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A new approach to solving the distributed control problem for a class of discrete-time nonlinear systems via a wireless neural
control network (WNCN) is presented in this paper. A unified Lurie-type model termed delayed standard neural network model
(DSNNM) is used to describe these nonlinear systems. We assume that all neuron nodes in WNCN which have limited energy,
storage space, and computing ability can be regarded as a subcontroller, then the whole WNCN is characterized by a mesh-like
structure with partially connected neurons distributed over a wide geographical area, which can be considered as a fully distributed
nonlinear output feedback dynamic controller. The unreliable wireless communication links withinWNCN are modeled by fading
channels. Based on the Lyapunov functional and the S-procedure, theWNCN is solved and configured for theDSNNMto absolutely
stabilize the whole closed-loop system in the sense of mean square with a𝐻

∞
disturbance attenuation index using LMI approach.

A numerical example shows the effectiveness of the proposed design approaches.

1. Introduction

Artificial neural networks (ANNs) are one of the effective
technologies in modeling and controlling complex non-
linear systems due to the universal nonlinear function
approximation property of ANNs. Because all biological
neural networks (BNNs) have the recursive properties and
most industrial processes are nonlinear dynamic system,
the recurrent neural networks (RNNs) which have inter-
nal feedback loops and are suitable for dynamic mapping
have attracted increasing attention in the control field [1].
Many researchers have extensively investigated RNNs-based
design methods for nonlinear control systems. For example,
in [2], diagonal recurrent neural networks (DRNNs) are
constructed to identify and control, respectively, for both
BIBO and non-BIBO nonlinear plants. Lin et al. [3] studied
an FPGA-based computed force control system based on
the Elman neural network (ENN) considered as a particular
class of RNN to achieve the high-accuracy position con-
trol of linear ultrasonic motor. A neural controller using
recurrent learning (RTRL) network updating algorithm for
nonlinear plants with unknown dynamics is presented in [4].
Guaranteed cost control for exponential synchronization of

cellular neural networks (CNNs) with various activation
functions and mixed time-varying delays is investigated in
[5]. As a dynamic system, the stability analysis of RNNs and
stabilization synthesis of RNNs-based control systems are a
primary consideration. One of the main characteristics of
RNNs is that the nonlinear activation functions in RNNs are
of the sigmoidal type. Since the various sigmoidal functions
in RNNs belong to a subset of nonlinear functions of Lurie-
type system [6], during the past two decades, there have
been a large number of research contributions concerning the
absolute stability of RNNs such as [7–14]. It is worth noting
that a new neural network model termed by the standard
neural network model (SNNM) is proposed in [12]. Most
nonlinear control systems based on delayed (or nondelayed)
RNNs can be converted into the SNNMs, the absolute
stability of which can be analyzed using a unified approach
in the sense of Lurie [6, 13, 14]. However, the traditional
static and dynamic control methods [12–14] for SNNMs are
centralized and do not apply to distributed networked control
systems.

Boosted by advances in computing, communications,
and sensing technologies, cyber-physical systems (CPSs) in
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which computational and physical components are closely
conjoined and coordinated are becoming increasingly ubiq-
uitous [15, 16]. A large number of embedded devices (such
as sensors, actuators, and controllers) distributed over a vast
geographical area in CPSs will depend more and more on
communications networks to achieve information interac-
tion and manipulate physical entities; therefore, wireless net-
worked control systems (WNCSs) represent a new research
frontier of CPSs and have recently received a great deal of
attention [17]. Employing wireless networks for CPSs will
enhance the flexibility and expandability of system (e.g.,
network nodes are easy to move or be deployed in scenes
which have difficulties in wiring) whilst reducing installation,
maintenance, debugging, and labour costs. However, the
unreliable communication channels, resource constraints,
and limited bandwidth that characterize the wireless tech-
nology require special care and raise new challenges to
communication, signal processing, closed-loop control, and
so forth. Recently, many researchers have investigated these
issues and some significant results were obtained and many
are in progress. Shi and Zhang [18] investigate the remote
state estimation and optimal schedule for two sensors under
bandwidth constraint. Guo et al. [19] consider the control
and actuators/sensors scheduling problem for linear system
and then propose a novel stability criterion based on the
modes of Markov chains and the transmission delays. The
problem of joint design of an output feedback controller and
the medium access scheduling policy are investigated for
networked control systems in [20, 21].The analysis and design
of state feedback controllers for linear systems where there
are limitations on the number of active actuators and trans-
mission delays are studied in [22]. A decentralized event-
triggered control method over wireless sensor and actuator
network (WSAN) of centralized controllers is discussed in
[23]. Furthermore, with network scale unceasingly expand-
ing, any of the sensing/actuating nodes cannot access/act to
the full state of the physical plant, so development and design
of distributed control methods for a large-scale WNCSs are
still hotspot issues in both engineering and academic fields
[24].

At present, the wireless network (WN) is considered
primarily as a communication medium in most of the
research results [17, 23–26] for WNCSs. It means that the
nodes in WN will only achieve the data communication and
transmission tasks among sensing/actuating nodes and one
or more dedicated controllers. However, these works have
potential drawbacks such as that the WNCS is susceptible
to the failures of those dedicated controllers and the packet
losses and delays over unreliable wireless communication
links among nodes. Pajic et al. [27] propose the basic concept
of wireless control network (WCN), a new fully distributed
control method for WNCSs, in which the control function is
achieved over amultihopWN. ForWCN, the entiremultihop
network fulfills itself as a distributed controller where every
node can be regarded as a local (small) linear dynamical
controller for linear physical plants [28].

In this paper, we focus on the distributed networked𝐻
∞

control and absolute stability analysis of delayed standard
neural network model (DSNNM) based on a wireless neuron

control network (WNCN) introduced in [29], which is an
improved nonlinear WCN. In summary, the aim for intro-
ducing WNCN stems from the need of a distributed control
approach for WNCSs. There are many practical application
requirements that also motivate this study. Typical examples
include industrial humidity, ventilation, air conditioning
(HVAC) control systems in [24], the networked process
control for the distillation column in [30], the drip irrigation
control for agriculture using wireless sensor and actuator
network (WSAN) [31], and so forth.

Compared with normal RNN being the fully connected
among neurons and having a layered architecture as shown
in Figure 1(a), the WNCN, as a special kind of control-
oriented RNN, is characterized by a mesh-like structure
with partially connected neurons distributed over a wide
geographical area. Consider a scenario where several neu-
ral nodes forming with limited computation and wireless
communication capabilities are deployed around an indus-
trial plant and can exchange information with immediate
neighbor neuron nodes to form a wireless mesh network,
some of which can also receive state values of the plant
from neighbor sensors or send control signals to neighbor
actuators, respectively, as shown in Figure 1(b). Compared
with WCN behaving as a linear dynamical system, WNCN
is essentially a nonlinear wireless mesh RNN system. To
the best of our knowledge, the problem formulation is
novel.

The remainder of this paper is organized as follows. In
Section 2, we first briefly cover the delayed standard neural
network model (DSNNM) and then describe the nonlinear
dynamic behaviors of WNCN. Section 3 investigates the
absolute stability and the𝐻

∞
performance of the closed-loop

system.The criteria to synthesis of the optimal𝐻
∞
controller

based on WNCN without stochastic packet dropping are
first presented in Section 4, and then the result is extended
to study the robust case based on stochastic WNCN with
fading communication channels in Section 5. In Section 6, a
numerical example is given to demonstrate the effectiveness
of the derived results. And finally, conclusions are drawn in
Section 7.

Notation. R𝑛 is the 𝑛-dimensional Euclidean space. R𝑛×𝑚 is
the set of real 𝑛 × 𝑚 matrices. 𝐴𝑇 denotes the transpose of
matrix 𝐴. Tr(𝐴) denotes the trace of a square matrix 𝐴. S𝑛
denotes the set of symmetric 𝑛 × 𝑛 matrices. S𝑛

+
denotes the

set of positive semidefinite 𝑛 × 𝑛 matrices. S𝑛
++

denotes the
set of positive definite 𝑛 × 𝑛 matrices. The curled inequality
symbol ⪰ (≻, ⪯, ≺) is used to denote generalized inequality:
𝐴, 𝐵 ∈ S𝑛, the matrix inequality 𝐴 ⪰ (≻, ⪯, ≺)0 means
that 𝐴 ∈ S𝑛

+
(S𝑛

++
, −S𝑛

+
, −S𝑛

++
), and 𝐴 ⪰ (≻, ⪯, ≺)𝐵 ⇔

𝐴 − 𝐵 ⪰ (≻, ⪯, ≺)0. 𝑘(𝐽) denotes the cardinality of set 𝐽. 𝐼
denotes an identity matrix of appropriate order. 𝑒

𝑖
denotes

the 𝑖th vector of the standard basis of R𝑛. E(⋅) denotes the
estimation operator. diag(⋅) denotes a diagonal matrix. ∗
is used as an ellipsis for terms induced by symmetry. If
𝑋 ∈ R𝑝 and 𝑌 ∈ R𝑞, 𝐶(𝑋; 𝑌) denotes the space of all
continuous functions mapping R𝑝

→ R𝑞. 𝑙
2
[0;∞) is the

space of square integrable vectors. ‖ ⋅ ‖ denotes the Euclidean
norm for vectors or the spectral norm of matrices.
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Figure 1: (a) A three-layer fully connected RNN. (b) Example of WNCN with 10 neurons consisting of a wireless mesh network (WMN)
where dashed lines represent radio connectivity.

