
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2018

Joint Computation Offloading and Prioritized
Scheduling in Mobile Edge Computing
Lingfang Gao
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Gao, Lingfang, "Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing" (2018). Master's Projects. 615.
DOI: https://doi.org/10.31979/etd.tpe8-v3dn
https://scholarworks.sjsu.edu/etd_projects/615

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/159401049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/615?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

Writing Project

Joint Computation Offloading and Prioritized Scheduling in

Mobile Edge Computing

Final Report

Author

Lingfang Gao

CS 298

May 2018

Advisor

Dr. Melody Moh

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

ii

A Writing Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirements for the Degree: Master of Science

© 2018

Lingfang Gao

ALL RIGHTS RESERVED

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

iii

The Designated Committee Approves the Master's Project Titled

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN

MOBILE EDGE COMPUTING

By

LINGFANG GAO

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

MAY 2018

Dr. Melody Moh Signature:

Department of Computer Science

Dr. Robert Chun Signature:

Department of Computer Science

Dr. Teng Moh Signature:

Department of Computer Science

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

iv

ABSTRACT

Joint Computation Offloading and Prioritized Scheduling in Mobile Edge

Computing

by Lingfang Gao

With the rapid development of smart phones, enormous amounts of data are

generated and usually require intensive and real-time computation. Nevertheless,

quality of service (QoS) is hardly to be met due to the tension between resource-

limited (battery, CPU power) devices and computation-intensive applications. Mobile-

edge computing (MEC) emerging as a promising technique can be used to copy with

stringent requirements from mobile applications. By offloading computationally

intensive workloads to edge server and applying efficient task scheduling, energy cost

of mobiles could be significantly reduced and therefore greatly improve QoS, e.g.,

latency. This paper proposes a joint computation offloading and prioritized task

scheduling scheme in a multi-user mobile-edge computing system. We investigate an

energy minimizing task offloading strategy in mobile devices and develop an effective

priority-based task scheduling algorithm with edge server. The execution time, energy

consumption, execution cost, and bonus score against both the task data sizes and

latency requirement is adopted as the performance metric. Performance evaluation

results show that, the proposed algorithm significantly reduce task completion time,

edge server VM usage cost, and improve QoS in terms of bonus score. Moreover,

dynamic prioritized task scheduling is also discussed herein, results show dynamic

thresholds setting realizes the optimal task scheduling. We believe that this work is

significant to the emerging mobile-edge computing paradigm, and can be applied to

other Internet of Things (IoT)-Edge applications.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

v

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my advisor Dr. Melody Moh for

the continuous support of my master study, for her patience, immense knowledge. Her

guidance helped me in all the time of research and writing project.

In addition, I would also like to extend my gratitude to my committee members,

Dr. Teng Moh and Dr. Robert Chun for their valuable suggestions, support and time. I

would also like to thank my husband Zhenbo Xing, my son Jason Xing and my parents

for constant love and support throughout my master study.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

vi

TABLE OF CONTENTS

1. Introduction ... 1

2. Related Work .. 3

2.1 Computation Offloading ... 3

2.2 Priority Task Scheduling in Edge Computing .. 4

3. Mobile-Edge System Architecture .. 4

3.1. Task Model .. 5

3.2. Optimization Offloading Decision Model ... 6

3.3. Prioritized Task Scheduling Model ... 9

4. Proposed Algorithm .. 10

5. Simulation Setting ... 12

6. Performance Evaluation ... 13

6.1. Task Completion Time .. 13

6.2. Mobile Energy Consumption .. 15

6.3. Cost of Edge Server VM Usage ... 16

6.4. Bonus Score ... 18

6.5. Dynamic change thresholds in prioritized scheduling 20

6.5.1 Current latency requirements ... 20

6.5.2 Scale up latency requirements ... 23

6.5.3 Scale down latency requirements .. 24

7. Conclusion .. 27

Reference .. 28

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

vii

List of Acronyms

AHP – Analytical Hierarchy Process

EDF – Earliest Deadline First

IoT – Internet of Things

KKT conditions – Karush – Kuhn – Tucker conditions

MCC – Mobile Cloud Computing

MEC – Mobile Edge Computing

QoE – Quality of Experience

QoS – Quality of Service

SLA - Service Level Agreements

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

viii

List of Figures

Figure 1: A multi-user mobile edge computing system ……………………………… 5

Figure 2: Completion time vs. task data sizes…………………………………………13

Figure 3. Completion time vs. latency requirement…………………………...………14

Figure 4. Energy consumption vs. task data sizes…………………………….…….... 15

Figure 5. Energy consumption vs. latency requirements……………………………...16

Figure 6: Cost of edge server VM usage vs. task data sizes………………………......17

Figure 7: Cost of edge server VM usage vs. latency requirements…………………....18

Figure 8: Bonus score vs. task data sizes…….……………………………………..…19

Figure 9: Bonus score vs. latency requirements…………………………………...….20

Figure 10: Completion time vs. latency requirement at current setting……………… 21

Figure 11: Cost of edge server VM usage vs. latency requirements at current

system…………………………………………………………………………………22

Figure 12: Bonus score vs. latency requirements at current system………… ………. 22

Figure 13: Completion time vs. latency requirement at scale up system……………..23

Figure 14: Cost of edge server VM usage vs. latency requirements at scale up

system…………………………………………………………………………….......23

Figure 15: Bonus score vs. latency requirements at scale system……………………24

Figure 16: Completion time vs. latency requirement at scale down system…………25

Figure 17: Cost of edge server VM usage vs. latency requirements at scale down

system………………………………………………………………………………...25

Figure 18: Bonus score vs. latency requirements at down system……………………26

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

ix

List of Tables

Table 1: Algorithms…………………………………………………………….….….12

Table 2: Simulation Parameters and Values …………………………………...…..…12

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

1. INTRODUCTION

 Mobile applications are abundant in nowadays, more and more mobile

applications are seeking for fast and customized service. These applications are more

