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ABSTRACT 

Up until now, there have been no multi-sensor approaches used to estimate 

available water content (AWC) in order to determine variable rate irrigation. This 

has been a major problem for growers adopting precision farming technologies. 

The aim of this project is to implement an on-line multi-sensor platform and data 

fusion approach for the delineation of management zones for site specific 

irrigation in vegetable crop production systems. This is performed by 

simultaneous measurement of soil moisture content (MC), organic carbon (OC), 

clay content (CC), plasticity index (PI) and bulk density (BD) with an on-line 

visible and near infrared (vis-NIR) spectroscopy sensor and a load cell attached 

to a subsoiler and frame, which was linked to a three-point linkage of a tractor. 

The soil apparent Electrical Conductivity (ECa) was separately measured with 

an Electromagnetic Induction (EMI) device. Measurements were carried out in 

three fields in Lincolnshire and one in Cambridgeshire. Vis-NIR calibration 

models of soil properties were developed using partial least squares (PLS) 

regression. A multiple linear regression analysis (MLR) and an Artificial Neural 

Network (ANN) was used to derive zones of water holding capacity (WHC), 

based on correlation between on-line measured OC, CC, PI, BD and ECa with 

MC. The AWC was calculated with empirical equations, as a function of clay 

and sand fractions.   

Result showed that the on-line measurement accuracy for OC and MC were 

good to excellent (R2=0.71-0.83 and R2=0.75-0.85, RPD=2.00-2.57 and 

RPD=1.94-2.10 for OC and MC, respectively). For CC and PI, the measurement 

accuracy (R2=0.64-0.69 and RPD=0.55-0.66 for clay content and PI) was 

evaluated as moderate. It was observed in the study fields, that the ECa results 

had a minor response to MC distribution. 

Furthermore, the fusion of multi-soil data to derive a WHC index with MLR and 

ANN resulted in successful delineation of homogeneous zones. These were 

divided into four different normalisation categories of low (0 – 0.25), medium 

(0.25 – 0.5), high (0.5 – 0.75) and very high (0.75 – 1) of WHC. Spatial similarity 



ii 

 

between WHC maps with those of CC, IP and MC was documented, and found 

to be in line with the literature. AWC maps calculated as a function of soil 

texture classes, showed spatial similarity with WHC maps. Low values of AWC 

were observed at zones with low WHC index and vice versa. This supports the 

final conclusion of this work that multi-sensor and data fusion is a useful 

approach to guide positions of moisture sensor and optimise the amount of 

water used for irrigation. 

 

Keywords:  
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

The amount of available water for irrigation is declining (Parsons and 

Bandaranayake, 2009), which necessitates the cautious use of water in 

agriculture. Estimating the amount of available water is essential to maintain 

yield all year round because the AWC in any field has a profound influence on 

crop growth and yield (Forbes & Watson, 1992; Braun et al., 1999; James et al., 

2000). Irrigation systems are chosen according to the amount and the quality of 

water in addition to the cultural practices of the farmers. When farmers have 

information about the amount of water available, they can determine which crop 

to grow and evaluate irrigation methods; however, it is difficult to control water 

and yield maximisation can result in wasteful consumption. Accordingly, 

irrigation is often considered to be redundant, costly or entirely harmful. 

However, this can be put down to a bad choice or poor design of the proposed 

irrigation system, which leads undoubtedly to lowered efficiency and misuse of 

irrigation water. Effective irrigation methods depend largely on the nature of the 

field, soil type and spatial distribution, soil properties and efficiency of the water 

source. They are also affected by the type of crop as well as the prevailing 

climate. 

Agriculture has been the main source of food and an important source of 

income for humans since ancient times. Land management systems in 

agriculture have been developed to increase the efficiency of crop production, 

improve product quality and protect the environment by the sustainable use of 

our natural resources. Information about soil properties is a vital activity in 

achieving these goals. With climate change, water becomes a very valuable 

natural resource; variable rate irrigation is one method to intelligently reduce 

water consumption for irrigation. As global climate change became an 

indisputable fact, the availability of water for agricultural resources reached 

maximum importance.. Its impact has meant the need to improve the capability 
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of agricultural irrigation water systems in order to enable agriculture to adapt to 

regional climate change (LU Ming-Xiang et al., 2010).  

Researchers and producers are working to improve crop performance in order 

to generate more income through increased productivity (Fambro et al., 2003). 

To maximize the efficiency of crop production it is necessary to determine soil 

properties, such as soil fertility and the chemical and physical properties of soil. 

In the past, farmers lacked knowledge about soil properties, so optimal crops 

and cultivation of land were not possible. Today, most of the methods used to 

measure soil properties are based on traditional laboratory analyses and are 

expensive, time consuming and require an expert operator. Advanced sensing 

technologies including electromagnetic induction (EMI), optical, mechanical, 

acoustic and electrochemical techniques have became available recently either 

for direct use by farmers, with others still in development. These may provide 

fast, cost effective measurements while do not need expert operators.  

The most important soil properties affecting the water holding capacity (WHC) 

are moisture content (MC), organic carbon (OC), soil texture, plasticity index 

(PI) and bulk density (BD) (Kvaerner et al., 2007; Waiser et al., 2007). Various 

methods are used for measuring these soil properties including advanced 

methods such as geophysical methods (e.g. EMI, electrical resistivity, etc.) and 

visible and near infrared (vis-NIR) spectroscopy in addition to the traditional 

laboratory methods.  

In a comprehensive literature review on proximal soil sensors, Kuang et al. 

(2011) concluded that EMI and other geophysical measurement methods are 

limited technologies for extended quantitative evaluation of soil properties. 

Mapping the spatial variation of MC, CC, OC and BD using these geophysical 

methods is not feasible. Therefore, researchers focused on the use of multi-

sensor concept. For example, data obtained with EMI and vis-NIR (non-mobile) 

sensors was fused to delineate management zones with variable-rate irrigation 

for vegetable crop production systems (Hedley et al., 2010). The incorporation 

of EMI and vis-NIR spectroscopy data enabled the determination of positions for 
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placing soil moisture sensors in the field, thereby reducing the requirement for 

large-scale scouting during field scanning (Aldhumayri, 2012). However, this 

author did not account for BD, although this parameter is important in 

determining the volume of soil water by controlling the pore space and retains 

the available water. Furthermore, soil BD differs with soil texture type. For 

example, zones in the field with high available water capacity will tend to have 

low soil BD (USDA, 1998). Similarly, heavy soil textures (e.g. clay soils) exhibit 

small BD ranges as compared to light sandy soils (Abramson et al., 2002). 