2. Problem Formulation

2.1. Delayed Standard Neural Network Model. Consider the
following discrete-time DSNNM with input-output:

P

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑
𝑥 (𝑘 − 𝑑) + 𝐵

𝜙
𝜙 (𝜀 (𝑘))

+ 𝐵
𝜔
𝜔 (𝑘) + 𝐵

𝑢
𝑢 (𝑘) ,

𝜀 (𝑘) = 𝐶
𝜀
𝑥 (𝑘) + 𝐶

𝑑
𝑥 (𝑘 − 𝑑) + 𝐷

𝜙
𝜙 (𝜀 (𝑘))

+ 𝐷
𝜔
𝜔 (𝑘) + 𝐷

𝑢
𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑦
𝑥 (𝑘) ,

(1)

with the initial condition function𝑥(𝑘) = 𝜛(𝑘),∀𝑘 ∈ [−𝑑, 0],
where 𝑥(𝑘) ∈ R𝑛 is the state vector, 𝑢(𝑘) ∈ R𝑚 is the control
input vector, 𝑦(𝑘) ∈ R𝑙 is the measured output vector, 𝜔(𝑘) ∈
R𝑟 is the disturbance that belongs to 𝑙

2
[0,∞), 𝜙(𝜀(𝑘)) ∈

𝐶(R𝐿

;R𝐿

) is the activation function with the input vector
𝜀(𝑘) ∈ R𝐿, 𝐿 ∈ R is the number of nonlinear activation
functions, 𝑑 > 0 is the time delay, 𝐴 ∈ R𝑛×𝑛, 𝐴

𝑑
∈ R𝑛×𝑛,

𝐵
𝜙
∈ R𝑛×𝐿, 𝐵

𝜔
∈ R𝑛×𝑟, 𝐵

𝑢
∈ R𝑛×𝑚, 𝐶

𝜀
∈ R𝐿×𝑛, 𝐶

𝑑
∈ R𝐿×𝑛,

𝐷
𝜙
∈ R𝐿×𝐿, 𝐷

𝜔
∈ R𝐿×𝑟, 𝐷

𝑢
∈ R𝐿×𝑚, and 𝐶

𝑦
∈ R𝑙×𝑛. Assume

that the activation function 𝜙 satisfies 𝜙(0) = 0 and belongs
to a type of set Ω(𝐾) as follows:

Ω (𝐾) ≜ {𝜙 | 0 ≤

𝜙
𝑖
(𝜀
𝑖
(𝑘))

𝜀
𝑖
(𝑘)

≤ 𝑘
𝑖
, 𝑖 = 1, . . . , 𝐿} , (2)

which means that 𝜙 is sector restricted to the interval [0, 𝐾],
where𝐾 = diag(𝑘

1
, . . . , 𝑘

𝐿
) ≻ 0.

2.2. Wireless Neural Control Network. The traditional design
approaches of dynamic controllers based on SNNMs are
centralized and the dimension of controller and plant must
remain consistent [12–14]. However, without losing system
stability, theWNCN can be structured as a distributed recur-
rent neurocontroller (RNC) with arbitrary dimension which

will be in favor of controlling the complex nonlinear sys-
tems withmultiple geographically distributed sensors (multi-
output) and actuators (multi-input). So, the motivation for
introducing WNCN stems from the need for distributed
control approaches for WNCSs.

Assume that we use a WNCN consisting of 𝑁 neuron
nodes to control the aforementioned DSNNM P. The wire-
less network in the whole system can be described by a
directed graph as follows:

G ≜ {A ∪V ∪S⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

vertex set
,E

I
∪E

C
∪E

O
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

edge set
} , (3)

where V = {V
1
, . . . , V

𝑁
} is the set of 𝑁 neuron nodes, A =

{𝑎
1
, . . . , 𝑎

𝑚
} is the set of 𝑚 actuators which can execute the

input vector 𝑢(𝑘) = [𝑢
1
(𝑘), . . . , 𝑢

𝑚
(𝑘)]

𝑇, S = {𝑠
1
, . . . , 𝑠

𝑙
}

is the set of 𝑙 sensors used to measure the output vector
𝑦(𝑘) = [𝑦

1
(𝑘), . . . , 𝑦

𝑙
(𝑘)]

𝑇, and edge sets EI
= {(V

𝑖
, 𝑎
𝑝
) |

V
𝑖
∈ V, 𝑎

𝑝
∈ A}, EC

= {(V
𝑖
, V
𝑗
) | V

𝑗
, V
𝑖
∈ V}, and

EO
= {(𝑠

𝑞
, V
𝑖
) | 𝑠

𝑞
∈ S, V

𝑖
∈ V} correspond to the physical

radio communication links in the wireless network. Define
the following three sets:

the neighbor sensors of V
𝑖
, ∀𝑖 ∈ {1, . . . , 𝑁}

S
V𝑖
≜ {𝑠

𝑞
| 𝑠

𝑞
∈ S, ∃ (𝑠

𝑞
, V
𝑖
) ∈ E

O
} = {𝑠

𝑞
| 𝑤

O
𝑖𝑞

̸= 0} , (4)

the neighbor neurons of 𝑎
𝑝
, ∀𝑝 ∈ {1, . . . , 𝑚}

V
𝑎𝑝
≜ {V

𝑖
| V

𝑖
∈ V, ∃ (V

𝑖
, 𝑎
𝑝
) ∈ E

I
} = {V

𝑖
| 𝑤

I
𝑝𝑖

̸= 0} , (5)

the neighbor neurons of V
𝑖
, ∀𝑖 ∈ {1, . . . , 𝑁}

V
V𝑖
≜ {V

𝑗
| V

𝑗
∈ V, ∃ (V

𝑗
, V
𝑖
) ∈ E

C
} = {V

𝑗
| 𝑤

C
𝑖𝑗

̸= 0} , (6)
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where 𝑤I
𝑝𝑖
, 𝑤C

𝑖𝑗
, 𝑤O

𝑖𝑞
are the weights of edge (V

𝑖
, 𝑎
𝑝
), (V

𝑗
, V
𝑖
),

and (𝑠
𝑞
, V
𝑖
), respectively. This implies that 𝑠

𝑞
∈ SV𝑖 if V

𝑖
can

receive data directly from 𝑠
𝑞
, V

𝑖
∈ V𝑎𝑝 if 𝑎

𝑝
can receive data

directly from V
𝑖
, and V

𝑗
∈ VV𝑖 if V

𝑖
can receive data directly

from V
𝑗
.

The dynamic behavior of the neuron node V
𝑖
may be

represented by the following pair of nonlinear equations:

𝑧
𝑖
(𝑘 + 1) = 𝜓

𝑖
(𝜉
𝑖
(𝑘)) ,

𝜉
𝑖
(𝑘) = 𝑤

C
𝑖𝑖
𝑧
𝑖
(𝑘) + ∑

V𝑗∈VV𝑖

𝑤
C
𝑖𝑗
𝑧
𝑗
(𝑘) + ∑

𝑠𝑞∈S
V𝑖

𝑤
O
𝑖𝑞
𝑦
𝑞
(𝑘) ,

(7)

where 𝑧
𝑖
(𝑘) is the state of neuron node V

𝑖
, 𝑧

𝑗
(𝑘) is the state

of neuron node V
𝑗
, V

𝑗
∈ VV𝑖 , 𝑦

𝑞
(𝑘) is the measurement

value of sensor 𝑠
𝑞
, 𝑠

𝑞
∈ SV𝑖 , 𝜉

𝑖
(𝑘) is the weighted linear

combination of V
𝑖
’s present state and exogenous input signals

(from neuron nodes in VV𝑖 or sensors in SV𝑖), and 𝜓
𝑖
(⋅) ∈

Ω(𝐾) is the activation function of neuron node V
𝑖
, where

𝐾 = diag(𝑘
𝐿+1

, . . . , 𝑘
𝐿+𝑁

) ≻ 0. Each plant input 𝑢
𝑝
(𝑘),

𝑝 ∈ {1, . . . , 𝑚} is a weighted linear combiner output due to
neighbor neuron nodes of the actuator 𝑎

𝑝
as follows:

𝑢
𝑝
(𝑘) = ∑

V𝑖∈V
𝑎𝑝

𝑤
I
𝑝𝑖
𝑧
𝑖
(𝑘) . (8)

If each neuron node is regarded as a nonlinear dynamical
subcontroller, the whole WNCN consisting of 𝑁 neuron
nodes may act as a fully distributed RNC whose dynamic
behavior may be described as

K
{
{

{
{

{

𝑧 (𝑘 + 1) = 𝜓 (𝜉 (𝑘)) ,

𝜉 (𝑘) = 𝑊
C
𝑧 (𝑘) + 𝑊

O
𝑦 (𝑘) ,

𝑢 (𝑘) = 𝑊
I
𝑧 (𝑘) ,

(9)

where 𝑧 ∈ R𝑁 is the state vector of WNCN, 𝜓 ∈ 𝐶(R𝑁

;R𝑁

),
𝜉 ∈ R𝑁, 𝑊C

∈ R𝑁×𝑁, 𝑊O
∈ R𝑁×𝑙, and 𝑊

I
∈ R𝑚×𝑁.