likely to be resource-demanding applications, such as video chat, online gaming,

requires real-time communication and intensive computation. However, due to

resource limitation (battery lifetime, storage capacity, CPU power) of mobile devices,

users are not satisfying the service compared to desktop [1]. Moreover, intensive

computation and real-time transmission also implies heavy CPU processing and

wireless transmission, causing significant energy cost of mobile devices [1]. Issues

with battery consumption of mobiles, response time, freshness, accuracy, and quick

delivery are potentially affected. Many researchers have made great efforts on

delivering high quality service to users and saving energy for mobile devices. One

popular solution for mobile devices is computation offloading: applications take

advantage of resource-rich infrastructures by deploying computation to these

infrastructures [2]. Furthermore, researchers have recognized offloading computation

to cloud can significant reduce power consumption of mobile devices [3, 4]. While

Offloading application to a remote cloud works well for non-time critical applications,

such as pictures, videos, and documents, it is not ideal when supporting a real-time

mobile solution [5]. Latency and network availability impact cloud based computation

offloading.

Mobile edge computing (MEC) is a promising solution to cope with the above

challenge. MEC provide cloud-like service within the mobile edge network [6]. Instead

of pushing up data to remote clouds, edge computing aims to process part of the

mobile's workload on edge nodes, which serves as computing agent closer to users

between mobile devices and cloud servers. MEC has several advantages compared to

traditional mobile cloud computing (MCC), such as short latency and low energy

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

2

consumption [7]. MEC is a feasible solution to satisfy the ever-increasing

comprehensive requests demanded by users.

Since part of workload from mobile devices are deployed to edge servers in

MEC, efficient task scheduling schemes also needed to be considered. Efficient task

scheduling policy would gain high system throughput to improve Service Level

Agreements (SLA) [8]. Priority of tasks is of great importance in scheduling because

some jobs with stringent latency requirement should be served earlier than other jobs

in the system. An appropriate task scheduling algorithm must consider priority of tasks

especially in a relatively resource limited edge server.

In this paper, we address issues of computation offloading and task scheduling

in mobile-edge computing. A joint solution combining optimal computation offloading

and prioritized task scheduling model is proposed for a multi-user MEC system.

Briefly, in mobile layer, an optimal computation offloading model with energy

consumption constraints is used to decide the offloading fractions of mobile

applications. In particular, whether to and how much to offload computation tasks to

edge server is determined by mobile energy condition and latency requirement. In the

edge layer, tasks coming from mobiles devices are queued and served by a prioritized-

based task scheduling policy. Service sequence is determined by subscription priority

requirement and latency deadline.

The rest of the paper is organized as follows. In next section, we review related

works on computation offloading and task scheduling, especially on those reduce

power consumption for mobile devices. Section 3 and 4 presents the architecture of the

MEC system and the major algorithms employed in MEC. Evaluation and analysis of

algorithms are conducted in Section 5 and Section 6. We conclude the paper in Section

7.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

3

2. RELATED WORK

 Computation offloading in mobile devices and task scheduling in edge server

are two main challenges in MEC system. However, MEC is a new introduced

paradigm; therefore, edge oriented resource management is not yet addressed that

much. In this section, we briefly review few computational offloading policies and task

scheduling approaches for energy conservation and meeting time constraint in MEC

architecture.

2.1 Computation Offloading

Many researches are focusing on computation offloading in MEC for energy

saving and performance enhancement. Huang, Wang, and Niyato [9] proposed an

adaptive offloading algorithm. With dynamic data rate adjusting techniques, mobile

execution energy consumption with time constraint was minimized. Xie and Dan [10]

studied a dynamic size-controlled algorithm for computation offloading in a

collaborative MCC system. A joint allocation of tasks and resources for MEC system

was proposed by Sardellitti, Scutari, and Barbarossa [11], a tradeoff between energy

consumption and tardiness was discussed. Yousefpour et al., [12] proposed an QoS-

aware based offloading method to discuss tradeoff between energy and latency. More

recently, the optimization of energy-delay of MEC system with varied applications

have been carried out by Lyapunov optimization algorithm, which investigating

offloading scheme, task allocation, CPU cycle requirement and network [13].

Furthermore, tradeoff between mobile power and processing delay for multi-user MEC

systems was investigated via implementing a dynamic network and computational

resource allocation [14]. Although energy conservation is attractive for MEC system,

performance guaranteed is important for real-time mobile applications. However,

there has been very little research report on the performances guaranteed, e.g., under

the constraints of computing capability, transmission bandwidth, and task latency

requirement while minimizing energy consumption.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

4

2.2 Priority Task Scheduling in Edge Computing

QoS requirements are especially critical for mobile applications, such as priority

of user's request, speed of delivery and service cost. Prioritized task scheduling in edge

computing plays an important role in edge computing, as it significantly reduces

service time and improves SLA. A priority based service scheduling algorithm was

proposed by Dakshayini and Guruprasad [15]. The model gained high throughput of

the cloud and significantly reduced service time by making an efficient provision of

cloud resources. We adopted this priority based algorithm for task scheduling in edge

layer, as described in Section 3.3. Ignole and Chana [16] introduced a multilevel

priority-based task scheduling in cloud computing environment. The proposed

scheduling policy prioritized tasks based on dynamic threshold values, and

considerably reduced makespan. Besides, Ghanbari and Othman [17] recently reported

a priority based job scheduling algorithm. The proposed algorithm is according to

multiple criteria decision-making model based on the theory of Analytical Hierarchy

Process (AHP). Choudhari and Moh [18] applied a proposed prioritized task

scheduling in the fog layer of a client-fog-cloud computing system, their study reveals

that the proposed algorithm significantly reduced the response time and the cost of the

system.