Therefore, BD needs to be considered for the derivation of WHC index, in 

addition to CC, OC, PI and MC.   

One of the most important problems with agricultural systems is ensuring the 

best type of variable rate irrigation system for different crops. These problems 

can be resolved by using soil moisture sensors. These sensors determine the 

irrigation rate necessary for different agricultural products. This is especially 

important as over irrigation of agricultural crops can be just as damaging as 

under irrigation. Positioning of these sensors requires advanced knowledge 

about soil variability, particularly those affecting WHC of the soil. It is thought 

that the fusion of high resolution on-line collected data for key parameters of soil 

properties (OC, CC, PI, BD and MC) will assist not only in optimising the 

performance of these sensors, but also enabling the calculation of AWC for 

variable rate irrigation. 

1.2 Measurement of Soil Moisture Content (MC) 

The traditional gravimetric method is a direct measurement and it is the most 

important and most accurate way of measuring soil MC. It requires drying a soil 

sample in an oven for 24 hours at 105oC (British Standard BS 7755, 1994). A 

major advantage for this method is that it is easy and affordable; however, it is 

difficult to utilise in the field and it needs a considerable amount of time. Other 

methods used to measure soil moisture content include indirect methods, which 

require numerous efforts to calibrate. The differences between these sensors 

include calibration requirements, operation method, price, maintenance and 
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accuracy (Balendonck and Hilhorst, 2001). Among these are the Theta Probe 

ML2x (Delta Devices, Cambridge, UK) and Tensiometer mechanism, which is 

based on the measurement of the dielectric constant of the soil. These sensors 

are characterised by their ability to facilitate fast track decision-making, which 

enables swift management of the irrigation system. These sensors are installed 

at certain points throughout the site, based on experience or EMI measurement 

of the spatial variability in the field (Pardossi et al., 2009). However, soils are 

naturally heterogeneous, which necessitates the need for a method to quantify 

soil properties affecting the soil WHC.  

1.3 Irrigation systems 

These systems are defined by the way in which water is added to the surface of 

the soil or flows over it. They are considered the most common methods in arid 

and semi-arid areas. However, these methods are often used without adopting 

sensing technology to measure the amount of water needed by particular crops 

or any deficiency in the soil. There are many traditional methods of irrigation 

and among the most prominent of these are: 

i. Flood irrigation: This irrigation method is the simplest method of 

surface irrigation. It involves dividing a field into small units, and filling 

each and allowing water to seep through the surface horizontally. It 

works because the land comprises a basin surrounded by raised areas. 

However, these basins occupy a large area and it has been noted that 

this method does not provide the desired homogeneity of water as it is 

often filtered from neighbouring basins. By adopting this method of flood 

irrigation, including flow irrigation and irrigation lines, forms may vary 

because of cultivation of different crops (Phene, 2010). The most 

common problems in flood irrigation include the high percentage of 

water loss through evaporation as well as by leakage into the ground, 

ultimately resulting in higher consumption of water. 

ii. Sprinkler irrigation: This method is one of the newer methods and its                                              

deployment is increasing due to the availability and efficiency of sprays, 
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pumps and pipes. These are lightweight and made of aluminium. This 

method of irrigation for many different crops planted on lands of mixed 

topography is becoming commonplace. Adding water through the use of 

above ground sprays slightly resembles rainfall. Releasing pressurized 

water from narrow nozzle sprays means the spray can be configured 

and water is often pumped in order to obtain the necessary pressure. 

Sprinkler irrigation is suitable in many circumstances for irrigating almost 

all crops except rice. Thus, there are many advantages, including 

homogeneity in the distribution of moisture through sprinkler irrigation 

systems. However, adoption of this method rests largely on the 

properties of the ground water and local topography (Han et al., 2005). 

There are many types of sprinkler systems, including the Fixed System 

and Moving System-these often vary by location and crop. Most 

sprinklers feature the capacity to reduce water loss, they can irrigate 

uneven ground surfaces and they can be used easily and efficiently as 

items of agricultural machinery. Sprinklers can also control distribution of 

irrigation water, ensuring a homogeneous distribution in the soil, 

irrespective of soil properties. Under cold conditions, sprinklers can 

reduce the severity of any frost effects. However, there are some 

disadvantages, particularly the costly initial outlay and some degree of 

technical knowledge is required to deal with issues, such as clogged 

nozzles resulting from salt water deposits and so forth. 

iii. Drip irrigation: the drip irrigation method requires a dense network of 

pipes which go directly to the root zone in the form surface to soil flows 

to maintain an optimal level of soil moisture. This enables irrigation water 

to be fed to the plant continuously. It is also possible to add nutrients, 

unlike in other irrigation systems (Sammis et al., 2012). The adoption of 

this method involves the distribution of irrigation water throughout the 

season, depending on the changing water needs of the plant at various 

stages of growth. This water system allows for optimal distribution of 

moisture within the effective depth of the soil, leading to increased crop 
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yields (Hussain et al., 2010). However, the most basic advantage of drip 

irrigation is the significant saving in irrigation water. In addition, there are 

benefits in being able to provide fertilizers and pesticides at the same 

time with irrigation water. Furthermore, it is possible to use this method 

with moisture sensors to adjust nutrients and water automatically. 

However, the drawbacks of drip irrigation include clogging of the 

drippers caused by the constituents of irrigation water, in terms of 

fertilizer and salts, but also from irregularity in the irrigation water 

drippers due to differences in distribution of pressure. 

1.4 Irrigation scheduling and moisture sensors 

Sprinkler and drip irrigation are considered advanced irrigation methods. The 

increasing growth of the sprinkler irrigation pivot method in many areas of 

agricultural production has resulted in the drainage of a great deal of water from 

underground reserves. This is especially so in the absence of good 

management. It must follow that the best modern methods and the development 

of advanced technology to exploit it must be combined with the rational use of 

water, and irrigation scheduling mechanisms. These modern methods can be 

applied to provide the required amount of moisture to the root area of the plants 

with high efficiency. Irrigation scheduling is the process of making appropriate 

decisions. The primary goal of scheduling is to codify and rationalize the use of 

water for irrigation to ensure that losses are reduced to a minimum. At the same 

time, efficiency needs to be increased to the maximum to get the highest return 

from production. Scheduling mechanisms represents one of the most important 

choices in achieving this requirement, particularly the development of control 

systems with closed circuits using humidity sensors (Cardenas-Lailhacar and 

Dukes, 2010). 