In the above-mentioned equations, ∀𝑖 ∈ {1, . . . , 𝑁}, 𝑤C
𝑖𝑗

=

0 if V
𝑗
∉ VV𝑖

∪ {V
𝑖
}, 𝑤O

𝑖𝑞
= 0 if 𝑠

𝑞
∉ SV𝑖 , and 𝑤

I
𝑝𝑖

=

0 if V
𝑖
∉ V𝑎𝑝 . Therefore, the weight matrices 𝑊C, 𝑊O,

and 𝑊
I have the sparsity constraints. This means that the

WNCN has considerably fewer weights (accounting for little
computational overhead) than the fully connected neural
network, which is conducive to industrial real-time control.

In this paper, a MAC synchronized network protocol
based on time division multiple access (TDMA) architecture
is used to schedule neuron nodes in WNCN to accomplish
the cooperative control for the system (1). Under the scheme,
every neuron node V

𝑖
, 𝑖 ∈ {1, . . . , 𝑁} transmits its state

information once per time frame. In the beginning, V
𝑖
has

an arbitrary initial state value and then successively receives
information from its neighbors in VV𝑖 and SV𝑖 in each time
slot of frame. After V

𝑖
has received all the information from

its neighbors, V
𝑖
will update its state by (7). Furthermore, in a

similar way, every actuator 𝑎
𝑝
, 𝑝 ∈ {1, . . . , 𝑚} can receive the

combination of control signals from neighbor neuron nodes
inV𝑎𝑝 and then act to system (1) by (8).

Define vectors 𝑥 = [𝑥
𝑇

, 𝑧
𝑇

]
𝑇

∈ R𝑛+𝑁, 𝜀 = [𝜀
𝑇

, 𝜉
𝑇

]
𝑇

∈

R𝐿+𝑁, and ̃
𝜙 = [𝜙

𝑇

, 𝜓
𝑇

]
𝑇

∈ Ω(𝐾̃), 𝐾̃ = diag(𝑘
1
, . . . , 𝑘

𝐿+𝑁
) ≻

0. Then the overall closed-loop system G of the DSNNM P
and the WNCNK is described as

G

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑥 (𝑘 + 1) = [

𝐴 𝐵
𝑢
𝑊

I

0 0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃
𝐴

[

𝑥 (𝑘)

𝑧 (𝑘)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥(𝑘)

+ [

𝐴
𝑑
0

0 0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃
𝐴𝑑

[

𝑥 (𝑘 − 𝑑)

𝑧 (𝑘 − 𝑑)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥(𝑘−𝑑)

+ [

𝐵
𝜙
0

0 𝐼

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵𝜙

[

𝜙 (𝜀 (𝑘))

𝜓 (𝜉 (𝑘))

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃
𝜙(𝜀(𝑘))

+ [

𝐵
𝜔

0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵𝜔

𝜔 (𝑘) ,

𝜀 (𝑘) = [

𝐶
𝜀

𝐷
𝑢
𝑊

I

𝑊
O
𝐶
𝑦

𝑊
C ]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃
𝐶𝜀

[

𝑥 (𝑘)

𝑧 (𝑘)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥(𝑘)

+ [

𝐶
𝑑
0

0 0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃
𝐶𝑑

[

𝑥 (𝑘 − 𝑑)

𝑧 (𝑘 − 𝑑)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥(𝑘−𝑑)

+ [

𝐷
𝜙
0

0 0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐷̃𝜙

[

𝜙 (𝜀 (𝑘))

𝜓 (𝜉 (𝑘))

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃
𝜙(𝜀(𝑘))

+ [

𝐷
𝜔

0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐷̃𝜔

𝜔 (𝑘) .

(10)

Consider that the performance output of the closed-loop
system G is described as 𝑦(𝑘) = 𝐶

𝑦
𝑥(𝑘), where 𝐶

𝑦
= [𝐼 0],

then the following definition is introduced.

Definition 1 (see [6, 32, 33]). Given a scalar 𝛾 > 0, the
closed-loop system G is said to be absolutely stable with a
𝐻
∞
-norm bound 𝛾 if there exists a distributed dynamic neu-

ral controller WNCN K such that the following conditions
are satisfied (Algorithm 1).

(1) With zero disturbance, that is, 𝜔(𝑘) = 0, the zero
solution of the closed-loop system G is globally
asymptotically stable, ∀𝑥(0), ∀̃𝜙 ∈ Ω(𝐾̃).

(2) Under the zero-initial condition, the performance
output 𝑦(𝑘) satisfies

∞

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑘)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛾
2

∞

∑

𝑘=0

‖𝜔 (𝑘)‖
2

, ∀ nonzero 𝜔 (𝑘) . (11)

Then the WNCN K is said to be a 𝐻
∞

controller for the
DSNNM P. Furthermore, if we can find a minimal 𝛾∗ to
satisfy the above conditions, theWNCNK is an optimal𝐻

∞

controller.
Our aim is to design the WNCNK for DSNNMP such

that the closed-loop system G satisfies the requirements (1)
and (2)in Definition 1.
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3. 𝐻
∞

Performance Analysis of
the Closed-Loop System

In this section, we will investigate the absolute stability
and 𝐻

∞
performance of the closed-loop system G. Before

deducing the main results, we need to make use of the
following two lemmas.

Lemma 2 (S-procedure [34]). Let𝑇
0
, 𝑇

1
, . . . , 𝑇

𝑝
∈ S𝑛. If there

exists 𝜏
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑝 such that

𝑇
0
−

𝑝

∑

𝑖=1

𝜏
𝑖
𝑇
𝑖
≺ 0 (12)

then 𝜁𝑇𝑇
0
𝜁 < 0 for all 𝜁 ̸= 0 such that 𝜁𝑇𝑇

𝑖
𝜁 ≤ 0, 𝑖 = 1, . . . , 𝑝.

Lemma 3 (Schur complement [35]). Consider a matrix 𝑋 ∈

S𝑛 partitioned as

𝑋 = [

𝐴 𝐵

𝐵
𝑇

𝐶

] , (13)

where𝐴 ∈ S𝑘. If 𝐴 is nonsingular, the matrix 𝑆 = 𝐶−𝐵
𝑇

𝐴
−1

𝐵

is called the Schur complement of A in 𝑋. Then, the following
characterizations of positive definiteness or semidefiniteness of
the block matrix 𝑋 hold:

(1) 𝑋 ≻ 0, 𝑖𝑓𝑓 𝐴 ≻ 0, 𝑆 ≻ 0,

(2) If 𝐴 ≻ 0, 𝑡ℎ𝑒𝑛 𝑋 ⪰ 0 𝑖𝑓𝑓 𝑆 ⪰ 0.

(14)

Theorem 4. Given 𝛾 > 0 and WNCN K with parameter set
K = {𝑊

O
,𝑊

C
,𝑊

I
}, if there exist appropriate dimension

matrices 𝑃 ≻ 0, 𝑅 ≻ 0, and 𝑇 ⪰ 0, such that the following
matrix inequality holds:

Ξ
1
=

[

[

[

[

[

[

[

[

[

[

[

[

(

𝐴
𝑇

𝑃𝐴 − 𝑃

+𝑅 + 𝐶
𝑇

𝑦
𝐶
𝑦

) 𝐴
𝑇

𝑃𝐴
𝑑

𝐴
𝑇

𝑃𝐵
𝜙
+ 𝐶

𝑇

𝜀
𝑇𝐾̃ 𝐴

𝑇

𝑃𝐵
𝜔

∗ 𝐴
𝑇

𝑑
𝑃𝐴

𝑑
− 𝑅 𝐴

𝑇

𝑑
𝑃𝐵

𝜙
+ 𝐶

𝑇

𝑑
𝑇𝐾̃ 𝐴

𝑇

𝑑
𝑃𝐵

𝜔

∗ ∗ (

𝐵
𝑇

𝜙
𝑃𝐵

𝜙
+ 𝐷

𝑇

𝜙
𝑇𝐾̃

+𝑇𝐾̃𝐷
𝜙
− 2𝑇

) 𝐵
𝑇

𝜙
𝑃𝐵

𝜙
+ 𝑇𝐾̃𝐷

𝜔

∗ ∗ ∗ 𝐵
𝑇

𝜔
𝑃𝐵

𝜔
− 𝛾

2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

≺ 0, (15)

where 𝐾̃ = diag(𝑘
1
, . . . , 𝑘

𝐿+𝑁
), then the zero solution of

closed-loop system G is absolutely stable and the 𝐻
∞
-norm

constraint (11) is achieved for all nonzero 𝜔(𝑘).

