128,441 research outputs found

    Car-to-Cloud Communication Traffic Analysis Based on the Common Vehicle Information Model

    Full text link
    Although connectivity services have been introduced already today in many of the most recent car models, the potential of vehicles serving as highly mobile sensor platform in the Internet of Things (IoT) has not been sufficiently exploited yet. The European AutoMat project has therefore defined an open Common Vehicle Information Model (CVIM) in combination with a cross-industry, cloud-based big data marketplace. Thereby, vehicle sensor data can be leveraged for the design of entirely new services even beyond traffic-related applications (such as localized weather forecasts). This paper focuses on the prediction of the achievable data rate making use of an analytical model based on empirical measurements. For an in-depth analysis, the CVIM has been integrated in a vehicle traffic simulator to produce CVIM-complaint data streams as a result of the individual behavior of each vehicle (speed, brake activity, steering activity, etc.). In a next step, a simulation of vehicle traffic in a realistically modeled, large-area street network has been used in combination with a cellular Long Term Evolution (LTE) network to determine the cumulated amount of data produced within each network cell. As a result, a new car-to-cloud communication traffic model has been derived, which quantifies the data rate of aggregated car-to-cloud data producible by vehicles depending on the current traffic situations (free flow and traffic jam). The results provide a reference for network planning and resource scheduling for car-to-cloud type services in the context of smart cities

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    CASPR: Judiciously Using the Cloud for Wide-Area Packet Recovery

    Full text link
    We revisit a classic networking problem -- how to recover from lost packets in the best-effort Internet. We propose CASPR, a system that judiciously leverages the cloud to recover from lost or delayed packets. CASPR supplements and protects best-effort connections by sending a small number of coded packets along the highly reliable but expensive cloud paths. When receivers detect packet loss, they recover packets with the help of the nearby data center, not the sender, thus providing quick and reliable packet recovery for latency-sensitive applications. Using a prototype implementation and its deployment on the public cloud and the PlanetLab testbed, we quantify the benefits of CASPR in providing fast, cost effective packet recovery. Using controlled experiments, we also explore how these benefits translate into improvements up and down the network stack

    End-to-End Privacy for Open Big Data Markets

    Get PDF
    The idea of an open data market envisions the creation of a data trading model to facilitate exchange of data between different parties in the Internet of Things (IoT) domain. The data collected by IoT products and solutions are expected to be traded in these markets. Data owners will collect data using IoT products and solutions. Data consumers who are interested will negotiate with the data owners to get access to such data. Data captured by IoT products will allow data consumers to further understand the preferences and behaviours of data owners and to generate additional business value using different techniques ranging from waste reduction to personalized service offerings. In open data markets, data consumers will be able to give back part of the additional value generated to the data owners. However, privacy becomes a significant issue when data that can be used to derive extremely personal information is being traded. This paper discusses why privacy matters in the IoT domain in general and especially in open data markets and surveys existing privacy-preserving strategies and design techniques that can be used to facilitate end to end privacy for open data markets. We also highlight some of the major research challenges that need to be address in order to make the vision of open data markets a reality through ensuring the privacy of stakeholders.Comment: Accepted to be published in IEEE Cloud Computing Magazine: Special Issue Cloud Computing and the La
    • …
    corecore