling algorithm performed in this mobile-

edge computing system, it is reasonable to compare it to a known heuristic algorithm 

scheme. Classic algorithm for task scheduling in edge server used for comparison with 

our proposed algorithm is Earliest Deadline First (EDF). EDF involves ordering tasks 

based on the deadline requirement, the task with highest deadline requirement will be 

executed firstly. The settings for MEC system parameters in simulation are 

summarized in Table 2. 

Table 1 Algorithms  

Acronym Algorithm in mobile devices Algorithm in edge server 
All local FCFS N.A. 

All offload N.A EDF 
All offload + Priority FCFS Prioritized Scheduling 

Tao's Partial Offloading Optimal Offloading Decision EDF 
Tao's Partial Offloading 

+ Priority Optimal Offloading Decision Prioritized Scheduling 

Table 2 Simulation Parameters and Values 

Parameter Value 
#. Mobile Devices (same as #. tasks) 2000 
#. Edge Host 1 
#. VMs on Edge Host 5 
Mobile Devices Computing Capability Randomly from 0.5 ~ 1.0 GHz 
Edge VMs Computing Capability 10 GHz 
Task Data Size  20 MB ~ 200 MB 
Network Bandwidth  5 MHz 
Density of Noise Power of Network Channel 10-12 W 
Latency Requirement 200 ms ~ 2000 ms 
Latency Requirement for Bonus Score Exp. 1400 ms ~ 2600 ms 
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Task Priority Randomly set to be 1 or 2 or 3 
Scheduling Threshold T1 300 ms 
Scheduling Threshold T2 800 ms 

Various metrics are considered herein, including task completion time, mobile 

energy consumption, cost of edge serve VM usage, and Bonus score. 

6. PERFORMANCE EVALUATION 

In this section, we discuss the performance of varied task allocation strategies, 

including all local mobile computing, all offload to edge server with and without 

prioritized scheduling computing, Tao's Partial Offloading to edge server with 

optimization computation offloading, without prioritized scheduling computing 

method. Results of task completion time, mobile energy consumption, cost of edge 

server VM usage, and bonus score are presented below. 

6.1. Task Completion Time 

We discuss the completion time vs. task size for different task allocation 

strategies as shown in Fig. 2. The completion time of partial offloading tasks includes 

local mobile execution time, transmission time in wireless network as well as 

execution time in edge server.   

 

                                Fig. 2 Completion time vs. task data sizes 
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From the result of Fig. 2, it can be observed that, firstly, when task sizes are 

small, different task offloading methods has similar completion times. However, the 

completion time has significant different trend when task sizes becomes larger.  

Secondly, partial loading with or without prioritized scheduling has less completion 

time compared to all local execution and all offload to edge server computation. 

Lastly, our proposed joint computation offloading and prioritized scheduling method 

(Tao's Partial Offloading + Priority) performs better in terms of completion time 

compared to Tao's partial offloading without prioritized scheduling method. The 

improvement is because, implementing priority scheduling in edge server, tasks are 

placed in priority orders according to their tolerance delay. Therefore, reduce the total 

completion time compared to partial offloading without prioritized scheduling method. 

We can conclude that Tao's Partial Offloading with prioritized scheduling in edge 

server reduce the total completion time of tasks due to efficient task scheduling 

strategy based on the task deadline and their priority. 

Fig. 3 reveals the completion time variance with latency deadline with task size 

of 140 MB. Fig. 3 shows that (i) our proposed prioritized partial offloading strategy 

has lower completion time compared to other offloading methods.  

       

                Fig. 3 Completion time vs. latency requirements 
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This is because latency requirement affects offloading percentage between 

mobile devices and edge server. When latency requirements are low, most of the tasks 

are offloaded to edge server, therefore, the completion time of tasks reduces due to the 

powerful computing capability of edge server. (ii) Our proposed offloading strategy 

performs better in completion time because of the efficient task execution order 

scheduling. (iii) Completion time increases for all offloading strategies as the latency 

requirement becomes low. (iv) And there is no significant completion time variance 

when latency requirement increases for all local mobile execution. 