The basis of using scheduling mechanisms in this way is to measure the tensile 

soil moisture or actual MC within the root zone. In pursuance of this aim, soil 

sensors including Tensiometer mechanism and Theta Probes are installed in 

the field for measurement at different depths from the soil surface (30 and 60 
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cm) (Zhen et al., 2011). Each pair of sensors is connected so they can send 

and receive for the entire field. However, the major drawback of this method is 

the problem of how to determine the position of moisture sensors in order to 

optimise irrigation process. This is done by using an EMI instrument, which 

cannot quantify the values of soil properties affecting the WHC and AWC. 

Figure 1-1 shows a moisture sensor installed in a field with dripping irrigation 

system under vegetable crop production system.  

 

 

 

In order to determine the optimum position and the required number of MC 

sensors needed to provide input data for variable rate irrigation, it is necessary 

to take multiple soil samples from a site, to characterise the spatial variation in 

the key soil factors affecting WHC and AWC. This is an essential requirement 

due to the inherent heterogeneity existing in the majority of the agricultural soils. 

Manual collection of soil samples followed by traditional laboratory analysis is 

costly, time consuming and requires an expert operator. The use of multi-sensor 

and data fusion approach will enable optimising the number and positions of soil 

moisture sensor in the field, based on the existing and inherited spatial variation 

Figure 1-1:  Shows a moisture sensor installed in field with dripping 

irrigation system with vegetable crop  
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in key soil properties (e.g. MC, OC, CC, PI, BD) affecting WHC and AWC.  This 

will be possible to achieve by the delineation of homogeneous management 

zones based on advanced geostatistics and data fusion algorithms.  

1.5 Key factors affecting water holding capacity (WHC) and 

available water content (AWC) in the soil 

Water holding capacity is defined as the difference of water content between 

that at wilting point and that at the field capacity. In the current thesis, WHC was 

proposed to be equal to gravimetric moisture content, whose quantity is affected 

and derived as a function of BD, OC, CC, ECa and PI of the soil. While, 

depends on the quantity of salts in the solution and the amount of rock 

fragments (USDA, 1998). The water retention of soil depends on several 

physical and chemical properties that affect the amount of water available to 

plants as follows: 

a. Rock fragments: This reduces the AWC with indirect proportion to their 

volume unless the rocks are porous (USDA, 1998). 

b. Organic matter: the presence of organic matter content in soil helps to 

increase the amount of water absorbed, and thus increases the available 

water capacity of the soil. A 1% organic matter in the soil provides about 

1.5% of available water holding capacity (USDA, 1998). It is believed that 

by applying the mixture of organic matter to the upper few inches of soil 

will increase the available water fraction near the surface (USDA, 1998). 

c. Bulk density: bulk density has an important role in controlling pore 

space and the available water capacity. Available water capacity in the 

soil is reduced at high bulk density soil (USDA, 1998). 

d. Osmotic pressure: This can increase the capacity in the soil solution by 

about 0.3 – 0.4 times with electrical conductivity. This is important given 

the reduction in available water capacity at electrical conductivity of more 

than 8 mmhos/cm (USDA, 1998). 

e. Soil texture: USDA studies in 1998 showed that, assuming the same BD 

and rock fragments (for instance in clay and silty clay), the available 
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water capacity was about 0.10 - 0.20. In silt, silt loam and silt clay loam 

soil types, the available water capacity was about 0.15 - 0.25. In addition, 

the available water retention capacity depends on the root depth of the 

type of plant. 

f. Soil quality: This factor is defined as the ability of a particular type of soil 

(within its natural limits, or within its externally improved limits) to 

enhance the productivity of plants. It is an integral property of soil. It is 

indirectly linked with AWC and WHC. According to USDA studies in 

1998, for comparison between two kinds of soil with different properties 

and climates, it is important to select a crop that will elicit water from a 

depth of about 60 inches without a surface root barrier. Therefore, soil 

quality and water retention capacity are at their best in soil with good 

internal properties and a lower evapotranspiration deficit. Therefore, the 

soil’s physical, chemical and biological make-up affects the available 

water and the reduction of plant growth (Ding et al., 2012).  

  

Some other factors that will improve the availability of useable water include 

maintaining salts below the root zone, reducing the rate of tillage, trying to avoid 

mixing the layers of the soil and increasing plant yields by sowing more seeds 

(USDA, 1998). However, by adopting proper management strategies the WHC 

can be a dynamic characteristic to modify and improve. 

In conclusion, based on the previous key factors, which affect the AWC and 

WHC, the spatial distribution of MC is a complex process. Ideally, it would be 

useful to measure all these key factors to characterise the spatial variation in 

WHC and AWC. However, this is technically impossible, as technology is not so 

advanced to enable realistic quantifications of all these factors quickly and in a 

cost effective manner. But, a selection of the most important factors e.g. OC, 

BD, CC and PI (CC and PI can be both under soil texture) must be made, so 

that they can be measured with the multi-sensor platform of Cranfield University 

(Mouazen, 2006). This is expected to be an essential requirement for guiding 
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site specific irrigation systems and positioning of moisture sensors to optimize 

the variable rate irrigation strategy. 

1.6 Visible and near infrared Spectroscopy (vis-NIR) for the 

analysis of soil properties 

When a soil sample is subjected to a light source, chemical bonds (such as C-

H, N-H, S-H and O-H molecular bonds) start to vibrate, which leads to energy 

absorbance at particular wavebands. Although, the fundamental vibrations of 

molecules occur in the mid infrared (MID) range, these are transformed into 

overtones and combinations in the NIR range (Kuang et al., 2012). Although 

these overtones and combination bands are broad, they are important feature of 

NIR Spectroscopy (750-2500 nm) and enable qualitative and quantitative 

analyses of soil characteristics. The spectral features of ascription or particular 

wavelengths are the main features that enable quantitative and qualitative 

analyses using chemometrics. The advantages of the vis-NIR spectroscopy 

when used for soil analysis are that the analysis of soil properties can be 

undertaken simply and very quickly (Ben-Dor and Banin, 1995; Reeves et al., 

1999; Stenberg et al., 2002; Chang et al., 2005). Recently, the vis-NIR 

spectroscopy was adopted for on-line measurement protocols (Mouazen et al., 

2005).  