3. MOBILE-EDGE SYSTEM ARCHITECTURE

 The general structure of mobile-edge computing system can be represented in

Fig. 1. We consider multiple mobile devices in one mobile-edge computing system.

The edge server is regarded as a mini data center installed at a wireless access station.

Each mobile user is subscribed to this closer edge server. Tasks from mobile users are

incoming through wireless channel. A similar MEC architecture was reported by Tao

and Ota [19]. Task offloading can help mobile users to improve computation

performance and reduce energy consumption of mobile devices.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

5

 Fig. 1 A multi-user mobile edge computing system

 This model consists of two layers: mobile client and edge server layer. In this

general structure, there is much room for various task allocation schemes, specifically

where to handle and how to handle tasks. This is where the various allocation methods

and scheduling strategies come into play. Here, we design three task allocation models

in our MEC architecture, including (i) all local process model, (ii) all offload process

model, and (iii) partial offload process model. The succeeding sections present and

discuss different allocations and scheduling ways of managing tasks in the context of

MEC.

3.1. Task Model

 In this study, we consider an independent task T = {t1, t2, …, tj} for each mobile

user. A task t submitted by a mobile user n can be modeled by a collection of

parameters, i.e., tn = {cn, dn, Tn, Pn}, where cn, dn, Tn, and Pn denotes required CPU

cycle per bit of tasks, task data size, deadline requirement, and subscribed priority

value of task tn , respectively. We let ln denotes the offloading data size of mobile n,

𝛼"	denotes the fraction of task offloading for each mobile user n, where ln = dn	𝛼".

Further, we define a desired power consumption 𝐸%," for each mobile device, from

which we can calculate the energy requirement baseline for each mobile.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

6

3.2. Optimization Offloading Decision Model

All local and all offloading model are pretty straightforward. However, in

partial offload process model, how to decide the optimal offloading fraction of tasks

for each mobile user is the main issues to be addressed herein. In this section, we

formulate offloading decision problem as an energy efficiency optimizing problem

under latency requirement constraint for MEC system, which is adopted from Tao's

research [19].

We first introduce the all local process model. Tasks are computed locally, no

task transmission needed. Hence, energy consumption of all local process just relates

to task data size and CPU requirement. Here we define 𝐸' as the all local computation

energy consumption as shown in (1), 𝑡",'	as the all local computation completion time

shown in (2),

 𝐸' = 	𝑓"𝑐" (1)

 𝑡",' = 	
,-
.-

 (2)

where 𝑓" denotes power consumption per CPU cycle for mobile n, ℎ" denotes

computing capability of mobile n.

In all offload process model, there is no mobile energy consumption for

execution in mobile devices, only energy consumption for transmission considered in

the system shown in Eq. (3). Completion time in offload process model contains

transmission time and execution time shown in (4). Energy consumption and

completion time of all offload process model can be defined as 𝐸0 and 𝑡",0,

 𝐸0 = 	
1-2-
3-

= 𝑝"𝑡"	 (3)

 𝑡",0 = 	
1-
3-
+	 ,-

.-6
 (4)

where 𝑝"	denote the transmission power for mobile n, 𝑟" is the transmission rate of

mobile n, which can be defined as (5),

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

7

 𝑟" = 𝐵	𝑙𝑜𝑔<	(1 +	
2-?-@

AB	C
) (5)

Let B denote the bandwidth of the wireless channel, 𝑔" is the channel gain of the edge

server.

Based on the above model, we can formulate energy consumption of partial

offload process model. We define 𝛼" as task offloading fraction to edge server. Hence,

the energy consumption of each mobile n contains local execution consumption and

partial offloading tasks transmission consumption as shown in (6),

 𝐸" = 	𝐸0𝛼" + 𝐸'	 1 −	𝛼" = 	𝑝"𝑡"𝛼" +		 𝑓"𝑐"	(1 −	𝛼") (6)

The completion time of each mobile n also includes local execution time and

partial offloading transmission time, which can be calculated as (7),

 𝑡" = 	 𝑡",' 1 − 𝛼" +	𝑡",0𝛼" (7)

The goal of the optimization problem is to minimize energy consumption of

mobiles. Therefore, our model aims to calculate the optimal task offloading fraction

for each mobile n under the constraints of edge server computing capability,

transmission bandwidth, and task latency requirement as well. The problem is a

convex optimization problem [20]. We use Lagrange method to derive a task allocation

scheme. Energy efficient offloading optimizing problem can be formulated as:

min
{J-,K-}

[1-2-
3-

"
NOP 𝛼" +	𝑓"𝑐"	(1 −	𝛼")] (8)

s.t. ,-
.-

1 −	𝛼" + 1-
3-
+	 ,-

.-6
𝛼" −	𝑇" 	≤ 0 ∀𝑛, (9)

1-2-
3-

𝛼" +	𝑓"𝑐" 1 −	𝛼" −	𝐸%,"	 	≤ 0						∀𝑛 (10)

𝑐"𝛼""
NOP 	≤ 	 ∁ (11)

𝑟" 	≤ 𝐵"
NOP (12)

where ∁ denotes edge server CPU computing capability.
The optimal problem (8) is a convex optimization problem. We define an

increasing and convex function ℎ(𝑥) = 	𝑁Z𝐵(2
\
] − 1) (while 𝑥 > 0), adopted from

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

8

Tao's research [19]. Therefore, the transmission power 𝑝" can be calculated as (13),

and Eq. (6) can be rewritten as Eq. (14)

𝑝" =
P
?-@
ℎ('-

K-
) (13)

𝐸" = 	𝐸0𝛼" + 𝐸'	 1 −	𝛼" = 	𝑝"𝑡"𝛼" +		 𝑓"𝑐"	(1 −	𝛼")

						= 	 K-
	?-@
ℎ '-

K-
𝛼" +	 𝑓"𝑐"	(1 −	𝛼") (14)

Since function ℎ(𝑥) is convex, and its multiplier function K-
?-@
ℎ '-

K-
 is also convex.