Proof. From systemG with 𝜔(𝑘) = 0, one can obtain

G{

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑
𝑥 (𝑘 − 𝑑) + 𝐵

𝜙

̃
𝜙 (𝜀 (𝑘)) ,

𝜀 (𝑘) = 𝐶
𝜀
𝑥 (𝑘) + 𝐶

𝑑
𝑥 (𝑘 − 𝑑) + 𝐷

𝜙

̃
𝜙 (𝜀 (𝑘)) .

(16)

Assume that the 𝑥(𝑘) = 0 is the only equilibrium of G.
Consider the following Lyapunov-Krasovskii functional for
systemsG as

𝑉(𝑥 (𝑘)) = 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘) +

𝑑

∑

𝑖=1

𝑥
𝑇

(𝑘 − 𝑖) 𝑅𝑥 (𝑘 − 𝑖) . (17)

According to the sector bound set Ω(𝐾̃) of ̃𝜙, we have

̃
𝜙
𝑖
(𝜀
𝑖
(𝑘)) ⋅ 𝜏

𝑖
⋅ [

̃
𝜙
𝑖
(𝜀
𝑖
(𝑘)) − 𝑘

𝑖
𝜀
𝑖
(𝑘)]

= 𝜏
𝑖

̃
𝜙
2

𝑖
(𝜀
𝑖
(𝑘)) − 𝜏

𝑖
𝑘
𝑖
𝜀
𝑖
(𝑘)

̃
𝜙
𝑖
(𝜀
𝑖
(𝑘))

≤ 0,

(18)

where 𝜀
𝑖
≥ 0, 𝑖 = 1, . . . , 𝐿 + 𝑁.

Now, by defining the difference of 𝑉(𝑥(𝑘)) along G as
Δ𝑉(𝑥(𝑘)) ≜ 𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘)) and using Lemma 2 (S-
procedure), we can obtain

Δ𝑉 (𝑥 (𝑘))

= 𝑥
𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘)

+ 𝑥(𝑘)
𝑇

𝑅𝑥 (𝑘) − 𝑥
𝑇

(𝑘 − 𝑑) 𝑅𝑥 (𝑘 − 𝑑)

≤ [𝐴𝑥 (𝑘) + 𝐴
𝑑
𝑥 (𝑘 − 𝑑) + 𝐵

𝜙

̃
𝜙 (𝜀 (𝑘))]

𝑇

× 𝑃 [𝐴𝑥 (𝑘) + 𝐴
𝑑
𝑥 (𝑘 − 𝑑) + 𝐵

𝜙

̃
𝜙 (𝜀 (𝑘))]

− 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘) + 𝑥(𝑘)
𝑇

𝑅𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝑑) 𝑅𝑥 (𝑘 − 𝑑) − 2

𝐿+𝑁

∑

𝑖=1

𝜏
𝑖

̃
𝜙
2

𝑖
(𝜀
𝑖
(𝑘))

+ 2

𝐿+𝑁

∑

𝑖=1

𝜏
𝑖
𝑘
𝑖
𝜀
𝑖
(𝑘)

̃
𝜙
𝑖
(𝜀
𝑖
(𝑘))

=
[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)

̃
𝜙 (𝜀 (𝑘))

]

]

𝑇
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×

[

[

[

[

[

[

[

[

[

𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑅 𝐴
𝑇

𝑃𝐴
𝑑

𝐴
𝑇

𝑃𝐵
𝜙
+ 𝐶

𝑇

𝜀
𝑇𝐾̃

∗ 𝐴
𝑇

𝑑
𝑃𝐴

𝑑
− 𝑅 𝐴

𝑇

𝑑
𝑃𝐵

𝜙
+ 𝐶

𝑇

𝑑
𝑇𝐾̃

∗ ∗ (

𝐵
𝑇

𝜙
𝑃𝐵

𝜙
+ 𝐷

𝑇

𝜙
𝑇𝐾̃

+𝑇𝐾𝐷
𝜙
− 2𝑇

)

]

]

]

]

]

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ0

×
[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)

̃
𝜙 (𝜀 (𝑘))

]

]

,

(19)

where 𝑇 = diag(𝜏
1
, 𝜏
2
, . . . , 𝜏

𝐿+𝑁
) ⪰ 0. By Lemma 3 (Schur

complement), if Ξ
1
≺ 0 (15) holds, Ξ

0
≺ 0 also holds. So, if

Ξ
1
≺ 0, systemG with 𝜔(𝑘) = 0, that is, system G, is globally

asymptotically stable, ∀̃𝜙 ∈ Ω(𝐾̃).
Next, for ∀ℓ > 0, define

𝐽
ℓ
=

ℓ

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑘)

󵄩
󵄩
󵄩
󵄩

2

− 𝛾
2

ℓ

∑

𝑘=0

‖𝜔 (𝑘)‖
2

=

ℓ

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)] .

(20)

Consider the zero initial condition 𝑉(𝑥(0)) = 0, that is

𝑉(𝑥 (ℓ + 1)) =

ℓ

∑

𝑘=0

[𝑉(𝑥 (𝑘 + 1)) − 𝑉(𝑥 (𝑘))]

=

ℓ

∑

𝑘=0

Δ𝑉(𝑥 (𝑘)) > 0.

(21)

Therefore, for systemG, defining vector 𝜁(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘−

𝑑)
̃
𝜙
𝑇

(𝜀(𝑘)) 𝜔
𝑇

(𝑘)]
𝑇 and according to (19) and (20), we have

𝐽
ℓ
=

ℓ

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) + Δ𝑉(𝑥 (𝑘))]

− 𝑉(𝑥 (ℓ + 1))

≤

ℓ

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) + Δ𝑉(𝑥 (𝑘))]

=

ℓ

∑

𝑘=0

𝜁
𝑇

(𝑘) Ξ
1
𝜁 (𝑘) .

(22)

If Ξ
1

≺ 0 (15) holds, lim
ℓ→∞

𝐽
ℓ

= lim
ℓ→∞

∑
ℓ

𝑘=0
𝜁
𝑇

(𝑘)

Ξ
1
𝜁(𝑘) < 0. Thus, ∀ nonzero 𝜔(𝑘) ∈ 𝑙

2
[0,∞) and the

𝐻
∞
-norm constraint (11) is achieved. This completes the

proof.

4. 𝐻
∞

Controller Design Based on WNCN

In the previous stage, the matrix inequality condition Ξ
1
≺ 0

(15) is not an LMI, which cannot be solved by LMI tools. In
what follows, we first convert the matrix inequality condition
Ξ
1
≺ 0 (15) into a cone complementarity problem (CCP)

and then use the cone complementarity linearization (CCL)
algorithm introduced in [36] to formulate a convex optimiza-
tion problem with LMI constraints to obtain the appropriate
parameters of WNCN (i.e., interconnection weight matrices
setK = {𝑊

O
,𝑊

C
,𝑊

I
}).

Lemma 5 (see [27]). There exist matrices 𝑃, 𝑄 ∈ S𝑛
++

satisfying the constraint𝑄 = 𝑃
−1 if and only if they are optimal

points for the problem

min Tr {𝑄𝑃}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 [

𝑄 𝐼

𝐼 𝑃
] ⪰ 0, 𝑄, 𝑃 ∈ S

𝑛

++
,

(23)

and the optimal cost of the problem is 𝑛.

Theorem 6. Given a scalar 𝛾 > 0, the closed-loop system G
is said to be absolutely stabilizable by using a WNCN K and
the 𝐻

∞
-norm constraint (11) is achieved for all nonzero 𝜔(𝑘)

if there exist appropriate dimension matrices 𝑃 ≻ 0, 𝑄 ≻ 0,
𝑅 ≻ 0, Σ ⪰ 0, and𝑊O

,𝑊
C
,𝑊

I
∈ K such that the following

optimization problem:

min Tr {𝑄𝑃} (24)

s.t. Ξ2 =

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑅 0 𝐶
𝑇

𝜀
0 𝐴

𝑇

𝐶
𝑇

𝑦

∗ −𝑅 𝐶
𝑇

𝑑
0 𝐴

𝑇

𝑑
0

∗ ∗ 𝐷
𝜙
Σ𝐾̃ + Σ𝐾̃𝐷

𝑇

𝜙
− 2Σ 𝐷

𝜔
Σ𝐾̃𝐵

𝑇

𝜙
0

∗ ∗ ∗ −𝛾
2

𝐼 𝐵
𝑇

𝜔
0

∗ ∗ ∗ ∗ −𝑄 0

∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

≺ 0, (25)

[

𝑄 𝐼

𝐼 𝑃
] ⪰ 0, 𝑄, 𝑃 ∈ S

𝑛+𝑁

++
, (26)
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where

𝐴 = [
𝐴 𝐵

𝑢
𝑊

I

0 0

] , 𝐶
𝜀
= [

𝐶
𝜀

𝐷
𝑢
𝑊

I

𝑊
O
𝐶
𝑦

𝑊
C ] , (27)

is feasible with optimal cost 𝑛 + 𝑁.