6.2. Mobile Energy Consumption 

Mobile energy consumption is the main metric of evaluating task allocation 

strategy in mobile-edge architecture. Fig. 4 depicts the energy consumption difference 

with the task size and latency requirement.  

    
                            Fig. 4 Energy consumption vs. task data sizes 
 

Results show task offloading to edge server reduce energy consumption of 

mobile devices significantly compared to all local execution as shown in Fig. 4.  

Specifically, Tao's Partial Offloading consumes less mobile battery energy than all 

offload and the impact is greater when the task data sizes become larger. This indicates 

that Tao's Partial Offloading deploys tasks to edge server make a tradeoff between all 
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local computing energy consumption and data transmission via wireless network 

energy consumption for all offloading.  

We also discuss the energy consumption variance with latency requirements 

change shown in Fig. 5. Similar to completion time vs. latency requirement, when task 

latency requirements are low, large portions of tasks are offloaded to edge server, 

hence, reduce the energy consumption. Energy consumption of all local execution 

keeps constant as the latency requirements changes as energy consumption is just 

affected by task size and CPU requirement. And no significant mobile energy 

consumption observed between Tao's Partial Offloading with or without prioritized 

scheduling, because task scheduling in edge server has no impact on mobile energy 

consumption. 

                         
Fig. 5 Energy consumption vs. latency requirements 

 

6.3. Cost of Edge Server VM Usage 

 As task completion time is closely linked to edge serve usage, the server VM 

usage cost under different task data sizes and latency requirement are determined. We 

investigate edge server VM usage cost in mobile-edge computing for different 

offloading strategies. Edge server VM usage cost is calculated based on occupation 

time of VM in edge server. The cost of VM usage is set to be 0.1 $/Hr. 
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 Fig. 6 compares the VM cost among four different offloading methods, which is 

all offload, all offload + prioritized scheduling, Tao's Partial Offloading as well as 

Tao's Partial Offloading + prioritized scheduling strategies. As shown in Fig. 6, cost of 

edge server VM usage increase as task sizes increase from 20 MB to 200 MB, and 

partial offload has lower (30 % ~ 50%) cost compared to all offload computation 

method. Obviously, large task data size and all offload takes longer VM CPU time to 

process.  

          
 

      Fig. 6 Cost of edge server VM usage vs. task data sizes 

Moreover, our result also shows that VM cost lowered (10% ~ 15%) by 

implementing prioritized scheduling strategy compared to all offload methods without 

prioritized strategy in edge server. Specifically, Tao's Partial Offloading + prioritized 

scheduling method has the lower VM usage cost compared to Tao's Partial Offloading 

methods without prioritized scheduling, this is consistent with the completion time 

analyze.  

Similar results also found in VM usage cost vs. latency requirement. As shown 

in Fig. 7, offloading methods with prioritized scheduling strategy has better 

performance than the methods without prioritized. And the cost increases at some 

levels as the latency requirement getting lower in edge server. 
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Fig. 7 Cost of edge server VM usage vs. latency requirements 
 

6.4. Bonus Score 

Bonus score is a metric used to evaluate QoE in cloud service. We use this 

score to represent the "benefit" to process a task based on its completion time and 

priority value. The Bonus score can be calculated as:  

𝐵𝑜𝑛𝑢𝑠	𝑆𝑐𝑜𝑟𝑒 = 	
𝐿𝑎𝑡𝑒𝑛𝑐𝑦	𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 	×	𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦	𝑉𝑎𝑙𝑢𝑒

	𝑇𝑎𝑠𝑘	𝑠𝑖𝑧𝑒  

 
We calculate bonus score for all offload, all offload + prioritized scheduling, 

Tao's Partial Offloading as well as Tao's Partial Offloading + prioritized scheduling 

methods to evaluate the best performance offloading strategy. The bonus score vs. task 

data sizes and latency deadline can be found in Fig. 8 and Fig. 9. 