Therefore, the sum of convex equations, remains convex. To solve this convex

problem, we define a partial Lagrangian function ℒ 𝛼, 𝑡, 𝜆, 𝜇 shown in (15),

ℒ 𝜕, 𝑡, 𝜆, 𝜇 = 	
𝑡"
𝑔"<
ℎ
𝑙"
𝑡"

𝛼𝑛 + 	𝑓"𝑐"	 1 − 	𝛼𝑛 + 	𝜆 	
𝑐"
ℎ"

1 −	𝛼𝑛 +
𝑑"
𝑟"
+ 	
𝑐"
ℎ"d

𝛼𝑛 − 	𝑇"

																															+	𝜇[K-
?-@
ℎ '-

K-
𝛼𝑛 +	 𝑓"𝑐"	 1 − 	𝛼𝑛 − 	𝐸%,"] (15)

where 𝜆	 ≥ 0	𝑎𝑛𝑑	𝜇	 ≥ 0 are the dual Lagrange multiplier linked to constraints of

completion time and energy consumption. Let 𝛼"∗ 	denotes optimal solution which

always exist. Then we apply KKT condition and transform Eq. (15) to following

equations:

Jℒ
Jh-
∗ = 1 + 	𝜇 K-

?-@
ℎ '-

K-
− 1 + 	𝜇 𝑓"𝑐" + 	𝜆

,-
.-6
−	 ,-

.-
 (16)

Jℒ
Ji-
∗ = 𝛼𝑛∗ 	

?-@
+ 	𝜇𝛼𝑛∗ 	 ℎ '-∗

K-∗
−	 '-

∗

K-∗
ℎj '-∗

K-∗
+ 	𝜆𝛼𝑛∗ 	 (17)

Jℒ
Jk
∗ = 	

,-
.-

1 −	𝛼" + 1-
3-
+	 ,-

.-6
𝛼" −	𝑇" (18)

Jℒ
Jl∗
= 	 K-

?-@
	ℎ '-

K-
+	𝑓"𝑐"	 1 −	𝛼" −	𝐸%,"	 (19)

𝛼"	𝑎𝑛𝑑	𝑡𝑛 can be derived from above equation. Based on this, the optimization

problem is computed based on the dual function g(𝜆, 𝜇) = 𝑚𝑖𝑛ℒ(𝛼, 𝑡, 𝜆, 𝜇) and Lambert

function, adapted and adjusted from Tao's research [19]. Finally, we conduct the result

of 𝛼"∗ as shown in (20),

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

9

 𝛼"∗ =	 o-.-.-6p	,-.-6

q-
6q-r-
s-

	t	,-.-p	,-.-6
 (20)

From the above derive we can conclude that optimal computation offloading

fraction is tightly related to task's latency requirement and task data size.

3.3. Prioritized Task Scheduling Model

Offloading tasks coming from mobile users may have various latency

requirements that needed to be satisfied. Here, we enhance an existing priority based

scheduling algorithm in edge server layer based on Dasshayini and Guruprasad's

research [15]. Parameters used for prioritized scheduling model can be found

following,

• Three priority queues Qv, Qw, and Qx, corresponding to three subscription

catalogues (SB CAT) of task: 3 = High, 2 = Medium, 1 = Low.

• Two thresholds 𝑇P	𝑎𝑛𝑑	𝑇<for latency requirement at levels.

• The maximum tolerable waiting time of each task i can be calculated as (21),

 	𝑤𝑎𝑖𝑡N = 𝐿𝑅N − 𝐶N (21)

where 𝐿𝑅N denote latency requirement of task i, 𝐶N is current time

• 𝑇d}K,N is estimated service time of task i.

 Task will be placed in one of three queues based on subscription catalogues and

latency requirement.

 In the above parameters, thresholds 𝑇P and 𝑇< are set and adjust based on

experiments. Thresholds are used to reorder the tasks based on their latency

requirements and subscribed priority levels. As 𝑇P and 𝑇< have signify different (𝑇P <

𝑇<), the maximum waiting time, 𝑤𝑎𝑖𝑡N is used to check against estimated service time

𝑇d}K,N and 𝑇P, 𝑇<. Therefore, all the tasks have stringent latency requirement will be

inserted into high priority queue. Tasks which have low latency requirement will be

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

10

added into medium or low priority queues, so that tasks have higher priority are

processed first.

4. PROPOSED ALGORITHM

In this section, the proposed prioritized offloading in mobile-edge computing is

described herein. The proposed algorithm called Joint Computation Offloading and

Prioritized Scheduling Algorithm, which extends Tao's research [19] by implementing

optimization offloading decision algorithm in mobile layer and an enhanced version of

prioritized scheduling algorithm [15] in edge layer. The algorithm consists of two

parts. Part A in mobile layer, each mobile randomly generates a task, and within the

mobile device, offloading fraction is calculated by the optimal offloading decision

model described in Section 3.2. Part B in edge layer, edge server process all the

offloading tasks coming from mobile users and order them in a priority queue based on

the latency requirement and subscription catalogues, or terms of priority levels

presented in Section 3.3. Below, the high-level description of the algorithm is

presented.