Proof. Inequality Ξ
1
≺ 0 (15) in Theorem 4 can be rewritten

as

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑅 0 𝐶
𝑇

𝜀
𝑇𝐾̃ 0

∗ −𝑅 𝐶
𝑇

𝑑
𝑇𝐾̃ 0

∗ ∗ 𝐷
𝑇

𝜙
𝑇𝐾̃ + 𝑇𝐾̃𝐷

𝜙
− 2𝑇 𝑇𝐾̃𝐷

𝜔

∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

𝐴
𝑇

𝐴
𝑇

𝑑

𝐵
𝑇

𝜙

𝐵
𝑇

𝜔

]

]

]

]

]

]

]

]

]

]

𝑃 [𝐴 𝐴
𝑑
𝐵
𝜙
𝐵
𝑇

𝜔
]

+

[

[

[

[

𝐶
𝑇

𝑦

0

0

0

]

]

]

]

[𝐶
𝑦
0 0 0] ≺ 0.

(28)

Then, using Lemma 3 (Schur complement), the inequality
(28) is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑅 0 𝐶
𝑇

𝜀
𝑇𝐾̃ 0 𝐴

𝑇

𝐶
𝑇

𝑦

∗ −𝑅 𝐶
𝑇

𝑑
𝑇𝐾̃ 0 𝐴

𝑇

𝑑
0

∗ ∗ 𝐷
𝑇

𝜙
𝑇𝐾̃ + 𝑇𝐾̃𝐷

𝜙
− 2𝑇 𝑇𝐾̃𝐷

𝜔
𝐵
𝑇

𝜙
0

∗ ∗ ∗ −𝛾
2

𝐼 𝐵
𝑇

𝜔
0

∗ ∗ ∗ ∗ −𝑄 0

∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

≺ 0,

(29)

where 𝑄 = 𝑃
−1. By defining

𝑆 = (𝑇𝐾̃)

−1

, Σ = (𝑇𝐾̃)

−1

𝑇(𝑇𝐾̃)

−1 (30)

and pre- and postmultiplying the left-hand side matrix of
(29) by diag(𝐼, 𝐼, 𝑆, 𝐼, 𝐼, 𝐼), respectively, the inequality (29) is
equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑅 0 𝐶
𝑇

𝜀
0 𝐴

𝑇

𝐶
𝑇

𝑦

∗ −𝑅 𝐶
𝑇

𝑑
0 𝐴

𝑇

𝑑
0

∗ ∗ 𝑆𝐷
𝑇

𝜙
+ 𝐷

𝜙
𝑆 − 2Σ 𝐷

𝜔
𝑆𝐵

𝑇

𝜙
0

∗ ∗ ∗ −𝛾
2

𝐼 𝐵
𝑇

𝜔
0

∗ ∗ ∗ ∗ −𝑄 0

∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≺ 0.

(31)

According to (30), the following equations hold:

𝑆
−1

= 𝑇𝐾̃, 𝑇 = 𝑆
−1

Σ𝑆
−1

. (32)

Form (32), we know

𝑆 = Σ𝐾̃. (33)

Substituting (33) into (31), one can obtain Ξ
2

≺ 0 (25).
By using Lemma 5, the nonconvex constraint 𝑄 = 𝑃

−1 is
approximated with an optimization problem. This completes
the proof.

So far the WNCN has been designed to guarantee the
absolute stability with a given 𝐻

∞
-norm bound 𝛾 of the

closed-loop system. In what follows, we give the Algorithm 2
based on the bisection method to design WNCN for the
optimal 𝐻

∞
control problem: min 𝛾 s.t. (15), 𝑃 ≻ 0, 𝑅 ≻ 0,

𝑇 ⪰ 0.

5. Robust 𝐻
∞

Controller Design Based on
Fading WNCN

Due to the large geographical nature of the closed-loop
system G over a WN, a realistic distributed control design
approach for WNCN should take the communication packet
losses into account.

According to [37], we adopt the fading channel models
to simulate the unreliable wireless communication links in
WNCN as shown in Figure 2(a). First, define a bijective
mapping Ω : {(𝑎, 𝑏)} → {𝜏}, (𝑎, 𝑏) ∈ EO

∪ EC
∪ E𝐼,

where 𝜏 = {1, . . . , 𝜌} and 𝜌 = 𝑘(EO
) + 𝑘(EC

) + 𝑘(E𝐼

) is
the total number of wireless links in WNCN, to concisely
enumerate all links in the network. Therefore, the weights of
links {(𝑎, 𝑏)} can bemapped to𝑤O

𝜏
, 𝑤

C
𝜏
, 𝑤

I
𝜏
, ∀𝜏 = Ω(𝑎, 𝑏) and

then compacted into the following weight vector as

𝑤 = [(𝑤
O
)

𝑇

, (𝑤
C
)

𝑇

, (𝑤
I
)

𝑇

]

𝑇

= [{𝑤
O
𝜏
}
𝜏=Ω(𝑠𝑞 ,V𝑖)

, {𝑤
C
𝜏
}
𝜏=Ω(V𝑗 ,V𝑖)

, {𝑤
I
𝜏
}
𝜏=Ω(V𝑖 ,𝑎𝑝)

]

𝑇

,

(34)



8 Mathematical Problems in Engineering

Step 1. Set 𝑘 = 0. If there exists an initial feasible solution set Υ
0
= {𝑃,𝑄, 𝑅, Σ,𝑊

O
,𝑊

C
,𝑊

I
} satisfying the constraints

(25)-(26), letX
0
= 𝑃,Y

0
= 𝑄. Otherwise, exit.

Step 2. If 𝑘 ≤ 𝜅, go to Step 3 where 𝜅 is the assumed maximum number of iteration. Otherwise, exit.
Step 3. At 𝑘 ≥ 0, obtain the feasible solution set Υ

𝑘+1
= {𝑃,𝑄, 𝑅, Σ,𝑊

O
,𝑊

C
,𝑊

I
} by solving the following LMI problem:

minTr {X
𝑘
𝑄 +Y

𝑘
𝑃} s.t. (25)-(26).

Step 4. Substitute Υ
𝑘+1

into (15). If (15) holds, stop the algorithm. Otherwise, set 𝑘 = 𝑘 + 1,X
𝑘
= 𝑃,Y

𝑘
= 𝑄 and go to Step 2.

Algorithm 1: Given a scalar 𝛾 > 0, solving the𝐻
∞
WNCN for closed-loop system ̃G.

Step 1. Set 𝑘 = 0. Let 𝛾0
−
and 𝛾0

+
be the initial lower and upper bounds of 𝛾, that is, 𝛾

0
∈ [𝛾

0

−
, 𝛾

0

+
] where 𝛾0

−
= 0, 𝛾0

+
can be

assigned an arbitrarily sufficiently large value to make inequalities (25)-(26) have initial feasible solution set
Υ
0
= {𝑃,𝑄, 𝑅, Σ,𝑊

O
,𝑊

C
,𝑊

I
}.

Step 2. At 𝑘 ≥ 0, compute 𝛾
𝑘
= (𝛾

𝑘

−
+ 𝛾

𝑘

+
)/2.

Step 3. Use Algorithm 1 to check whether the feasible solution set Υ
𝑘+1

satisfying inequality (15). If Υ
𝑘+1

exists, set 𝛾𝑘
+
= 𝛾

𝑘.
Otherwise, set 𝛾𝑘

−
= 𝛾

𝑘.
Step 4. If 𝛾𝑘

+
− 𝛾

𝑘

−
≤ 𝜖, where 𝜖 is the assumed calculation accuracy, set optimal𝐻

∞
performance index 𝛾∗ = 𝛾

𝑘

+
and exit.

Otherwise, set 𝑘 = 𝑘 + 1, go to Step 2.

Algorithm 2: Minimizing 𝛾 to solve the optimal𝐻
∞
WNCN for closed-loop system ̃G.

where 𝑤
O

∈ R𝜌
O

, 𝑤C
∈ R𝜌

C

, 𝑤I
∈ R𝜌

I

, and 𝑤 ∈

R𝜌. Let 𝑡
𝑘,𝜏

denote the data packet transmitted over the 𝜏th
communication link at time 𝑘. Then, aggregating all of 𝑡

𝑘,𝜏
in

a vector 𝑡
𝑘
∈ R𝜌, we can obtain

𝑡(𝑘) =

[

[

[

[

𝑊
O
𝑡

0

0

𝑊
C
𝑡

𝑊
I
𝑡

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑊
or

[

𝐶
𝑦

0

0 𝐼
𝑁

] [

𝑥 (𝑘)

𝑧 (𝑘)

] = 𝑊̃
or
𝑥 (𝑘) ,

(35)

where 𝑊
O
𝑡

= diag(𝑤O
) [𝑒

𝑇

𝑞
]
𝑞|𝜏=Ω(𝑠𝑞 ,V𝑖), 𝑒𝑞 ∈ R𝑙, 𝑊C

𝑡
=

diag(𝑤C
)[𝑒

𝑇

𝑗
]
𝑗|𝜏=Ω(V𝑗 ,V𝑖), 𝑒𝑗 ∈ R𝑁, and 𝑊

I
𝑡

= diag(𝑤I
)

[𝑒
𝑇

𝑖
]
𝑖|𝜏=Ω(V𝑖 ,𝑎𝑝), 𝑒𝑖 ∈ R𝑁.

