20,304 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    A Sequential Two-Step Algorithm for Fast Generation of Vehicle Racing Trajectories

    Full text link
    The problem of maneuvering a vehicle through a race course in minimum time requires computation of both longitudinal (brake and throttle) and lateral (steering wheel) control inputs. Unfortunately, solving the resulting nonlinear optimal control problem is typically computationally expensive and infeasible for real-time trajectory planning. This paper presents an iterative algorithm that divides the path generation task into two sequential subproblems that are significantly easier to solve. Given an initial path through the race track, the algorithm runs a forward-backward integration scheme to determine the minimum-time longitudinal speed profile, subject to tire friction constraints. With this fixed speed profile, the algorithm updates the vehicle's path by solving a convex optimization problem that minimizes the resulting path curvature while staying within track boundaries and obeying affine, time-varying vehicle dynamics constraints. This two-step process is repeated iteratively until the predicted lap time no longer improves. While providing no guarantees of convergence or a globally optimal solution, the approach performs very well when validated on the Thunderhill Raceway course in Willows, CA. The predicted lap time converges after four to five iterations, with each iteration over the full 4.5 km race course requiring only thirty seconds of computation time on a laptop computer. The resulting trajectory is experimentally driven at the race circuit with an autonomous Audi TTS test vehicle, and the resulting lap time and racing line is comparable to both a nonlinear gradient descent solution and a trajectory recorded from a professional racecar driver. The experimental results indicate that the proposed method is a viable option for online trajectory planning in the near future

    Automatic Retraction and Full Cycle Operation for a Class of Airborne Wind Energy Generators

    Full text link
    Airborne wind energy systems aim to harvest the power of winds blowing at altitudes higher than what conventional wind turbines reach. They employ a tethered flying structure, usually a wing, and exploit the aerodynamic lift to produce electrical power. In the case of ground-based systems, where the traction force on the tether is used to drive a generator on the ground, a two phase power cycle is carried out: one phase to produce power, where the tether is reeled out under high traction force, and a second phase where the tether is recoiled under minimal load. The problem of controlling a tethered wing in this second phase, the retraction phase, is addressed here, by proposing two possible control strategies. Theoretical analyses, numerical simulations, and experimental results are presented to show the performance of the two approaches. Finally, the experimental results of complete autonomous power generation cycles are reported and compared with first-principle models.Comment: This manuscript is a preprint of a paper submitted for possible publication on the IEEE Transactions on Control Systems Technology and is subject to IEEE Copyright. If accepted, the copy of record will be available at IEEEXplore library: http://ieeexplore.ieee.or

    Deep Drone Racing: From Simulation to Reality with Domain Randomization

    Full text link
    Dynamically changing environments, unreliable state estimation, and operation under severe resource constraints are fundamental challenges that limit the deployment of small autonomous drones. We address these challenges in the context of autonomous, vision-based drone racing in dynamic environments. A racing drone must traverse a track with possibly moving gates at high speed. We enable this functionality by combining the performance of a state-of-the-art planning and control system with the perceptual awareness of a convolutional neural network (CNN). The resulting modular system is both platform- and domain-independent: it is trained in simulation and deployed on a physical quadrotor without any fine-tuning. The abundance of simulated data, generated via domain randomization, makes our system robust to changes of illumination and gate appearance. To the best of our knowledge, our approach is the first to demonstrate zero-shot sim-to-real transfer on the task of agile drone flight. We extensively test the precision and robustness of our system, both in simulation and on a physical platform, and show significant improvements over the state of the art.Comment: Accepted as a Regular Paper to the IEEE Transactions on Robotics Journal. arXiv admin note: substantial text overlap with arXiv:1806.0854

    Deformation Control in Rest-to-Rest Motion of Mechanisms with Flexible Links

    Get PDF
    This paper develops and validates experimentally a feedback strategy for the reduction of the link deformations in rest-to-rest motion of mechanisms with flexible links, named Delayed Reference Control (DRC). The technique takes advantage of the inertial coupling between rigid-bodymotion and elasticmotion to control the undesired link deformations by shifting in time the position reference through an action reference parameter. The action reference parameter is computed on the fly based on the sensed strains by solving analytically an optimization problem. An outer control loop is closed to compute the references for the position controllers of each actuator, which can be thought of as the inner control loop. The resulting multiloop architecture of the DRC is a relevant advantage over several traditional feedback controllers: DRC can be implemented by just adding an outer control loop to standard position controllers. A validation of the proposed control strategy is provided by applying the DRC to the real-time control of a four-bar linkage

    Implementation of Nonlinear Model Predictive Path-Following Control for an Industrial Robot

    Full text link
    Many robotic applications, such as milling, gluing, or high precision measurements, require the exact following of a pre-defined geometric path. In this paper, we investigate the real-time feasible implementation of model predictive path-following control for an industrial robot. We consider constrained output path following with and without reference speed assignment. We present results from an implementation of the proposed model predictive path-following controller on a KUKA LWR IV robot.Comment: 8 pages, 3 figures; final revised versio
    • …
    corecore