A. Energy-Efficient Task Offloading Algorithm in Mobile Layer
1: for each mobile user n
2: for each task 𝑑N in mobile n
3: Calculate the optimal offloading fraction 𝛼" by (20)
4: Offload 𝑑N	×		𝛼" tasks to edge server;
5: Execute 𝑑N × (1 − 	𝛼")		tasks at local mobile
5: end for
6: end for

B. Prioritized Task Scheduling Algorithm in Edge Layer
1: for each task in edge server queue
2: Task manager in edge server check maximum waiting time 	𝑤𝑎𝑖𝑡N by (21);
3: if 𝑤𝑎𝑖𝑡N 	≤ estimated service time 𝑇d}K,N, then
4: Place 𝑡𝑎𝑠𝑘N in QH;
5: else if 𝑇d}K,N	+ 𝑇P ≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<., then
6: if SBCAT ==1, then
7: Place 𝑡𝑎𝑠𝑘N in QH;

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

11

8: if SBCAT ==2, then
9: Place 𝑡𝑎𝑠𝑘N in QM;
10: if SBCAT ==3, then
11: Place the 𝑡𝑎𝑠𝑘N in QL;
12: else if 𝑤𝑎𝑖𝑡N	 > 𝑇d}K,N + 𝑇<, then
13: if SBCAT ==1 and is QH not full, then
14: Place 𝑇d}K,N in QH;
15: else
16: Place the 𝑇d}K,N in QM;
17: else if SBCAT ==2 and is QM not full, then
18: Place the 𝑇d}K,N in QM;
19: else
20: Place the 𝑇d}K,N in QL;
21: else if SBCAT ==3, then
22: Place the 𝑇d}K,N in QL;
23: end if
24: end for

The above algorithm can be described as, mobile devices calculate the optimal

computation offloading fractions for each batch of task in Step A. Within this step,

fraction of 𝛼"∗ tasks are offloaded to edge server, fraction of (1 −	𝛼"∗)		tasks are

executed in local mobile. For those tasks offloading to edge server, execute algorithm

B.

Algorithm B processes all offloading requests from 2000 mobile devices, in this

step, maximum waiting time 𝑤𝑎𝑖𝑡N is calculated and compared with estimated

execution time 𝑇d}K,N. If 𝑤𝑎𝑖𝑡N	is less or equal to 𝑇d}K,N, the task is placed in to highest

priority queue QH regardless of subscription catalogues. Next, 𝑤𝑎𝑖𝑡N is compared

against 𝑇d}K,N	plus threshold value 𝑇P and 𝑇d}K,N	plus threshold value 𝑇<, if 𝑤𝑎𝑖𝑡N greater

is between them, place task into the queue based on its subscription catalogues. Last,

check 𝑤𝑎𝑖𝑡N with 𝑇d}K,N	plus threshold value 𝑇<. Place task in its original subscription

catalogue if the corresponding queue has space, otherwise downgrade one queue level.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

12

We try to guarantee that high priority tasks will be executed first by applying this

algorithm.

5. SIMULATION SETTING

To evaluate the different task allocation designs and algorithms in a mobile-

edge computing scenario, we use CloudSim as simulator [21]. Algorithms shown in

Table 1were implemented and compared the simulation results through CloudSim. In

order to evaluate how the prioritized scheduling algorithm performed in this mobile-

edge computing system, it is reasonable to compare it to a known heuristic algorithm

scheme. Classic algorithm for task scheduling in edge server used for comparison with

our proposed algorithm is Earliest Deadline First (EDF). EDF involves ordering tasks

based on the deadline requirement, the task with highest deadline requirement will be

executed firstly. The settings for MEC system parameters in simulation are

summarized in Table 2.

Table 1 Algorithms

Acronym Algorithm in mobile devices Algorithm in edge server
All local FCFS N.A.

All offload N.A EDF
All offload + Priority FCFS Prioritized Scheduling

Tao's Partial Offloading Optimal Offloading Decision EDF
Tao's Partial Offloading

+ Priority Optimal Offloading Decision Prioritized Scheduling

Table 2 Simulation Parameters and Values

Parameter Value
#. Mobile Devices (same as #. tasks) 2000
#. Edge Host 1
#. VMs on Edge Host 5
Mobile Devices Computing Capability Randomly from 0.5 ~ 1.0 GHz
Edge VMs Computing Capability 10 GHz
Task Data Size 20 MB ~ 200 MB
Network Bandwidth 5 MHz
Density of Noise Power of Network Channel 10-12 W
Latency Requirement 200 ms ~ 2000 ms
Latency Requirement for Bonus Score Exp. 1400 ms ~ 2600 ms

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

13

Task Priority Randomly set to be 1 or 2 or 3
Scheduling Threshold T1 300 ms
Scheduling Threshold T2 800 ms

Various metrics are considered herein, including task completion time, mobile

energy consumption, cost of edge serve VM usage, and Bonus score.

6. PERFORMANCE EVALUATION

In this section, we discuss the performance of varied task allocation strategies,

including all local mobile computing, all offload to edge server with and without

prioritized scheduling computing, Tao's Partial Offloading to edge server with

optimization computation offloading, without prioritized scheduling computing

method. Results of task completion time, mobile energy consumption, cost of edge

server VM usage, and bonus score are presented below.

6.1. Task Completion Time

We discuss the completion time vs. task size for different task allocation

strategies as shown in Fig. 2. The completion time of partial offloading tasks includes

local mobile execution time, transmission time in wireless network as well as

execution time in edge server.

 Fig. 2 Completion time vs. task data sizes

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

14

From the result of Fig. 2, it can be observed that, firstly, when task sizes are

small, different task offloading methods has similar completion times. However, the

completion time has significant different trend when task sizes becomes larger.

Secondly, partial loading with or without prioritized scheduling has less completion

time compared to all local execution and all offload to edge server computation.