Fig. 8 shows that, in general, when task sizes are small (20 MB ~ 60 MB), four 

offloading methods have similar bonus score achievement. When task sizes become 

larger, (i) Tao's Partial Offloading (with or without prioritized scheduling) have greater 

bonus score than all offload method. This is due to most the offloading task in partial 

offload methods has less completion time compared to all offload method, (ii) Tao's 

Partial Offloading with prioritized scheduling performs better in terms of bonus than 
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Tao's partial offload. This indicates that task scheduling according to priority values 

improves the throughput of successfully completed, which reduce the completion time 

of tasks with higher priority value and in turn increase the bonus score. 

Similar trend found in bonus score vs. latency deadline as shown in Fig. 9. 

Greater bonus score achieved from four offloading methods when latency requirement 

ranges from 1600 ms to 2000 ms. However, the bonus score keeps constant or even 

getting lower when latency requirement set to be 2200 ms to 2600 ms. This is because 

nearly 80% of the tasks are offloaded from mobile devices to edge server when latency 

requirements increase to 1800 ms. Therefore, it can be observed that Tao's Partial 

Offloading and all offload has similar bonus score at 2000 ms latency requirement. 

The observed lower bonus scores at 2200 ms for Tao's Partial Offloading + prioritized 

may due to differential between latency requirement and completion time becomes 

less, which is consistent to the longer completion time shown in Fig. 3 when latency 

requirement get lower. 

 
 

                                   Fig. 8 Bonus score vs. task data sizes 
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Fig. 9 Bonus score vs. latency requirements 

 
6.5. Dynamic change thresholds in prioritized scheduling 

In the previous sections, two thresholds value T1 and T2 in priority-based task 

scheduling in edge layer are fixed. However, the fixed value might not fit when system 

scale up and down. System scale up and down have various dimensions, here we 

discuss scale up and down with latency requirements changes. The dynamic change of 

thresholds value T1 and T2 is set to be T1 = 25% average latency requirement, T2 = 75% 

average latency requirement. Those two parameters are come up from the previous 

section, latency requirements are range from 200 ms ~ 2000ms. Therefore, T1 = 300 

ms equals to 25% of average latency requirements, T2 = 800 ms equals to 75% of 

average latency requirements. In the following, we will discuss the performance for fix 

settings and dynamic setting in scale up and scale down systems.  

6.5.1 Current latency requirements 

In order to compare different fix settings with dynamic setting, we set up two 

fix settings, (i) current fix setting T1 = 300 ms, T2 = 800 ms, (ii) new setting T1 = 1000 

ms, T2 = 3000 ms, and one dynamic threshold setting (iii) dynamic setting T1 = 25% 

average latency requirements, T2 = 75% average latency requirements. The current 
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latency requirement ranges from 200 ms ~ 2000 ms, task size is 140 MB. Performance 

results can be found in Fig. 10 to Fig. 12.  

 
 

Fig. 10 Completion cost vs. latency requirements at current system 
 

 
 

               Fig. 11 Cost of edge server usage vs. latency requirements at current system 
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   Fig. 12 Bonus score vs. latency requirements at current system 

 

Above results show that current setting and dynamic setting has less task 

completion time, less edge server usage cost and better bonus score compared to new 

setting. This is because in new setting, 𝑇< setting is too large that most of the tasks will 

be fall into secondary category (𝑇d}K,N	+ 𝑇P ≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<) when decide the 

service priority in edge server. That means no task will be placed into third category 

(𝑤𝑎𝑖𝑡N	  > 𝑇d}K,N + 𝑇<), which causing congestion in second category. Some tasks 

which can be placed in third category would have less completion time because 

downgrade queue might have space, which could have less edge server usage cost and 

higher bonus score. 

No significant performance difference observed between current setting and 

dynamic setting, because two parameters 25% and 75% of average latency 

requirements are proposed based on current setting in current latency range. And 

current setting is the optimal setting in current latency range based on experiment. 
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6.5.2 Scale up latency requirements 
 

In scale up settings, latency range: 2000 ms ~10000 ms, task size = 300 MB. 

