107 research outputs found

    Animation of deformable bodies with quadratic bézier finite elements

    Get PDF
    pre-printIn this article, we investigate the use of quadratic finite elements for graphical animation of deformable bodies.We consider both integrating quadratic elements with conventional linear elements to achieve a computationally efficient adaptive-degree simulation framework as well as wholly quadratic elements for the simulation of nonlinear rest shapes. In both cases, we adopt the B´ezier basis functions and employ a co-rotational linear strain formulation. As with linear elements, the co-rotational formulation allows us to precompute per-element stiffness matrices, resulting in substantial computational savings. We present several examples that demonstrate the advantages of quadratic elements in general and our adaptive-degree system in particular. Furthermore, we demonstrate, for the first time in computer graphics, animations of volumetric deformable bodies with nonlinear rest shapes

    Multifarious Hierarchies of Mechanical Models for Artist Assigned Levels-of-Detail

    Get PDF
    International audienceWe present a new framework for artist driven level of detail in solid simulations. Simulated objects are simultaneously embedded in several, separately designed deformation models with their own independent degrees of freedom. The models are ordered to apply their deformations hierarchically, and we enforce the uniqueness of the dynamics solutions using a novel kinetic filtering operator designed to ensure that each child only adds detail motion to its parent without introducing redundancies. This new approach allows artists to easily add fine-scale details without introducing unnecessary degrees-of-freedom to the simulation or resorting to complex geometric operations like anisotropic volume meshing. We illustrate the utility of our approach with several detail enriched simulation examples

    Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement

    Get PDF
    The typical goal of surface remeshing consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired application. In this paper, we design an algorithm to address all three optimization goals simultaneously. The user specifies desired bounds on approximation error {\delta}, minimal interior angle {\theta} and maximum mesh complexity N (number of vertices). Since such a desired mesh might not even exist, our optimization framework treats only the approximation error bound {\delta} as a hard constraint and the other two criteria as optimization goals. More specifically, we iteratively perform carefully prioritized local operators, whenever they do not violate the approximation error bound and improve the mesh otherwise. In this way our optimization framework greedily searches for the coarsest mesh with minimal interior angle above {\theta} and approximation error bounded by {\delta}. Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators. Experiments show that our approach delivers high-quality meshes with implicitly preserved features and better balances between geometric fidelity, mesh complexity and element quality than the state-of-the-art.Comment: 14 pages, 20 figures. Submitted to IEEE Transactions on Visualization and Computer Graphic

    Novel Degrees of Freedom, Constraints, and Stiffness Formulation for Physically Based Animation

    Get PDF
    I identify and improve upon three distinct components of physically simulated systems with the aim of increasing both robustness and efficiency for the application of computer graphics: A) the degrees of freedom of a system; B) the constraints put on that system; C) and the stiffness that derives from force differentiation and in turn enables implicit integration techniques. These three components come up in many implementations of physics-based simulation in computer animation. From a combination of these components, I explore four novel ideas implemented and experimented on over the course of my graduate degree. Eulerian-on-Lagrangian Cloth Simulation resolves a longstanding problem of simulating contact-mediated interaction of cloth and sharp geometric features by exploring a combination of all three of our components. Bilateral Staggered Projections for Joints explores the constrained degrees of freedom of articulated rigid bodies in a reduced state to extend the popular Staggered Projects technique into a novel formulation for rapid evaluation of frictional articulated dynamics. Condensation Jacobian with Adaptivity looks at using reduction methods to improve the efficiency of soft body deformations by allowing larger time step in dynamics simulations. Finally, Ldot: Boosting Deformation Performance with Cholesky Extrapolation explores the inner workings of sparse direct solvers to introduce a Cholesky factorization that is linearly extrapolated in time, which can improve the performance when encapsulated inside an iterative nonlinear solver

    Deformable Simplicial Complexes

    Get PDF
    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method, the interface (curve in 2D; surface in 3D) is represented explicitly as a piecewise linear curve or surface. However, the domain is also subject to discretization: triangulation in 2D; tetrahedralization in 3D. This way, the interface can be alternatively represented as a set of edges/triangles separating triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We demonstrate those strengths in several applications. In particular, a novel, DSC-based fluid dynamics solver has been developed during the PhD project. A special feature of this solver is that due to the fact that DSC maintains an explicit interface representation, surface tension is more easily dealt with. One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects

    Asynchronous Variational Contact Mechanics

    Full text link
    An asynchronous, variational method for simulating elastica in complex contact and impact scenarios is developed. Asynchronous Variational Integrators (AVIs) are extended to handle contact forces by associating different time steps to forces instead of to spatial elements. By discretizing a barrier potential by an infinite sum of nested quadratic potentials, these extended AVIs are used to resolve contact while obeying momentum- and energy-conservation laws. A series of two- and three-dimensional examples illustrate the robustness and good energy behavior of the method

    Discrete Differential Geometry of Thin Materials for Computational Mechanics

    Get PDF
    Instead of applying numerical methods directly to governing equations, another approach to computation is to discretize the geometric structure specific to the problem first, and then compute with the discrete geometry. This structure-respecting discrete-differential-geometric (DDG) approach often leads to new algorithms that more accurately track the physically behavior of the system with less computational effort. Thin objects, such as pieces of cloth, paper, sheet metal, freeform masonry, and steel-glass structures are particularly rich in geometric structure and so are well-suited for DDG. I show how understanding the geometry of time integration and contact leads to new algorithms, with strong correctness guarantees, for simulating thin elastic objects in contact; how the performance of these algorithms can be dramatically improved without harming the geometric structure, and thus the guarantees, of the original formulation; how the geometry of static equilibrium can be used to efficiently solve design problems related to masonry or glass buildings; and how discrete developable surfaces can be used to model thin sheets undergoing isometric deformation
    • …
    corecore