The diffuse-reflectance measurement is the most frequently used measurement 

modes in NIR spectroscopy application for soil analyses. It is dependent on the 

highly variable physical properties of soil samples with age-long miscibility 

between chemometrics and NIR spectroscopy (Okparanma and Mouazen, 

2011). Thus, the changes in the resulting spectrum result from variable physical 

and chemical parameters of soils. During the qualitative and quantitative 

analyses, relevant information is extracted from the spectra by means of both 

linear and non-linear multivariate analyses (MVA). Linear tools include multiple 

linear regression (MLR), principal component regression (PCR), partial least 

squares (PLS) regression and penalized spline. The non-linear modelling tools 

enable solving of problems with non-linear behaviour. These include artificial 
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neural network (ANN), support vector machine (SVM), boosted regression trees 

(BRT), random forest (RF) and wavelet. However, studies showed that PLS 

regression is sufficient to provide the best calibration results for soil 

spectroscopic analysis (Ben-Dor and Banin, 1995; Chang et al., 2001; Bogrekci 

and Lee, 2004; Mouazen et al., 2006a). Others proved the ANN to provide the 

best prediction performance in comparison with PLS or PCR (Mouazen et al., 

2012; Viscarra Rossel, et al., 2010). In conclusion, the selection of a 

chemometrics tool for running analysis will depends on the behaviour to be 

linear of non-linear. 

One of the most important features for the vis-NIR spectroscopy is that it is a 

non-destructive, rapid and cost-effective technology, which enables 

simultaneous estimation of a variety of soil properties including (among others) 

OC, CC, pH, organic matter, MC total carbon, and inorganic carbon, total 

nitrogen (TN), plant-available phosphorus (P) and soil type (Mouazen et al., 

2005, 2006a, b, 2007, 2009, 2010; Viscarra-Rossel et al., 2006a, b, 2009; 

Maleki et al., 2007; Gomez et al., 2008; Viscarra-Rossel and Behrens, 2010; 

Canasveras et al., 2010; Wetterlind et al., 2010). However, previous research 

illustrates the effect of factors on performance and accuracy including moisture 

content (Mouazen et al., 2006b), soil texture (Mouazen et al., 2005; Cozzolino 

and Moron, 2006; Bathes et al., 2008), soil colour (Mouazen et al., 2007a), 

number of samples (Kuang et al., 2012), soil samples pre-treatment 

(Therhoeven-Urselmans et al., 2008; Yang et al., 2011a), methods used to 

develop calibration models (Mouazen et al., 2010; Viscarra Rossel and  

Behrens, 2010; Vohland et al., 2011), standard deviation and the range of 

samples concentration (Kuang and Mouazen, 2011a), spectral data pre-

processing (Maleki et al., 2007; Yang et al., 2011b) and soil heterogeneity 

(Brunet et al., 2007). The application of vis-NIR spectroscopy for soil analysis 

was evaluated under three measurement scenarios, namely, laboratory, in situ 

(non-mobile) and on-line (mobile) measurement modes (Kuang et al, 2012). It 

has been shown that, under laboratory analysis, dry and processed soil 

samples provide the best performance in terms of accuracy compared with 



 

12 

 

other measurement methods (Kuang et al., 2011). Some of the soil properties 

including total C, soil OC, inorganic C, total N, cation exchange capacity, pH, 

texture, moisture content and mineralizable N, are slightly more accurately 

measured by the NIR for air dried soil than for wet soil samples (Chang et al., 

2005).   In the case of fresh soil, both non-mobile and on-line measurement 

modes resulted in decreased measurement performance due to the influence of 

MC. For on-line measurement conditions, in addition to MC, other parameters 

affect measurement accuracy, which include ambient light, machine vibration, 

plant root depth, debris and variation of soil-to-sensor distance (Mouazen et al., 

2007; Stenberg et al., 2010).  

The most important advantages associated with the on-line data collection are 

the high sampling and real-time measurement. Sudduth and Hummel (1993) 

were the first researchers to develop an on-line sensor for soil properties. They 

found a standard error of 5% for the prediction of organic matter  Shibusawa et 

al. (2000) reported on the development of soil maps of MC using the best 

prediction model (Shibusawa et al., 2000).  Mouazen reported a new on-line 

NIR sensor for the measurement of soil MC (Mouazen et al., 2005), which was 

expanded to the measurement of other soil properties including TN, OC, P and 

pH (Mouazen et al., 2007 & 2009). Aldhumayri (2012) concluded that the vis-

NIR sensor designed by Mouazen (2006) provided valuable data on OC, TN 

and MC that can guide positioning and density of MC sensors for site specific 

irrigation. However this author did not attempt to measure other soil properties 

affecting the WHC and AWC (e.g. PI, CC and BD).  

 

1.7 Electrical Conductivity Methods (EC) 

Electromagnetic induction (EMI) is used for mobile and on-line measurement of 

soil apparent electrical conductivity (ECa). EMI scanning is a proximate, fast 

and non-invasive method for obtaining information about soil properties. The 

simplest version consists of transmitter coil and a receiver coil with a fixed 

distance (fig 1-3). The transmitter coil is energised with alternating current with 
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high-frequency (>1 kHz) creating a magnetic field that causes a small 

secondary current in the soil, while the soil matrix produces a weak secondary 

magnetic field. The receiver coil measures the amplitude and phase of the 

secondary magnetic field (Abdu et al., 2007). The magnitude of eddy current 

loop is directly proportional to the electrical conductivity of soil  

 

 

Hs is secondary magnetic field (Hm-1), Hp is primary magnetic field at transmitter 

coil (Hm-1), ω = 2πf, f = frequency (Hz), µ0 = permeability of free space, and s = 

inter-coil spacing (m) (McNeill, 1980).  

Recently, there is a new version of EMI known as Dualem 1S (D-1S; Dualem 

Inc., Milton, ON, Canada), as shown in Figure 3-4. 

 

 

 

Figure 1-2: Shows the transmitter and receiver dipole orientations of DUALEM-1S   

using a vertical-vertical (V–V) and a vertical–horizontal (V–H) mode for the 

dipoles in DUALEM-1S (Abdu et al., 2007) 
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Dualem sensors measure ECa and susceptibility as two distinct factors of 

specified depths. They also enable the estimation of ECa, susceptibility and 

thickness in layered earth. The sensor records electromagnetic responses 

internally, positioning coordinates and values for time, pitch, roll, voltage and 

temperature. Because this instrument is operated by electromagnetic induction, 

there is no need to have contact with the soil’s surface. Therefore, it enables 

surveying at moderate speed over rough, dry or non-conductive terrain. The 

sensors can be portable or drawn by a vehicle. The Dualem contains a 1m 

separation between the transmitter coil and dual receiver coils, so it can more 

measurements of depths from 0.5 m to 1.5 m (www.dualem.com). It consists of 

three coils: one vertical transmitter coil and two receiver coils. The vertical coil 

(coplanar, 1m apart from the transmitter) and horizontal coil (perpendicular, 

1.1m apart from the transmitter) provide two simultaneous ECa readings (V-V 

and V-H, respectively) (Urdanoz & Aragues, 2012). However, this sensor is 

most sensitive at the surface and the sensitivity decreases rapidly with depth 

(Abdu et al., 2007). Data reading using these instruments is undertaken every 

second at two depth levels (30 cm and 120 cm), with the waves falling vertically 

on the surface. 