Lastly, our proposed joint computation offloading and prioritized scheduling method

(Tao's Partial Offloading + Priority) performs better in terms of completion time

compared to Tao's partial offloading without prioritized scheduling method. The

improvement is because, implementing priority scheduling in edge server, tasks are

placed in priority orders according to their tolerance delay. Therefore, reduce the total

completion time compared to partial offloading without prioritized scheduling method.

We can conclude that Tao's Partial Offloading with prioritized scheduling in edge

server reduce the total completion time of tasks due to efficient task scheduling

strategy based on the task deadline and their priority.

Fig. 3 reveals the completion time variance with latency deadline with task size

of 140 MB. Fig. 3 shows that (i) our proposed prioritized partial offloading strategy

has lower completion time compared to other offloading methods.

 Fig. 3 Completion time vs. latency requirements

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

15

This is because latency requirement affects offloading percentage between

mobile devices and edge server. When latency requirements are low, most of the tasks

are offloaded to edge server, therefore, the completion time of tasks reduces due to the

powerful computing capability of edge server. (ii) Our proposed offloading strategy

performs better in completion time because of the efficient task execution order

scheduling. (iii) Completion time increases for all offloading strategies as the latency

requirement becomes low. (iv) And there is no significant completion time variance

when latency requirement increases for all local mobile execution.

6.2. Mobile Energy Consumption

Mobile energy consumption is the main metric of evaluating task allocation

strategy in mobile-edge architecture. Fig. 4 depicts the energy consumption difference

with the task size and latency requirement.

 Fig. 4 Energy consumption vs. task data sizes

Results show task offloading to edge server reduce energy consumption of

mobile devices significantly compared to all local execution as shown in Fig. 4.

Specifically, Tao's Partial Offloading consumes less mobile battery energy than all

offload and the impact is greater when the task data sizes become larger. This indicates

that Tao's Partial Offloading deploys tasks to edge server make a tradeoff between all

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

16

local computing energy consumption and data transmission via wireless network

energy consumption for all offloading.

We also discuss the energy consumption variance with latency requirements

change shown in Fig. 5. Similar to completion time vs. latency requirement, when task

latency requirements are low, large portions of tasks are offloaded to edge server,

hence, reduce the energy consumption. Energy consumption of all local execution

keeps constant as the latency requirements changes as energy consumption is just

affected by task size and CPU requirement. And no significant mobile energy

consumption observed between Tao's Partial Offloading with or without prioritized

scheduling, because task scheduling in edge server has no impact on mobile energy

consumption.

Fig. 5 Energy consumption vs. latency requirements

6.3. Cost of Edge Server VM Usage

 As task completion time is closely linked to edge serve usage, the server VM

usage cost under different task data sizes and latency requirement are determined. We

investigate edge server VM usage cost in mobile-edge computing for different

offloading strategies. Edge server VM usage cost is calculated based on occupation

time of VM in edge server. The cost of VM usage is set to be 0.1 $/Hr.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

17

 Fig. 6 compares the VM cost among four different offloading methods, which is

all offload, all offload + prioritized scheduling, Tao's Partial Offloading as well as

Tao's Partial Offloading + prioritized scheduling strategies. As shown in Fig. 6, cost of

edge server VM usage increase as task sizes increase from 20 MB to 200 MB, and

partial offload has lower (30 % ~ 50%) cost compared to all offload computation

method. Obviously, large task data size and all offload takes longer VM CPU time to

process.

 Fig. 6 Cost of edge server VM usage vs. task data sizes

Moreover, our result also shows that VM cost lowered (10% ~ 15%) by

implementing prioritized scheduling strategy compared to all offload methods without

prioritized strategy in edge server. Specifically, Tao's Partial Offloading + prioritized

scheduling method has the lower VM usage cost compared to Tao's Partial Offloading

methods without prioritized scheduling, this is consistent with the completion time

analyze.

Similar results also found in VM usage cost vs. latency requirement. As shown

in Fig. 7, offloading methods with prioritized scheduling strategy has better

performance than the methods without prioritized. And the cost increases at some

levels as the latency requirement getting lower in edge server.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

18

Fig. 7 Cost of edge server VM usage vs. latency requirements

6.4. Bonus Score

Bonus score is a metric used to evaluate QoE in cloud service. We use this

score to represent the "benefit" to process a task based on its completion time and

priority value. The Bonus score can be calculated as:

𝐵𝑜𝑛𝑢𝑠	𝑆𝑐𝑜𝑟𝑒 = 	
𝐿𝑎𝑡𝑒𝑛𝑐𝑦	𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 	×	𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦	𝑉𝑎𝑙𝑢𝑒

	𝑇𝑎𝑠𝑘	𝑠𝑖𝑧𝑒

We calculate bonus score for all offload, all offload + prioritized scheduling,

Tao's Partial Offloading as well as Tao's Partial Offloading + prioritized scheduling

methods to evaluate the best performance offloading strategy. The bonus score vs. task

data sizes and latency deadline can be found in Fig. 8 and Fig. 9.

Fig. 8 shows that, in general, when task sizes are small (20 MB ~ 60 MB), four

offloading methods have similar bonus score achievement. When task sizes become

larger, (i) Tao's Partial Offloading (with or without prioritized scheduling) have greater

bonus score than all offload method. This is due to most the offloading task in partial

offload methods has less completion time compared to all offload method, (ii) Tao's

Partial Offloading with prioritized scheduling performs better in terms of bonus than

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

19

Tao's partial offload. This indicates that task scheduling according to priority values

improves the throughput of successfully completed, which reduce the completion time

of tasks with higher priority value and in turn increase the bonus score.

Similar trend found in bonus score vs. latency deadline as shown in Fig. 9.

