1,999 research outputs found

    Coordination and Antenna Domain Formation in Cloud-RAN systems

    Full text link
    We study here the problem of Antenna Domain Formation (ADF) in cloud RAN systems, whereby multiple remote radio-heads (RRHs) are each to be assigned to a set of antenna domains (ADs), such that the total interference between the ADs is minimized. We formulate the corresponding optimization problem, by introducing the concept of \emph{interference coupling coefficients} among pairs of radio-heads. We then propose a low-overhead algorithm that allows the problem to be solved in a distributed fashion, among the aggregation nodes (ANs), and establish basic convergence results. Moreover, we also propose a simple relaxation to the problem, thus enabling us to characterize its maximum performance. We follow a layered coordination structure: after the ADs are formed, radio-heads are clustered to perform coordinated beamforming using the well known Weighted-MMSE algorithm. Finally, our simulations show that using the proposed ADF mechanism would significantly increase the sum-rate of the system (with respect to random assignment of radio-heads).Comment: 7 pages, IEEE International Conference on Communications 2016 (ICC 2016

    Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges

    Full text link
    Heterogeneous Vehicular NETworks (HetVNETs) can meet various quality-of-service (QoS) requirements for intelligent transport system (ITS) services by integrating different access networks coherently. However, the current network architecture for HetVNET cannot efficiently deal with the increasing demands of rapidly changing network landscape. Thanks to the centralization and flexibility of the cloud radio access network (Cloud-RAN), soft-defined networking (SDN) can conveniently be applied to support the dynamic nature of future HetVNET functions and various applications while reducing the operating costs. In this paper, we first propose the multi-layer Cloud RAN architecture for implementing the new network, where the multi-domain resources can be exploited as needed for vehicle users. Then, the high-level design of soft-defined HetVNET is presented in detail. Finally, we briefly discuss key challenges and solutions for this new network, corroborating its feasibility in the emerging fifth-generation (5G) era

    L2L_2-Box Optimization for Green Cloud-RAN via Network Adaptation

    Full text link
    In this paper, we propose a reformulation for the Mixed Integer Programming (MIP) problem into an exact and continuous model through using the β„“2\ell_2-box technique to recast the binary constraints into a box with an β„“2\ell_2 sphere constraint. The reformulated problem can be tackled by a dual ascent algorithm combined with a Majorization-Minimization (MM) method for the subproblems to solve the network power consumption problem of the Cloud Radio Access Network (Cloud-RAN), and which leads to solving a sequence of Difference of Convex (DC) subproblems handled by an inexact MM algorithm. After obtaining the final solution, we use it as the initial result of the bi-section Group Sparse Beamforming (GSBF) algorithm to promote the group-sparsity of beamformers, rather than using the weighted β„“1/β„“2\ell_1 / \ell_2-norm. Simulation results indicate that the new method outperforms the bi-section GSBF algorithm by achieving smaller network power consumption, especially in sparser cases, i.e., Cloud-RANs with a lot of Remote Radio Heads (RRHs) but fewer users.Comment: 4 pages, 4 figure

    Group Sparse Precoding for Cloud-RAN with Multiple User Antennas

    Full text link
    Cloud radio access network (C-RAN) has become a promising network architecture to support the massive data traffic in the next generation cellular networks. In a C-RAN, a massive number of low-cost remote antenna ports (RAPs) are connected to a single baseband unit (BBU) pool via high-speed low-latency fronthaul links, which enables efficient resource allocation and interference management. As the RAPs are geographically distributed, the group sparse beamforming schemes attracts extensive studies, where a subset of RAPs is assigned to be active and a high spectral efficiency can be achieved. However, most studies assumes that each user is equipped with a single antenna. How to design the group sparse precoder for the multiple antenna users remains little understood, as it requires the joint optimization of the mutual coupling transmit and receive beamformers. This paper formulates an optimal joint RAP selection and precoding design problem in a C-RAN with multiple antennas at each user. Specifically, we assume a fixed transmit power constraint for each RAP, and investigate the optimal tradeoff between the sum rate and the number of active RAPs. Motivated by the compressive sensing theory, this paper formulates the group sparse precoding problem by inducing the β„“0\ell_0-norm as a penalty and then uses the reweighted β„“1\ell_1 heuristic to find a solution. By adopting the idea of block diagonalization precoding, the problem can be formulated as a convex optimization, and an efficient algorithm is proposed based on its Lagrangian dual. Simulation results verify that our proposed algorithm can achieve almost the same sum rate as that obtained from exhaustive search

    Latency Bounds of Packet-Based Fronthaul for Cloud-RAN with Functionality Split

    Get PDF
    The emerging Cloud-RAN architecture within the fifth generation (5G) of wireless networks plays a vital role in enabling higher flexibility and granularity. On the other hand, Cloud-RAN architecture introduces an additional link between the central, cloudified unit and the distributed radio unit, namely fronthaul (FH). Therefore, the foreseen reliability and latency for 5G services should also be provisioned over the FH link. In this paper, focusing on Ethernet as FH, we present a reliable packet-based FH communication and demonstrate the upper and lower bounds of latency that can be offered. These bounds yield insights into the trade-off between reliability and latency, and enable the architecture design through choice of splitting point, focusing on high layer split between PDCP and RLC and low layer split between MAC and PHY, under different FH bandwidth and traffic properties. Presented model is then analyzed both numerically and through simulation, with two classes of 5G services that are ultra reliable low latency (URLL) and enhanced mobile broadband (eMBB).Comment: 6 pages, 7 figures, 3 tables, conference paper (ICC19

    Performance Limits of Compressive Sensing Channel Estimation in Dense Cloud RAN

    Full text link
    Towards reducing the training signaling overhead in large scale and dense cloud radio access networks (CRAN), various approaches have been proposed based on the channel sparsification assumption, namely, only a small subset of the deployed remote radio heads (RRHs) are of significance to any user in the system. Motivated by the potential of compressive sensing (CS) techniques in this setting, this paper provides a rigorous description of the performance limits of many practical CS algorithms by considering the performance of the, so called, oracle estimator, which knows a priori which RRHs are of significance but not their corresponding channel values. By using tools from stochastic geometry, a closed form analytical expression of the oracle estimator performance is obtained, averaged over distribution of RRH positions and channel statistics. Apart from a bound on practical CS algorithms, the analysis provides important design insights, e.g., on how the training sequence length affects performance, and identifies the operational conditions where the channel sparsification assumption is valid. It is shown that the latter is true only in operational conditions with sufficiently large path loss exponents.Comment: 6 pages, two-column format; ICC 201
    • …
    corecore