Researchers have showed that EMI can be either directly or indirectly used to 

determine soil properties (Sudduth et al., 2005). This method has proved to 

provide successful measurement of few soil properties in few cases while failing 

to do so in many other cases, which may be attributed to the multiple effects of 

several factors on EMI signal including MC, texture, OC, salinity and soil 

compaction (McNeill, 1980; Friedman, 2005; Padhi and Misra, 2011; Kuang et 

al., 2012). However, in salt affected areas, strength of the solution is the main 

contributor to ECa (Williams and Hoey, 1987). In some countries with temperate 

climates, salt is not a problem, where organic matter content, mineralogy, bulk 

density and soil MC are factors affecting ECa measurement (Brevik and Fenton, 

1987). The EMI soil sensing and yield map sequence analysis methods provide 

information for the determining soil texture boundaries and crop management 

zones. However, an EMI-determined ECa map cannot always determine the 

http://www.dualem.com/


 

15 

 

optimum management zones without physical soil examination in the field to 

confirm specific soil properties (King et al., 2005). Another disadvantage of EMI 

is the need to maintain the zero measurement and the calibration of the 

instrument. There can also be errors in accuracy, which can become significant 

in areas of low conductivity. Measurement accuracy is +/-5% at 30 mS/m 

(Geonics Ltd., TN6). Aldhumayri (2011) wrote about ECa measured by an EMI 

sensor to provide a minor response with MC distribution in the field with a small 

contribution to the data fusion algorithms used to delineate homogeneous 

management zones. Despite these disadvantages (among others) EMI remains 

a widely adopted method for positioning soil moisture sensors for variable rate 

irrigation systems.  

ECa measurements with the EMI technique have received great attention within 

precision farming community (Corwin and Lesch, 2005; Padhi and Misra, 2011). 

Waine et al., (2000) reported that soil MC and soil type can be measured by 

EMI. EMI surveys may be used for improving traditional soil sampling survey. It 

has also shown to be useful for improving soil mapping of agricultural 

landscapes, particularly in terms of continuous monitoring where there is a large 

number of fallows and cropped sites (Zhu et al., 2010; Padhi and Misra, 2011). 

EMI techniques have also been used for the determination of soil texture 

boundaries (James et al., 2000; 2003), to map soil topography and weed status 

(Godwin and Miller, 2003) and to map soil water status in irrigated maize fields 

(Hedley et al., 2010).  
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2 RESEARCH AIM AND OBJECTIVES 

2.1 Research gap 

Following on from the previous literature review, there are gaps in this research 

area. Although a previous study by Aldhumayri (2011) combined EMI and vis-

NIR data using a simple data fusion approach, for CC, PI and BD measured 

with the vis-NIR sensor were not included in the analysis. Furthermore, only a 

linear regression analysis was used to quantify correlations between OC, TN, 

ECa with MC based on correlation coefficient values established between each 

pair of properties. Therefore, there is a need to account for the most important 

factors of influencing soil WHC, and to explore their measurement with the on-

line multi-sensor platform based on vis-NIR spectroscopy and EMI sensors. 

These include CC, PI and BD (in addition to ECa, OC and MC). Also, there are 

other methods e.g. clustering analysis, more advanced data analysis methods 

including the multiple linear regression analysis (MLR) and artificial neural 

network (ANN) will be used to derive the WHC as an important index to assist 

optimising the position and number of soil moisture sensors. The WHC will also 

assist the calculation of AWC and enable variable rate irrigation. So far, no 

previous reports on the use of on-line vis-NIR sensor to measure soil PI can be 

found in the open literature. 

 

2.2 Research aim 

The aim of this project is to implement a multi-sensor platform and data fusion 

approach for the delineation of management zones for site specific irrigation. 

This will aim at simultaneous measurement of MC, OC, PI, CC, BD and ECa 

which enables deriving WHC index and calculate AWC. The delineation of 

homogeneous zones of WHC and AWC will be a useful approach to optimise 

the position and the number of soil moisture sensors in addition to providing 

input data for variable rate irrigation. In order to achieve this aim the following 

objectives were assigned. 
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2.3 Research objectives 

The research has the following objectives: 

1. To collect data on soil measured by the on-line vis-NIR and EMI sensors 

from selected fields with different textures. In this context, fields with vegetable 

crop production systems are selected. Soil properties, such as OC, CC, BD, 

MC, PI and ECa are measured. 

2. To develop calibration models for CC and PI for the vis-NIR 

spectroscopy. These models should be validated for the measured fields under 

non-mobile and mobile measurement conditions. 

3. To fuse soil data, using mathematical and statistical methods to derive 

water holding capacity index. 

4.  To implement and validate empirical models available in the literature to 

calculate AWC 

5. To delineate management zones for optimising the number and position 

of the moisture sensors and guiding the variable rate irrigation based on the 

derived WHC and AWC. 
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3 MATERIAL AND METHODS 

3.1 Experimental field and collection of soil samples  

In collaboration with the grower Produce World, four test fields were identified.  

Soil samples were collected before on-line measurement was carried out for the 

development of the calibration model for the vis-NIR spectrophotometer. Further 

soil samples were collected during the on-line measurements to validate 

measurement accuracy. 