Thresholds settings are the same as in section 6.5.1. Performance evaluation can be 

found in Fig. 13 to Fig. 15. 

 

 
Fig. 13 Completion time vs. latency requirements at scale up system 

 

 
    Fig. 14 Cost of edge server usage vs. latency requirements at scale up system 
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                     Fig. 15 Bonus score vs. latency requirements at scale up system 

 

Results show that new setting and dynamic setting has less task completion 

time, less edge server usage cost and better bonus score compared to current setting. 

No significant difference in performance between new setting and dynamic setting. 

Current setting: T1 = 300 ms, T2 = 800 ms is not fit in scale up system. 

In current setting, 𝑇< setting is too small that most of the tasks will be fall into 

third category (𝑤𝑎𝑖𝑡N	  > 𝑇d}K,N + 𝑇<) when latency range scale up. That means no task 

will be placed into secondary category ( 𝑇d}K,N	+ 𝑇P ≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<).  Some 

tasks which have stringent latency requirements should be placed in secondary 

category would have less completion time. Because tasks will be placed into its 

subscribed priority queue without downgrade priority level, which could have less 

edge server usage cost and higher bonus score. No significant performance difference 

observed between new setting and dynamic setting, indicates that dynamic setting of 

two parameters 25% and 75% of average latency requirements can be used in scale up 

system. 

6.5.3 Scale down latency requirements 
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Similarly, we also discuss the system performance in scale down latency 

requirements. In scale down settings, latency range: 200 ms ~1000 ms, task size = 20 

MB. Thresholds settings are the same as in section 6.5.1. Performance evaluation can 

be found in Fig. 16 to Fig. 18. 

 
 

              Fig. 16 Completion time vs. latency requirements at scale down system 

 

 
 

  Fig. 17 Cost of edge server usage vs. latency requirements at scale down system 
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            Fig. 18 Bonus score vs. latency requirements at scale down system 
 

Results show that current setting and new setting requires more completion task 

completion time, more edge server usage cost and gain less bonus score compared to 

dynamic setting. No significant performance difference observed between current 

setting and new setting. Current setting: T1 = 300 ms, T2 = 800 ms and new setting: T1 

= 1000 ms, T2 = 3000 ms are not fit in scale down system. 

In current setting and new setting, both 𝑇< settings are too large for scale down 

system. Therefore, most of the tasks will be placed into secondary category (𝑇d}K,N	+ 𝑇P 

≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<), which causing congestion in second category. That means 

some tasks that have loose latency requirement in the range which can be placed into 

third category (𝑤𝑎𝑖𝑡N	  > 𝑇d}K,N + 𝑇<) are also be placed into second category. So, 

completion time and cost of edge server usage increases due to inappropriate and 

inefficient task scheduling, and in turn lowers bonus score. Dynamic setting T1 and T2 

realizes the optimal adjusting based on the priority of the tasks. Dynamic setting of two 

parameters 25% and 75% of average latency requirements can also be used in scale 

down system. 
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7.  CONCLUSION 

This paper proposes a joint computation offloading, priority-based task 

scheduling in a multi-user mobile-edge computing system, and evaluate its 

performance against existing computation offloading and scheduling schemes. 

Performance evaluation results show that proposed Joint Computation Offloading and 

Prioritized Scheduling strategy has reduced task completion time, and the cost of edge 

server VM usage. Specifically, the proposed scheme greatly improves QoS in terms of 

bonus score by increasing throughput of MEC system and guarantee SLA. Moreover, 

we also discuss dynamic change threshold values in prioritized scheduling algorithm, 

realizes optimal adjusting based on the priority of the tasks. Our study provides a 

viable approach that can be applied to other IoT-Edge systems. Future work would 

continue in the use of optimal computation offloading algorithm in mobile layers, and 

append a cloud layer in the mobile edge computing system for a complete research 

about task allocation and scheduling. 
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