Greater bonus score achieved from four offloading methods when latency requirement

ranges from 1600 ms to 2000 ms. However, the bonus score keeps constant or even

getting lower when latency requirement set to be 2200 ms to 2600 ms. This is because

nearly 80% of the tasks are offloaded from mobile devices to edge server when latency

requirements increase to 1800 ms. Therefore, it can be observed that Tao's Partial

Offloading and all offload has similar bonus score at 2000 ms latency requirement.

The observed lower bonus scores at 2200 ms for Tao's Partial Offloading + prioritized

may due to differential between latency requirement and completion time becomes

less, which is consistent to the longer completion time shown in Fig. 3 when latency

requirement get lower.

 Fig. 8 Bonus score vs. task data sizes

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

20

Fig. 9 Bonus score vs. latency requirements

6.5. Dynamic change thresholds in prioritized scheduling

In the previous sections, two thresholds value T1 and T2 in priority-based task

scheduling in edge layer are fixed. However, the fixed value might not fit when system

scale up and down. System scale up and down have various dimensions, here we

discuss scale up and down with latency requirements changes. The dynamic change of

thresholds value T1 and T2 is set to be T1 = 25% average latency requirement, T2 = 75%

average latency requirement. Those two parameters are come up from the previous

section, latency requirements are range from 200 ms ~ 2000ms. Therefore, T1 = 300

ms equals to 25% of average latency requirements, T2 = 800 ms equals to 75% of

average latency requirements. In the following, we will discuss the performance for fix

settings and dynamic setting in scale up and scale down systems.

6.5.1 Current latency requirements

In order to compare different fix settings with dynamic setting, we set up two

fix settings, (i) current fix setting T1 = 300 ms, T2 = 800 ms, (ii) new setting T1 = 1000

ms, T2 = 3000 ms, and one dynamic threshold setting (iii) dynamic setting T1 = 25%

average latency requirements, T2 = 75% average latency requirements. The current

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

21

latency requirement ranges from 200 ms ~ 2000 ms, task size is 140 MB. Performance

results can be found in Fig. 10 to Fig. 12.

Fig. 10 Completion cost vs. latency requirements at current system

 Fig. 11 Cost of edge server usage vs. latency requirements at current system

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

22

 Fig. 12 Bonus score vs. latency requirements at current system

Above results show that current setting and dynamic setting has less task

completion time, less edge server usage cost and better bonus score compared to new

setting. This is because in new setting, 𝑇< setting is too large that most of the tasks will

be fall into secondary category (𝑇d}K,N	+ 𝑇P ≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<) when decide the

service priority in edge server. That means no task will be placed into third category

(𝑤𝑎𝑖𝑡N	 > 𝑇d}K,N + 𝑇<), which causing congestion in second category. Some tasks

which can be placed in third category would have less completion time because

downgrade queue might have space, which could have less edge server usage cost and

higher bonus score.

No significant performance difference observed between current setting and

dynamic setting, because two parameters 25% and 75% of average latency

requirements are proposed based on current setting in current latency range. And

current setting is the optimal setting in current latency range based on experiment.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

23

6.5.2 Scale up latency requirements

In scale up settings, latency range: 2000 ms ~10000 ms, task size = 300 MB.

Thresholds settings are the same as in section 6.5.1. Performance evaluation can be

found in Fig. 13 to Fig. 15.

Fig. 13 Completion time vs. latency requirements at scale up system

 Fig. 14 Cost of edge server usage vs. latency requirements at scale up system

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

24

 Fig. 15 Bonus score vs. latency requirements at scale up system

Results show that new setting and dynamic setting has less task completion

time, less edge server usage cost and better bonus score compared to current setting.

No significant difference in performance between new setting and dynamic setting.

Current setting: T1 = 300 ms, T2 = 800 ms is not fit in scale up system.

In current setting, 𝑇< setting is too small that most of the tasks will be fall into

third category (𝑤𝑎𝑖𝑡N	 > 𝑇d}K,N + 𝑇<) when latency range scale up. That means no task

will be placed into secondary category (𝑇d}K,N	+ 𝑇P ≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<). Some

tasks which have stringent latency requirements should be placed in secondary

category would have less completion time. Because tasks will be placed into its

subscribed priority queue without downgrade priority level, which could have less

edge server usage cost and higher bonus score. No significant performance difference

observed between new setting and dynamic setting, indicates that dynamic setting of

two parameters 25% and 75% of average latency requirements can be used in scale up

system.

6.5.3 Scale down latency requirements

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

25

Similarly, we also discuss the system performance in scale down latency

requirements. In scale down settings, latency range: 200 ms ~1000 ms, task size = 20

MB. Thresholds settings are the same as in section 6.5.1. Performance evaluation can

be found in Fig. 16 to Fig. 18.

 Fig. 16 Completion time vs. latency requirements at scale down system

 Fig. 17 Cost of edge server usage vs. latency requirements at scale down system

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

26

 Fig. 18 Bonus score vs. latency requirements at scale down system

Results show that current setting and new setting requires more completion task

completion time, more edge server usage cost and gain less bonus score compared to

dynamic setting. No significant performance difference observed between current

setting and new setting. Current setting: T1 = 300 ms, T2 = 800 ms and new setting: T1

= 1000 ms, T2 = 3000 ms are not fit in scale down system.

In current setting and new setting, both 𝑇< settings are too large for scale down

system. Therefore, most of the tasks will be placed into secondary category (𝑇d}K,N	+ 𝑇P

≤ 𝑤𝑎𝑖𝑡N	 ≤ 𝑇d}K,N + 𝑇<), which causing congestion in second category. That means

some tasks that have loose latency requirement in the range which can be placed into

third category (𝑤𝑎𝑖𝑡N	 > 𝑇d}K,N + 𝑇<) are also be placed into second category. So,

completion time and cost of edge server usage increases due to inappropriate and

inefficient task scheduling, and in turn lowers bonus score. Dynamic setting T1 and T2

realizes the optimal adjusting based on the priority of the tasks. Dynamic setting of two

parameters 25% and 75% of average latency requirements can also be used in scale

down system.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

27

7. CONCLUSION

This paper proposes a joint computation offloading, priority-based task

scheduling in a multi-user mobile-edge computing system, and evaluate its

performance against existing computation offloading and scheduling schemes.