3.1.1 Collection of soil samples 

Four fields were identified in England with different soil textures. The fields in 

question are located at Thetford, Vicarage and Marshall’s in Lincolnshire and 

Wypemere in Cambridgeshire. These fields are intended for growing different 

vegetable crops. Approximately 60 samples were collected; before on-line 

measurement, with 14 samples each from three of the fields and 18 samples 

from Marshall’s field. The samples were taken from the bottom of the trenches 

at about 15 cm depth, to conduct the physical and chemical analysis with 

traditional laboratory methods for MC, OC, CC and PI. Afterwards, the points 

were chosen for taking samples from each field; the coordinates of these points 

were recorded using a hand-held GPS device.  Figure 3-1 shows the locations 

of these fields in England. Another 81 soil samples were collected during the 

on-line measurement; of which 21 samples each were collected from three 

fields and 18 samples from Vicarage field. The positioning of these soil samples 

was carefully recorded using a DGPS (EZ-Guide 250, Trimble, USA). Table 3-1 

contains detailed information about the locations of the study fields. Between 

one and three samples were collected from each of the on-line, vis-NIR 

measurement line. Figure 3-2 shows an example of on-line measurement lines 

from Vicarage Farm.  All of these soil samples were employed to develop new 

vis-NIR DRS calibration models of plasticity index; also they were used to 

upgrade the soil models for OC, CC and MC. Therefore, in order to validate the 

on-line measurement accuracy of these soil properties, all the soil samples 

were kept in a fridge at a temperature of 4°C until analysis. 
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3.1.2 On-line vis-NIR DRS and BD measurement 

The on-line vis-NIR soil sensor available at Cranfield University was used to 

measure all four fields: this sensor was also used to measure soil BD (Mouazen 

et al., 2005). The on-line measurement kit consisted of a subsoiler, which is a 9 

Thetford 

Vicarage 

 

Marshall’s 

Wypemere 

Figure 3-1: Shows the location of the four fields in England which were used in 

the study 
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Kirton 
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tonne capacity single-ended shear beam load cell (Griffith Elder & Company 

Ltd, Suffolk, UK) for the measurement of draught; a draw wire linear sensor 

(Penny + Giles Controls Ltd, Dorset, UK) which was connected to a wheel 

gauge for the measurement of subsoiler depth; a visible and near infrared (vis-

NIR) sensor (tec5 Technology for Spectroscopy, AG, Oberursel, Germany) for 

the measurement of soil properties, namely, MC, OC, CC and PI. Soil BD can 

then be calculated as a function draught D (kN), depth d (m) and soil moisture 

content MC (kg kg-1) based on the following function (Mouazen & Roman, 

2006): 

       (3-1) 

The on-line system is equipped with a DGPS (Trimble UK, Hook, UK) for 

recording the position of the sensor (Mouazen & Ramon, 2006). The data 

acquisition consisted of a tec5 analogue to digital data converter (tec5 AG, 

Oberursel, Germany) and Fylde FE-MM8 (Fylde Electronic Laboratories Ltd., 

Preston, UK) data acquisition hardware. AgroSpec (tec5 AG, Oberursel, 

Germany) and DASYLab (Version 8, measX GmbH & Co.KG, Germany) data 

logging software were employed as well. A semi-rugged laptop (Toughbook, 

Panasonic UK Ltd., Bracknell, UK) was used for running both data logging 

software programmes simultaneously with a measurement range of 305-2200 

nm.  Figure 3-3 illustrates the multi sensor platform for the on-line measurement 

of soil properties (Mouazen, 2006). All hardware, including the laptop, was 

enclosed in an IP-65 metal box during measurement so as to protect against 

dust and rain. The AgroSpec software logged DGPS and spectrophotometer 

reading set at 1 Hz. The DASYLab software logged draught force and subsoiler 

depth readings at 10 Hz. Both data streams were joined together using 

timestamps (Quraishi & Mouazen, 2012).  A tractor battery was used to power 

the spectrometer system, laptop and DGPS. 



 

21 

 

However, each field was measured by covering different areas between 1.5 and 

3 ha. The measurement was done with parallel lines with 10 m intervals 

between adjacent transects, as shown in (Figure 3-3).  

 

Figure 3-2: Shows the online measurement lines (black) and sampling points 

(red), shown for Vicarage field as an example 

The tractor travel speed was around 2 km/h and the initial depth was set at 15 

cm. About seven lines each were measured in three of the four study fields and 

18 lines in the fourth, e.g. Vicarage field. It is worth mentioning that the on-line 

measurement was recorded after two days of heavy rain, which have a negative 

effect on vis-NIR prediction accuracy, a confirmed by Kuang and Mouazen 

(2013). 

 

Table 3-1: The study fields, the on-line vis-NIR and EMI measurements took place 

Field Area, ha Crop Soil Texture 

Vicarage Farm 3 Potatoes Sandy Silt Loam 

Marshall’s Farm 4.5 Broccoli Sandy Silt Loam 

Wypemere Farm 8 Potatoes Silty Clay 

Thetford Farm 4 Potatoes Clay Loam 
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Figure 3-3 : Illustrates the multi-sensor platform for on-line measurement of soil 

properties (Mouazen, 2006) 
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3.1.3 EMI instruments for measuring the electrical conductivity 

A Dualem 1S instrument was used in all fields to measure ECa, with the sensor 

installed on a quad bike that was equipped with a GPS device. This was done in 

collaboration with Soyl precision farming (http://www.soyl.co.uk/). The sampling 

frequency was one reading every second at two depths (30 cm, shallow and 

120 cm, deep), with the waves falling vertically on the surface. The ECa 

measurement was carried out in all fields about two weeks after the vis-NIR 

measurement. 

 

 

 

3.1.4 Moisture content measurement 

The measurements of the soil volumetric MC were carried out in all the fields 

using a Theta probe sensor type ML2X Delta-T Devices (Delta-T Devices Ltd, 

Cambridge, United Kingdom) to obtain an estimation of volumetric MC. Theta 

probe readings took place after two days of heavy rain. It was easy to use and 

made accurate soil moisture measurements (accuracy = ± 0.01 m3.m-3). The 

soil moisture probe was inserted into the soil, which in turn was connected to 

the data logger or readout unit. A current of 5-15V DC at 20mA was provided 

and within seconds the soil moisture was able to be data logged. The probes 

Figure 3-4: Shows the Dualem 1S sensor with a quad bike during field 

measurement 
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can be easily installed deep into the soil by inserting them into holes.  A theta 

probe ML2X is shown in Figure 3-5. 

 

Figure 3-5: Shows the Theta Probe ML2X for the measurement of the moisture 

sensor 

3.2 Laboratory Experiments  

Overall, the 141 samples collected from the four fields (32 samples from 

Vicarage, 39 samples from Marshall’s, 35 samples from Wypemere and 35 

samples from Thetford) were analysed in the laboratory with relevant methods 

to measure MC, PI, OC and CC. The methods used for these measurements 

are described below.  

3.2.1 Moisture Content (MC) analysis  

The MC of the soil was determined by drying the soil samples in an oven at 

105°C±5 for a minimum of 24 hours (BS 7755, 1994). The moisture content 

measurement was deduced by calculating the difference between the mass of 

fresh samples and the samples after drying. 