Remark 7. 𝑊or
∈ R𝜌×(𝑁+𝑙) is a row selection matrix whose

each row contains a single nonzero element which equals to
a corresponding weight 𝑤O

𝜏
, 𝑤C

𝜏
or 𝑤I

𝜏
.

Next, let 𝑟(𝑘) denote the received date from 𝑡(𝑘) via the
unreliable wireless communication links. 𝛾

𝜏
(𝑘), 𝜏 ∈ {1, . . . , 𝜌}

is independent and identically distributed (I.I.D) Bernoulli
random variable with mean 𝜇

𝜏
= E[𝛾

𝜏
(𝑘)] and variance

𝜎
2

𝜏
= E[(𝛾

𝜏
(𝑘) − 𝜇

𝜏
)
2

]. 𝛾
𝜏
(𝑘) indicates whether packet 𝑡

𝜏
(𝑘)

is successfully received by 𝑟
𝜏
(𝑘); that is, 𝛾

𝜏
(𝑘) = 1 if packet

arrives and 𝛾
𝜏
(𝑘) = 0 otherwise. If Δ

𝜏
(𝑘), 𝜏 ∈ {1, . . . , 𝜌}

denotes an I.I.D Bernoulli random variable with zero-mean
and variance 𝜎2

𝜏
, 𝛾

𝜏
(𝑘) can be transformed into a robust form

such that 𝛾
𝜏
(𝑘) = 𝜇

𝜏
+ Δ

𝜏
(𝑘), where 𝜇

𝜏
is nominal value and

Δ
𝜏
(𝑘) is randomperturbation value.Thus, the fading channel

model is described by the following bijective mapping:

Γ : 𝑡 (𝑘) 󳨀→ 𝑟 (𝑘) = Γ (𝑘) 𝑡 (𝑘) = (M + Δ (𝑘)) 𝑡 (𝑘) , (36)

where Γ(𝑘) = diag(𝛾
1
(𝑘), . . . , 𝛾

𝜌
(𝑘)), M = diag(𝜇

1
, . . . , 𝜇

𝜌
),

Δ(𝑘) = diag(Δ
1
(𝑘), . . . , Δ

𝜌
(𝑘)),E[Δ(𝑘)Δ(𝑘)𝑇] = diag (𝜎2

1
, . . . ,

𝜎
2

𝜌
), and E[Δ(𝑘)] = 0.
Thus, the dynamic behavior of the fading WNCN with

stochastic packet losses can be described as follows:

̃K
{
{

{
{

{

𝑧 (𝑘 + 1) = 𝜓 (𝜉 (𝑘)) ,

𝜉 (𝑘) = 𝑊
C
𝜇
𝑧 (𝑘) + 𝑊

O
𝜇
𝑦 (𝑘) + 𝑊

CO
Δ

Δ (𝑘) 𝑡 (𝑘) ,

𝑢 (𝑘) = 𝑊
I
𝜇
𝑧 (𝑘) + 𝑊

I
Δ
Δ (𝑘) 𝑡 (𝑘) ,

(37)

where𝑊CO
Δ

= 𝑊
C
Δ
+𝑊

O
Δ
and

𝑊
O
𝜇
= [(𝑤

O
𝜇
)
𝑖𝑞

]

𝑁×𝑙

,

where (𝑤O
𝜇
)
𝑖𝑞

=

{
{

{
{

{

𝜇
𝜏
𝑤

O
𝜏
, ∃V

𝑖
∈ V, 𝑠

𝑞
∈ S,

Ω (𝑠
𝑞
, V
𝑖
) = 𝜏

0, else,

𝑊
C
𝜇
= [(𝑤

C
𝜇
)
𝑖𝑗

]

𝑁×𝑁

,

where (𝑤C
𝜇
)
𝑖𝑗

=

{
{
{
{

{
{
{
{

{

𝜇
𝜏
𝑤

C
𝜏
, if 𝑖 ̸= 𝑗, ∃V

𝑖
, V
𝑗
∈ V,

Ω (V
𝑗
, V
𝑖
) = 𝜏

𝑤
C
𝑖𝑖
, if 𝑖 = 𝑗, ∃V

𝑖
∈ V

0, else,

𝑊
I
𝜇
= [(𝑤

I
𝜇
)
𝑝𝑖

]

𝑚×𝑁

,

where (𝑤I
𝜇
)
𝑝𝑖

=

{
{

{
{

{

𝜇
𝜏
𝑤

I
𝜏
, ∃V

𝑖
∈ V, 𝑎

𝑝
∈ A,

Ω (V
𝑖
, 𝑎
𝑝
) = 𝜏

0, else,
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𝑊
O
Δ
= [(𝑤

O
Δ
)
𝑖𝜏

]
𝑁×𝜌

,

where (𝑤O
Δ
)
𝑖𝜏

=

{
{

{
{

{

1, ∃V
𝑖
∈ V, 𝑠

𝑞
∈ S,

Ω (𝑠
𝑞
, V
𝑖
) = 𝜏

0, else,

𝑊
C
Δ
= [(𝑤

C
Δ
)
𝑖𝜏

]
𝑁×𝜌

,

where (𝑤C
Δ
)
𝑖𝜏

=

{
{

{
{

{

1, ∃V
𝑖
, V
𝑗
∈ V,

Ω (V
𝑗
, V
𝑖
) = 𝜏

0, else,

𝑊
I
Δ
= [(𝑤

I
Δ
)
𝑝𝜏

]

𝑚×𝜌

,

where (𝑤I
Δ
)
𝑝𝜏

=

{
{

{
{

{

1, ∃V
𝑖
∈ V, 𝑎

𝑝
∈ A,

Ω (V
𝑖
, 𝑎
𝑝
) = 𝜏

0, else.
(38)

Remark 8. Similar to𝑊𝑜𝑟, matrices𝑊CO
Δ

and𝑊I
Δ

are used to
select which elements of Δ(𝑘)𝑡(𝑘) are added to 𝜉(𝑘) and 𝑢(𝑘),
respectively.

As shown in Figure 2(b), DSNNM (1) is controlled by a
fading network composed by the mean WNCN (MWNCN)
and the stochastic perturbation Δ. Consider the following
stochastic closed-loop system:

̃G

{
{
{
{

{
{
{
{

{

𝑥 (𝑘 + 1) = 𝐴
𝜇
𝑥 (𝑘) + 𝐴

𝑑
𝑥 (𝑘 − 1) + 𝐵

𝜙

̃
𝜙 (𝜀 (𝑘))

+ 𝐵
𝜔
𝜔 (𝑘) + 𝑊̃

dst
1
Δ (𝑘) 𝑡 (𝑘) ,

𝜀 (𝑘) = 𝐶
𝜇

𝜀
𝑥 (𝑘) + 𝐶

𝑑
𝑥 (𝑘 − 1) + 𝐷

𝜙

̃
𝜙 (𝜀 (𝑘))

+ 𝐷
𝜔
𝜔 (𝑘) + 𝑊̃

dst
2
Δ (𝑘) 𝑡 (𝑘) ,

(39)

where 𝐴
𝜇
= [

𝐴 𝐵𝑢𝑊
I
𝜇

0 0

], 𝐶𝜇
𝜀
= [

𝐶𝜀 𝐷𝑢𝑊
I
𝜇

𝑊
O
𝜇
𝐶𝑦 𝑊

C
𝜇

], and 𝑊̃
dst
1

=

[
𝐵𝑢𝑊

I
Δ

0

], 𝑊̃dst
2

= [

𝐷𝑢𝑊
I
Δ

𝑊
CO
Δ

].

Definition 9 (see [6, 32, 33]). Given scalar 𝛾 > 0 and 𝑀(𝑘),
the state correlation matrix, as 𝑀(𝑘) ≜ E{𝑥(𝑘)𝑥(𝑘)

𝑇

}, the
stochastic closed-loop system ̃G is said to be absolutely stable
in mean-square with a 𝐻

∞
-norm bound 𝛾, if there exists a

distributed dynamic neural controller WNCN K such that
the following conditions are satisfied.

(1) With zero disturbance, that is, 𝜔(𝑘) = 0,
lim

𝑘→∞
𝑀(𝑘) = 0, ∀𝑥(0), and ∀̃𝜙 ∈ Ω(𝐾̃).

(2) Under the zero-initial condition, the performance
output 𝑦(𝑘) satisfies

∞

∑

𝑘=0

E {
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑘)

󵄩
󵄩
󵄩
󵄩

2

} ≤ 𝛾
2

∞

∑

𝑘=0

E {‖𝜔 (𝑘)‖
2

} ,

∀ nonzero 𝜔 (𝑘) .

(40)

Then the WNCN K is said to be a robust 𝐻
∞

controller for
the DSNNM P. Furthermore, if we can find a minimal 𝛾∗
to satisfy the above conditions, the WNCN K is an optimal
robust𝐻

∞
controller.