Performance evaluation results show that proposed Joint Computation Offloading and

Prioritized Scheduling strategy has reduced task completion time, and the cost of edge

server VM usage. Specifically, the proposed scheme greatly improves QoS in terms of

bonus score by increasing throughput of MEC system and guarantee SLA. Moreover,

we also discuss dynamic change threshold values in prioritized scheduling algorithm,

realizes optimal adjusting based on the priority of the tasks. Our study provides a

viable approach that can be applied to other IoT-Edge systems. Future work would

continue in the use of optimal computation offloading algorithm in mobile layers, and

append a cloud layer in the mobile edge computing system for a complete research

about task allocation and scheduling.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

28

REFERENCE

[1] P. Milan, J. Jerome, Y. Valerie, and A. Sadayuki, “Mobile-edge computing introductory

technical white paper,” White Paper, 2014.
[2] X. Zhu, L. Yang, H. Chen, J. Wang, and X. Liu, “Real-time tasks oriented energy-aware

scheduling in virtualized clouds,” IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 168-180,
2014.

[3] Y. Wen, W. Zhang, H. Luo, “Energy-optimal mobile application execution: Taming
resource-poor mobile devices with cloud clones,” in Proc. of INFOCOM, Orlando, FL,
2012, pp. 2716–2720.

[4] K. Kumar, and Y. Lu, “Cloud computing for mobile users: can offloading computation
save energy,” Computer, vol. 43, no. 4, pp. 51– 56, 2010.

[5] S. Kosta, A. Sucinas, H. Pan, R. Mortier, and X. Zhang, “ThinkAir: dynamic resource
allocation and parallel execution in the cloud for mobile code offloading,” in Proc. of
INFOCOM, Orlando, FL, 2012, pp. 945–953.

[6] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud computing powered by
wireless energy transfer (extended version),” IEEE J. Sel. Areas Commun., vol. 34, no. 5,
pp. 1757-1771, May, 2016.

[7] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “The smartphone and the cloud: power to
the user,” In: Gris M., Yang G. (eds) Mobile Computing, Applications, and Services.
MobiCASE 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol 76. Springer, Berlin, Heidelberg.

[8] O. Bouhali, H. Alnuweiri, “Resource Allocation and scheduling in Cloud Computing”, in
Proc. Of the IEEE Int. Comput. Netw. Communs (ICNC), Maui, Hi, 2012, pp. 309 – 314.

[9] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile
computing,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 1991–1995, 2012.

[10] J. Xie, L. Dan, L. Yin, Z. Sun, and Y. Xiao, “An energy-optimal scheduling for
collaborative execution in mobile cloud computing,” in IEEE Int. Conf. Comput.
Commun. (IEMCON), Vancouver, BC, Canada, 2015, pp 1-6.

[11] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and
computational resources for multicell mobile- edge computing,” IEEE Trans. Signal Inf.
Process. Over Netw., vol. 1, no. 2, pp. 89-103, Jun. 2015.

[12] S.-T. Hong and H. Kim, "QoE-aware computation offloading scheduling to capture
energy-latency tradeoff in mobile clouds," in Proc. 13th Annu. IEEE Int. Conf. Sens.
Commun. Netw. (SECON), London, U.K., 2016, pp. 1-9.

JOINT COMPUTATION OFFLOADING AND PRIORITIZED SCHEDULING IN MOBILE EDGE COMPUTING

29

[13] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource and task allocation
for energy minimization in mobile cloud systems,” IEEE J. Sel. Areas Commun., vol. 33,
no. 12, pp. 2510-2523, Dec. 2015.

[14] M. Dakshayini and H. S. Guruprasad, “An Optimal Model for Priority based Service
Scheduling Policy for Cloud Computing Environment”, Int. J Computer Applications,
vol. 32, no. 9, pp. 23-29, 2011.  

[15] A. Ingole, S. Chavan, and U. Pawde, “An Optimized Algorithm for Task Scheduling
based on Activity based Costing in Cloud Computing”, in IJCA Proc. on 2nd National
Conference on Information and Communication Technology (NCICT), vol. 3, no. 3, pp.
34 -37, Nov., 2011.

[16] S. Ghanbari, M. Othman, M.R.A. Bakar, and W.J. Leong, "Priority- based Divisible Load
Scheduling using Analytical Hierarchy Process", APPL MATH INFORM SCI, vol. 9, no.
5, pp. 2541- 2552, 2015.

[17] Tejaswiini Choudharik Melody Moh, and T.-S. Moh, “Prioritized Task Scheduling in
Fog Computing,” in Proc. of the ACM Annual Southeast Conference (ACMSE),
Richmond, KY, Mar 2018.

[18] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed computation
offloading for mobile-edge cloud computing,” IEEE Wireless Communications Letters,
vol. 6, no. 6, pp. 774 – 777, 2017.

[19] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task scheduling
for mobile-edge computing systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Barcelona, Spain, 2016, pp. 1451–1455.

[20] Calheiros, R. N. et al. “CloudSim: A ToolKit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms,”
Software: Practice and Experience, vol. 41, nol. 1 pp. 23 – 50, 2011.

	San Jose State University
	SJSU ScholarWorks
	Spring 2018

	Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing
	Lingfang Gao
	Recommended Citation

	Microsoft Word - gao_lingfang.docx