3.2.2 Organic Carbon (OC) analysis  

After the sample has been dried in the oven at about 105°C for 24 hours, 

organic carbon can be measured using the Dumas combustion method (BS 

7755, 1995). The dried soil samples were put into a small silver-foil capsule, 
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after which about 4 mol/L of hydrochloric acid was added until effervescence 

stopped (BS 7755 Section 3.8 (BSI, 1995)). A small amount of the soil samples 

-0.001 mg - was weighed with a TrusSpecCNS spectrometer (LECO 

Corporation, St. Joseph, MI, USA). The samples were returned to the oven and 

subjected to 90°C heat for about four hours, ±15 minutes. After that, they were 

packed into a larger piece of aluminium foil and loaded into the carousel of the 

auto sampler. The sample mass was tested by entering the data on the 

instrument software of the sample named along with matrix-specific oxygen 

dosing.  

3.2.3 Soil texture analysis  

The soil texture was measured by the sieving and sedimentation method (BS 

7755 Section 5.4 (BSI, 1998)), described as follows: 

a. Organic matter removal: Using a measuring cylinder, 30±1 ml of 

demineralised water and 25 ml of 100 by volume of hydrogen peroxide 

from a dispenser were added to about 10 ml of air-dry soil <2 mm density 

for each of the samples using a specially made 10 ml brass scoop. These 

samples were placed in labelled polycarbonate bottles (4d.p.). They were 

mixed manually and put on a cold hotplate enclosed in a fume hood 

overnight to complete the decomposition. Afterwards, the temperature of 

the hotplate was raised to 100±2°C for about 2 hours and the bottle was 

removed from the hotplate and allowed to cool. 

b. Dispersal and wet sieving: A measure of 200±1g of demineralised water 

was added to a bottle, which was vigorously shaken in a centrifuge at 

2000±100 rpm for at least 20 minutes and the supernatant sediment was 

discarded afterwards. Next, approximately 20±2 ml of sodium 

hexametaphosphate buffer solution was added by dispenser and also 150 

±2 ml of water was administered by a measuring cylinder. Later the 

bottles were capped tightly and shaken thoroughly overnight (18 hours) 

by an end-over-end shaker. After that, about 20±2 ml sodium 

hexametaphosphate buffer solution was poured into a weighed bottle (to 
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4 d.p.), which had been dried in an oven at 105°C overnight.  The bottle 

was reweighed after cooling in a desiccator. The contents of the bottles 

were washed gently through a 0.063 mm sieve into a 500 ml measuring 

cylinder with water and the residue was retained. The residue was then 

dried at 105±2°C for a minimum of 4 hours. 

c. Dry-sieving the sand fraction: The contents of each beaker were taken 

from the oven and poured into a mechanical shaker made up of a nested 

column of sieves. The samples were shaken for about 15 minutes and 

then they were diluted with demineralised water until the mixture reached 

a volume of 500 ml for each cylinder respectively. Thereafter, each full 

sieve was recorded and transferred to the cylinder. 

d. Determination of silt and clay fractions by pipette extraction:  The 

cylinder was placed in a bath of water at 25 °C to equilibrate overnight.  

Aliquot parts of the mixture were put into two sets of glasses weighing 4 

d.p. to receive the 0.002-0.063 mm range and <0.002 mm range of 

particles, respectively. After that, the cylinder was stirred gently for about 

30 seconds and immediately 25 ml of aliquot parts were drawn from the 

10 cm depth into the 0.002-0.063 mm set of glasses. After a period of 6 

hours and 23 minutes had elapsed for the sedimentation for the < 0.002 

mm range of particles, another 25 ml of aliquot parts was drawn from the 

9 cm depth into the < 0.002 mm set of glasses. These were placed in an 

oven at 105 ±2°C for a minimum of 24 hours and after that they were 

allowed to cool in a desiccator and weighed. An average value can be 

obtained for all types of soil samples, such as sandy soil, clay and silt. 

Looking at these equations, it can be deduced:  

                                                                                                             (3-2) 

                                                                       (3-3) 

                                              (3-4) 

                                                   (3-5) 

                                                           (3-6) 
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Where, D = Dispersant factor 

   F factor = (mass of all sand sample) + (mass of all silt sample –D) x        

             20 

   d = oven dry mass of sodium hexametaphosphate buffer solution (g) 

   Z = mass of 0.002-0.063 mm pipetted sample (silt + clay) (g) 

   C = mass of <0.002 mm pipetted sample (clay) (g) 

   S = total mass of sand (g) 

 

Using the United Kingdom soil textural classification scheme (Figure 3-6), the 

soil sample texture can be determined based on the percentage of sand, silt 

and clay. 

  

Figure 3-6: The United Kingdom soil classification scheme 
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3.2.4 Plasticity index analysis  

The plasticity index of soil is evaluated by determining the plastic limit and the 

liquid limit BS 1377-2:1990: 

 Plastic limit (MCp): This is determined by taking a 20g portion of the 

fresh soil, moulding it into a ball between the fingers and rolling it. This 

sample is divided into two subsamples of about 10g. Using a glass rolling 

plate, a fine portion of the soil is moulded into a 3mm diameter thread, 

which retained its shape under pressure. These samples were then dried 

in the oven for 24 hours at a temperature of 105°C. The average MC is 

called the plasticity limit (MCp). 

 Liquid limit (MCL): This is determined using the cone penetrometer 

method. About 300g of fresh soil was mixed thoroughly with distilled 

water until it became a homogenous and coherent mass. Then, the brass 

cup was filled with the soil and it was kept in a container without trapped 

air pockets and left on a smooth surface. The cup was placed under the 

penetrometer (Figure 3-7) and the cone was lowered until it was just in 

contact with the soil surface. Next, the dial gauge was set to zero and the 

cone was released for 5±1 seconds. Thereafter, the dial gauge was 

lowered to the new position and the depth of penetration of the soil mass 

by the cone was reread and recorded. Afterwards, the cone was lifted out 

and cleaned and then the soil on the cup was moistened. A moist soil 

sample of 10g was taken from the area penetrated by the cone which 

determined the MC. The remaining soil was removed from the cup, 

moistened and mixed thoroughly with the original soil. This was repeated 

again for a minimum of four MC samples. The range of penetration 

should be between 15-25 mm. By using the linear graph of penetration 

values plotted against MC and read off MC that corresponds to a cone 

penetration of 20 mm to one decimal place the liquid limit (MCL) could be 

determined. 
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                                                                        (3-7) 