Theorem 10. Given a scalar 𝛾 > 0, the stochastic closed-loop
system ̃G is said to be absolutely stabilizable in mean-square
by using a fading WNCN ̃K and the 𝐻

∞
-norm constraint

(40) is achieved for all nonzero 𝜔(𝑘) if there exist appropriate
dimensionmatrices𝑃 ≻ 0,𝑄 ≻ 0,𝑅 ≻ 0,Σ ⪰ 0,𝑊O

𝜇
,𝑊C

𝜇
,𝑊I

𝜇
,

and scalar 𝜃
𝑖
, 𝑖 = 1, . . . , 𝜌, such that the following optimization

problem:

min Tr {𝑄𝑃} (41)

s.t. Ξ3 =

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑅 + Π 0 (𝐶
𝜇

𝜀
)

𝑇

0 𝐴
𝑇

𝜇
𝐶
𝑇

𝑦

∗ −𝑅 𝐶
𝑇

𝑑
0 𝐴

𝑇

𝑑
0

∗ ∗ 𝐷
𝜙
Σ𝐾̃ + Σ𝐾̃𝐷

𝑇

𝜙
− 2Σ 𝐷

𝜔
Σ𝐾̃𝐵

𝑇

𝜙
0

∗ ∗ ∗ −𝛾
2

𝐼 𝐵
𝑇

𝜔
0

∗ ∗ ∗ ∗ −𝑄 0

∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

≺ 0, (42)

𝜃
𝑖
≥ 𝜎

2

𝑖
(𝑊̃

𝑑𝑠𝑡

1
)

𝑇

𝑖

𝑃(𝑊̃
𝑑𝑠𝑡

1
)
𝑖

, ∀𝑖 = 1, . . . , 𝜌, (43)

[

𝑄 𝐼

𝐼 𝑃
] ⪰ 0, 𝑄, 𝑃 ∈ S

𝑛+𝑁

++
, (44)

where Π = (𝑊̃
𝑜𝑟

)
𝑇

Θ𝑊̃
𝑜𝑟, Θ = diag(𝜃

1
, . . . , 𝜃

𝜌
), and 𝜃

𝑖
=

𝜎
2

𝑖
(𝑊̃

𝑑𝑠𝑡

1
)
𝑇

𝑖
𝑃(𝑊̃

𝑑𝑠𝑡

1
)
𝑖
, (𝑊̃𝑑𝑠𝑡

1
)
𝑖
denote the 𝑖th column of the

matrix 𝑊̃𝑑𝑠𝑡

1
, is feasible with optimal cost 𝑛 + 𝑁.

Proof. Consider a Lyapunov candidate as follows:

𝑉[𝑀 (𝑘)] = Tr [𝑀 (𝑘) 𝑃] . (45)
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Figure 2: (a)The wireless communication links simulated as fading
channels and (b) WNCN is transformed into a robust sense.

The difference of 𝑉 [𝑀(𝑘)] along the trajectory of stochastic
closed-loop system ̃G with 𝜔(𝑘) = 0 is given by

Δ𝑉[𝑀 (𝑘)] = 𝑉[𝑀 (𝑘 + 1)] − 𝑉[𝑀 (𝑘)]

= Tr [𝑀 (𝑘 + 1) 𝑃] − Tr [𝑀 (𝑘) 𝑃]

= Tr {E [𝑥𝑇 (𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘)]}

= E [𝑥
𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘)] .

(46)

By considering Δ(𝑘) with E[Δ(𝑘)] = 0 and E[Δ(𝑘)Δ𝑇(𝑘)] =

diag(𝜎2
1
, . . . , 𝜎

2

𝜌
) is independent from 𝑥(𝑘) and ̃

𝜙(𝜀(𝑘)) and
using Lemma 2 (S-procedure) one can obtain

Δ𝑉[𝑀 (𝑘)]

=
[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)

̃
𝜙 (𝜀 (𝑘))

]

]

𝑇

×

[

[

[

[

[

[

[

[

[

(

𝐴
𝑇

𝜇
𝑃𝐴

𝜇
− 𝑃

+𝑅 + Π

) 𝐴
𝑇

𝜇
𝑃𝐴

𝑑
𝐴
𝑇

𝜇
𝑃𝐵

𝜙
+ (𝐶

𝜇

𝜀
)

𝑇

𝑇𝐾̃

∗ 𝐴
𝑇

𝑑
𝑃𝐴

𝑑
− 𝑅 𝐴

𝑇

𝑑
𝑃𝐵

𝜙
+ 𝐶

𝑇

𝑑
𝑇𝐾̃

∗ ∗ (

𝐵
𝑇

𝜙
𝑃𝐵

𝜙
+ 𝐷

𝑇

𝜙
𝑇𝐾̃

+𝑇𝐾̃𝐷
𝜙
− 2𝑇

)

]

]

]

]

]

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ̃0

×
[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)

̃
𝜙 (𝜀 (𝑘))

]

]

, (47)

where 𝑇 = diag(𝜏
1
, 𝜏
2
, . . . , 𝜏

𝐿+𝑁
), 𝐾̃ = diag(𝑘

1
, . . . , 𝑘

𝐿+𝑁
),

Π = (𝑊̃
or
)
𝑇

Θ𝑊̃
or, Θ = diag(𝜃

1
, . . . , 𝜃

𝜌
), 𝜃

𝑖
=

𝜎
2

𝑖
(𝑊̃

dst
1
)
𝑇

𝑖
𝑃(𝑊̃

dst
1
)
𝑖
, (𝑊̃dst

1
)
𝑖
denote the 𝑖th column of the

matrix 𝑊̃dst
1

.
According to (20)–(22), ∀ℓ > 0, we have

E {𝐽
ℓ
} =

ℓ

∑

𝑘=0

E {
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑘)

󵄩
󵄩
󵄩
󵄩

2

} − 𝛾
2

ℓ

∑

𝑘=0

E {‖𝜔 (𝑘)‖
2

}

=

ℓ

∑

𝑘=0

E {𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)}

≤

ℓ

∑

𝑘=0

𝜁
𝑇

(𝑘) Ξ̃
1
𝜁 (𝑘) ,

(48)

where

Ξ̃
1
=

[

[

[

[

[

[

[

[

[

[

[

(

𝐴
𝑇

𝜇
𝑃𝐴

𝜇
− 𝑃 + 𝑅

+𝐶
𝑇

𝑦
𝐶
𝑦
+ Π

) 𝐴
𝑇

𝜇
𝑃𝐴

𝑑
𝐴
𝑇

𝜇
𝑃𝐵

𝜙
+ (𝐶

𝜇

𝜀
)

𝑇

𝑇𝐾̃ 𝐴
𝑇

𝜇
𝑃𝐵

𝜔

∗ 𝐴
𝑇

𝑑
𝑃𝐴

𝑑
− 𝑅 𝐴

𝑇

𝑑
𝑃𝐵

𝜙
+ 𝐶

𝑇

𝑑
𝑇𝐾̃ 𝐴

𝑇

𝑑
𝑃𝐵

𝜔

∗ ∗ (

𝐵
𝑇

𝜙
𝑃𝐵

𝜙
+ 𝐷

𝑇

𝜙
𝑇𝐾̃

+𝑇𝐾̃𝐷
𝜙
− 2𝑇

) 𝐵
𝑇

𝜙
𝑃𝐵

𝜙
+ 𝑇𝐾̃𝐷

𝜔

∗ ∗ ∗ 𝐵
𝑇

𝜔
𝑃𝐵

𝜔
− 𝛾

2

𝐼.

]

]

]

]

]

]

]

]

]

]

]

. (49)

Since Ξ̃
0
is the principal minor of Ξ̃

1
, if Ξ̃

1
≺ 0, then Ξ̃

0
≺ 0

such that 𝑀(𝑘) converges to zeros as 𝑘 → ∞ for system ̃G

with 𝜔(𝑘) = 0, ∀𝑥(0), and ∀
̃
𝜙 ∈ Ω(𝐾̃). Further, if Ξ̃

1
≺ 0

holds, lim
ℓ→∞

E{𝐽
ℓ
} ≤ lim

ℓ→∞
∑
ℓ

𝑘=0
𝜁
𝑇

(𝑘)Ξ̃
1
𝜁(𝑘) < 0. Thus,

∀ nonzero 𝜔(𝑘) ∈ 𝑙
2
[0,∞) and the 𝐻

∞
-norm constraint

(40) is achieved. Similar to the proof process ofTheorem 6, by
using Lemma 3 (Schur complement), the inequality Ξ̃

1
≺ 0 is

equivalent to optimization problems (41)–(44) described in
Theorem 10. This completes the proof.

As in the previous section, we present Algorithms 3 and
4.

6. Numerical Simulation

Consider the following nonlinear system [38]:

𝑥
1
(𝑘 + 1) = −𝑥

2

1
(𝑘) + 0.3𝑥

2
(𝑘) + 0.1𝑥

2

1
(𝑘 − 2)

− 0.2𝑥
1
(𝑘 − 2) 𝑥

2
(𝑘 − 2) + 𝑢

1
(𝑘) ,
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Step 1. Set 𝑘 = 0. If there exists an initial feasible solution set Υ
0
= {𝑃,𝑄, 𝑅, Σ,𝑊

O
𝜇
,𝑊

C
𝜇
,𝑊

I
𝜇
} satisfying the constraints

(42)–(44), letX
0
= 𝑃,Y

0
= 𝑄. Otherwise, exit.

