4 research outputs found

    Distributed Wireless Networked H

    Get PDF
    A new approach to solving the distributed control problem for a class of discrete-time nonlinear systems via a wireless neural control network (WNCN) is presented in this paper. A unified Lurie-type model termed delayed standard neural network model (DSNNM) is used to describe these nonlinear systems. We assume that all neuron nodes in WNCN which have limited energy, storage space, and computing ability can be regarded as a subcontroller, then the whole WNCN is characterized by a mesh-like structure with partially connected neurons distributed over a wide geographical area, which can be considered as a fully distributed nonlinear output feedback dynamic controller. The unreliable wireless communication links within WNCN are modeled by fading channels. Based on the Lyapunov functional and the S-procedure, the WNCN is solved and configured for the DSNNM to absolutely stabilize the whole closed-loop system in the sense of mean square with a H∞ disturbance attenuation index using LMI approach. A numerical example shows the effectiveness of the proposed design approaches

    Sensor-Based Model Driven Control Strategy for Precision Irrigation

    Get PDF
    Improving the efficiency of the agricultural irrigation systems substantially contributes to sustainable water management. This improvement can be achieved through an automated irrigation system that includes a real-time control strategy based on the water, soil, and crop relationship. This paper presents a model driven control strategy applied to an irrigation system, in order to make an efficient use of water for large crop fields, that is, applying the correct amount of water in the correct place at the right moment. The proposed model uses a predictive algorithm that senses soil moisture and weather variables, to determine optimal amount of water required by the crop. This proposed approach is evaluated against a traditional irrigation system based on the empirical definition of time periods and against a basic soil moisture control system. Results indicate that the use of a model predictive control in an irrigation system achieves a higher efficiency and significantly reduce the water consumption

    Fusion of multi soil data for the delineation of management zones for variable rate irrigation

    Get PDF
    Up until now, there have been no multi-sensor approaches used to estimate available water content (AWC) in order to determine variable rate irrigation. This has been a major problem for growers adopting precision farming technologies. The aim of this project is to implement an on-line multi-sensor platform and data fusion approach for the delineation of management zones for site specific irrigation in vegetable crop production systems. This is performed by simultaneous measurement of soil moisture content (MC), organic carbon (OC), clay content (CC), plasticity index (PI) and bulk density (BD) with an on-line visible and near infrared (vis-NIR) spectroscopy sensor and a load cell attached to a subsoiler and frame, which was linked to a three-point linkage of a tractor. The soil apparent Electrical Conductivity (ECa) was separately measured with an Electromagnetic Induction (EMI) device. Measurements were carried out in three fields in Lincolnshire and one in Cambridgeshire. Vis-NIR calibration models of soil properties were developed using partial least squares (PLS) regression. A multiple linear regression analysis (MLR) and an Artificial Neural Network (ANN) was used to derive zones of water holding capacity (WHC), based on correlation between on-line measured OC, CC, PI, BD and ECa with MC. The AWC was calculated with empirical equations, as a function of clay and sand fractions. Result showed that the on-line measurement accuracy for OC and MC were good to excellent (R2=0.71-0.83 and R2=0.75-0.85, RPD=2.00-2.57 and RPD=1.94-2.10 for OC and MC, respectively). For CC and PI, the measurement accuracy (R2=0.64-0.69 and RPD=0.55-0.66 for clay content and PI) was evaluated as moderate. It was observed in the study fields, that the ECa results had a minor response to MC distribution. Furthermore, the fusion of multi-soil data to derive a WHC index with MLR and ANN resulted in successful delineation of homogeneous zones. These were divided into four different normalisation categories of low (0 – 0.25), medium (0.25 – 0.5), high (0.5 – 0.75) and very high (0.75 – 1) of WHC. Spatial similarity between WHC maps with those of CC, IP and MC was documented, and found to be in line with the literature. AWC maps calculated as a function of soil texture classes, showed spatial similarity with WHC maps. Low values of AWC were observed at zones with low WHC index and vice versa. This supports the final conclusion of this work that multi-sensor and data fusion is a useful approach to guide positions of moisture sensor and optimise the amount of water used for irrigation
    corecore