Step 2. If 𝑘 ≤ 𝜅, go to Step 3 where 𝜅 is the assumed maximum number of iteration. Otherwise, exit.
Step 3. At 𝑘 ≥ 0, obtain the feasible solution set Υ

𝑘+1
= {𝑃,𝑄, 𝑅, Σ,𝑊

O
𝜇
,𝑊

C
𝜇
,𝑊

I
𝜇
} by solving the following LMI problem:

minTr {X
𝑘
𝑄 +Y

𝑘
𝑃} s.t. (42)–(44).

Step 4. Substitute Υ
𝑘+1

into matrix Ξ̃
1
. If inequality Ξ̃

1
≺ 0 holds, stop the algorithm. Otherwise, set 𝑘 = 𝑘 + 1,X

𝑘
= 𝑃,

Y
𝑘
= 𝑄 and go to Step 2.

Algorithm 3: Given a scalar 𝛾 > 0, solving the𝐻
∞

fading WNCN with unreliable communication links for closed-loop system ̃G.

Step 1. Set 𝑘 = 0. Let 𝛾0
−
and 𝛾0

+
be the initial lower and upper bounds of 𝛾, that is, 𝛾

0
∈ [𝛾

0

−
, 𝛾

0

+
] where 𝛾0

−
= 0, 𝛾0

+
can be

assigned an arbitrarily sufficiently large value to make inequalities (42)–(44) have initial feasible solution set
Υ
0
= {𝑃,𝑄, 𝑅, Σ,𝑊

O
𝜇
,𝑊

C
𝜇
,𝑊

I
𝜇
}.

Step 2. At 𝑘 ≥ 0, computer 𝛾
𝑘
= (𝛾

𝑘

−
+ 𝛾

𝑘

+
)/2.

Step 3. Use Algorithm 3 to check whether the feasible solution set Υ
𝑘+1

satisfying Ξ̃
1
≺ 0. If Υ

𝑘+1
exists, set 𝛾𝑘

+
= 𝛾

𝑘.
Otherwise, set 𝛾𝑘

−
= 𝛾

𝑘.
Step 4. If 𝛾𝑘

+
− 𝛾

𝑘

−
≤ 𝜖, where 𝜖 is the assumed calculation accuracy, set optimal𝐻

∞
performance index 𝛾∗ = 𝛾

𝑘

+
and exit.

Otherwise, set 𝑘 = 𝑘 + 1, go to Step 2.

Algorithm 4: Minimizing 𝛾 to solve the optimal𝐻
∞

fading WNCN with unreliable communication links for closed-loop system ̃G.

𝑥
2
(𝑘 + 1) = 0.1𝑥

1
(𝑘) + 𝑥

2
(𝑘) + 0.5𝑢

2
(𝑘) ,

𝑦 (𝑘) = 0.6𝑥
1
(𝑘) .

(50)

According to [39, 40], when we consider the disturbance
𝑤(𝑘), the nonlinear system (50) can be transformed into
the discrete-time DSNNM (1), where 𝐴 = [

−0.5 0.3

0.1 1
], 𝐴

𝑑
=

[
0.05 −0.1

0 0
], 𝐵

𝜙
= [

1

0
], 𝐵

𝑢
= [

1 0

0 0.5
], 𝐶

𝜀
= [1 0], 𝐶

𝑑
=

[−0.1 0.2], 𝐷
𝜙
= 0, 𝐷

𝑢
= 0

1×2
, 𝐶

𝑦
= [0.6 0], 𝐵

𝜔
= [

0.5

0.1
],

𝐷
𝜔
= 0.1, and𝐾 = 𝐼.

Consider that the double-input-single-output (DISO)
discrete-time DSNNM described above is synthesized by a
WNCN which consists of 6 wireless neuron nodes shown
in Figure 3. In WNCN, each wireless communication link
is modeled as a fading channel with same packet arrival
rate (mean) 𝛿 and variance 𝜎

2

= 𝛿(1 − 𝛿). For 𝛿 =

0.95%, Algorithm 4 can be solved by CVX, a package for
specifying and solving convex programs [41].Then, we obtain
the minimum optimal 𝐻

∞
performance index 𝛾∗ = 0.7921,

the solutions of (41)–(44), and the interconnection weight
matrix parameters of WNCN as follows:

𝑃 =

[

[

[

[

[

[

[

[

[

[

[

3.6031 −1.0546 −0.0825 −0.0825 0.0047 0.0047 −0.0617 −0.0617

−1.0546 11.3398 1.2546 1.2546 −1.1665 −1.1665 −1.1256 −1.1256

−0.0825 1.2546 1.1610 0.0840 −0.0821 −0.0821 −0.0785 −0.0785

−0.0825 1.2546 0.0840 1.1610 −0.0821 −0.0821 −0.0785 −0.0785

0.0047 −1.1665 −0.0821 −0.0821 1.1495 0.0725 0.0708 0.0708

0.0047 −1.1665 −0.0821 −0.0821 0.0725 1.1495 0.0708 0.0708

−0.0617 −1.1256 −0.0785 −0.0785 0.0708 0.0708 1.1454 0.0684

−0.0617 −1.1256 −0.0785 −0.0785 0.0708 0.0708 0.0684 1.1454

]

]

]

]

]

]

]

]

]

]

]

,

𝑄 =

[

[

[

[

[

[

[

[

[

[

[

0.2931 0.0501 −0.0192 −0.0192 0.0378 0.0378 0.0545 0.0545

0.0501 0.1789 −0.1421 −0.1421 0.1359 0.1359 0.1342 0.1342

−0.0192 −0.1421 0.9929 0.0644 −0.0579 −0.0579 −0.0576 −0.0576

−0.0192 −0.1421 0.0644 0.9929 −0.0579 −0.0579 −0.0576 −0.0576

0.0378 0.1359 −0.0579 −0.0579 0.9884 0.0599 0.0594 0.0594

0.0378 0.1359 −0.0579 −0.0579 0.0599 0.9884 0.0594 0.0594

0.0545 0.1342 −0.0576 −0.0576 0.0594 0.0594 0.9890 0.0605

0.0545 0.1342 −0.0576 −0.0576 0.0594 0.0594 0.0605 0.9890

]

]

]

]

]

]

]

]

]

]

]

,
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Figure 3: A discrete-time DSNNM synthesized by a WNCN with 6 wireless neuron nodes.
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Figure 4: State response of the closed-loop system under𝐻
∞
controller WNCN with 𝛾∗ = 0.7921.

𝑅 =

[

[

[

[

[

[

[

[

[

[

[

1.1713 −0.1182 0.0122 0.0122 −0.0342 −0.0342 −0.1895 −0.1895

0 0.5427 −0.0197 −0.0197 −0.0580 −0.0580 0.0405 0.0405

0 0 0.7390 −0.7183 0.0078 0.0078 −0.0614 −0.0614

0 0 0 0.1738 0.0657 0.0657 −0.5153 −0.5153

0 0 0 0 0.7494 −0.6879 0.0713 0.0713

0 0 0 0 0 0.2973 0.3447 0.3447

0 0 0 0 0 0 0.7422 −0.7089

0 0 0 0 0 0 0 0.2198

]

]

]

]

]

]

]

]

]

]

]

,

Σ = diag (0.5313, 1.2461, 0.1357, 0.4233, 1.4452, 0.7652, 1.2891) ,

𝑊
C
𝜇
=

[

[

[

[

[

[

[

[

0.0484 0.0484 0.0003 0.0003 0 0

0.0484 0.0484 0.0003 0.0003 0 0

−0.4925 −0.4925 0.0110 0.0110 −0.1193 −0.1193

−0.4925 −0.4925 0.0110 0.0110 −0.1193 −0.1193

0 0 0.4870 0.4870 −0.0879 −0.0879

0 0 0.4870 0.4870 −0.0879 −0.0879

]

]

]

]

]

]

]

]

, 𝑊
O
𝜇
=

[

[

[

[

[

[

[

[

−1.3588

−1.3588

0

0

0

0

]

]

]

]

]

]

]

]

,

𝑊
I
𝜇
= [

0 0 0 0 −0.0646 −0.0646

0 0 0 0 −0.2989 −0.2989
] .

(51)
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Figure 4 shows the simulation results of the state trajec-
tories of controlled discrete-time DSNNM, where state 𝑥(𝑘)
is initialized arbitrarily in interval [−0.5, 0.5] at 𝑘 = 0 and
𝑘 = 40, respectively, and the disturbance input is nonlinear
load 1/𝑘2. It is easily seen that the WNSN with a distributed
architecture solved by Algorithm 4 using CVX toolbox can
ensure the absolute stability of the closed-loop system in the
mean-square sense with optimal𝐻

∞
performance.

7. Conclusions

A novel wireless networked 𝐻
∞

control approach based
on WNCN has been considered for a class of Lurie-type
nonlinear systems named DSNNM. The WNCN which can
absolutely stabilize the closed-loop system in mean-square
with a desired𝐻

∞
disturbance rejection level can be obtained

by solving LMIs using a CVX toolbox (release 2.0 (beta)).
Simulation results have illustrated the feasibility of the dis-
tributed control methods presented in this paper.
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