        Where, 

 MC = moisture content (%) 

 m˳ =is the mass of the dish (g) 

 m₁ is the mass of the dish plus wet soil (g) 

 m₂ is the mass of the dish plus oven-dried soil (g) 

 

To calculate the Plasticity Index (PI), the following equation was used: 

                                                                                     (3-8) 

Where, 

 PI Plasticity index (%) 

 MCL Liquid limit (%) 

 MCP Plastic limit (%) 

 

Figure 3-7: Shows the penetrometer and cone used to determine the liquid limit 

Penetrometer 

Cone 
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3.2.5 Optical measurement  

Altogether, 141 samples were collected and kept in a refrigerator at a 

temperature of about 4°C. After filtering out the noise, each soil sample was 

mixed thoroughly. Each sample was divided onto three Petri dishes, which were 

2 cm deep and 2 cm in diameter. Before scanning with the AgroSpec mobile 

spectrophotometer with a wavelength range of 305 and 2200 nm (tec5 

Technology for Spectroscopy, Germany), the surface of each sample was 

smoothed out by a spatula which ensured maximum light reflection and high 

signal-to-noise ratio (Mouazen et al., 2005) and was shaken gently. Employing 

the same vis-NIR on-line measurement used during the fields measurement, a 

100% white reference was used before scanning, which had to be repeated 

every 30 min. Each sample was scanned 15 times from the three dishes and 

the average was used in one spectrum. The information from the derived 

average of the spectrum was used to build a model for CC, OC, MC and PI and 

to calibrate the result of online mobile measurements in the fields. 

 

3.2.6 Pre-treatment of vis-NIR spectra  

The Unscrambler® software Version 7.88 (Camo A/S, Oslo, Norway) was used 

for spectra pre-treatment and model development. The spectra pre-treatment 

aimed to remove the noisy part of the spectrum or eliminate some sources of 

variation not related to the measured value. After filtering out the noise, a 

wavelength range of 371-2150 was retained for further pre-treatment. Various 

data pre-processing options were used in this study to develop calibration 

models. A structured trial and error process was followed to determine the best 

pre-processing method, and the final selection of a pre-processing method was 

based on comparing the results of the different models. The successive steps of 

pre-processing the soil spectra are a) reducing the number of wavelengths by 

averaging three wavelengths in the visible and 15 wavelengths in the NIR 

range. A larger reduction factor was adopted in the NIR range, as larger noise 

existed in the NIR range as compared to the visible range. Based on 

optimisation of wavelength reduction versus measurement accuracy, the 
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selected reduction gave the best accuracy; b) maximum normalisation of data 

was then implemented which is typically done by placing all data on 

approximately the same scale and to obtain a more even distribution of the 

variances; c) Savitzky & Golay’s 1st derivative (Savitzky & Golay, 1964) was 

followed to compute derivatives of the 1st order, based on a polynomial 

approximation of a portion of the curve. The 1st derivative was adopted using a 

second-order polynomial with a polynomial order of 2 fitted to the spectra. Yang 

et al., (2012) studied the effect of different pre-processing methods on the 

principal component analysis of soil classification. The results showed that 1st 

derivative tended to be the best option, and the 2nd derivative should be 

avoided due to the greater amount of noise introduced into the data; d) 

Smoothing was applied using a second-order polynomial with a polynomial 

order of three. The scatter effect in spectroscopy is caused by physical 

phenomena, such as particle size, rather than chemical properties. The 1st 

derivative and the smoothing with the Savitzky and Golay method that followed 

normalisation aimed to attenuate the effect of sharp peaks, which do not hold 

physical or chemical information.  

 

3.2.7 Development of calibration models 

A total of 262 samples used to develop calibration models for the CC (60 soil 

were from the four study fields before the on-line measurement, 107 samples 

collected from three fields in 2011 (Al-Dhumayri, 2012) and another 95 soil 

samples previously collected from five fields in the UK, four fields in Holland, 

two fields in Denmark, one field in Germany and one field in the Czech Republic 

(Kuang & Mouazen, 2011b)). Only, 167 samples were used to develop 

calibration model for MC and OC. Only 60 samples collected in this study were 

used for the development of the PI calibration model. It has used 60 samples 

from the study filed to validate all soil properties of the vis-NIR on-line 

measurement. 
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Table 3-2: Comparison of sample statistics between the Calibration set and 

laboratory validation groups at all study fields 

Fields  Calibration set Validation set samples 

 OC MC PI CC OC MC PI CC 

Vicarage NR 262 167 60 262 60 60 60 60 

Farm Min% 1.28 14.79 14.79 8.49 1.25 16.57 16.57 7.79 

 Max% 1.66 22.61 22.61 16.08 1.69 22.49 23.20 13.84 

 Mean% 1.42 19.50 19.43 12.33 1.41 20.21 20.40 10.95 

 SD% 0.11 2.23 2.24 2.31 0.13 1.55 1.73 1.65 

Wypemere NR 167 167 60 262 60 60 60 60 

Farm Min% 6.49 30.09 17.18 22.82 5.91 32.57 16.16 37.94 

 Max% 13.4 45.82 28.69 48.08 13.0 50.93 31.04 57.69 

 Mean% 9.84 38.93 21.94 35.95 9.74 43.16 20.71 48.29 

 SD% 1.93 5.19 3.16 6.54 2.02 5.59 4.11 6.04 

Thetford NR 167 167 60 262 60 60 60 60 

Farm Min% 1.20 18.38 11.61 14.69 1.11 17.44 12.69 20.18 

 Max% 3.74 25.72 25.31 35.84 3.28 26.23 22.83 37.44 

 Mean% 2.24 21.92 19.16 23.79 2.00 21.27 17.55 27.17 

 SD% 0.69 2.27 3.89 5.87 0.55 2.58 3.09 5.75 

 

The pre-treated spectra and the laboratory chemical measurement values were 

used to develop calibration models for OC, MC, CC and PI by means of the 

partial least squares (PLS) regression. The PLS is a bilinear modelling method 

where information in the original x data is projected onto a small number of 

underlying (“latent”) variables called PLS components. The y data are actively 

used in estimating the “latent” variables to ensure that the first components are 

those that are most relevant for predicting the y variables. Interpretation of the 
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relationship between x data and y data is then simplified as this relationship is 

concentrated on the smallest possible number of components. More detailed 

information about the PLS can be found in Martens and Naes (1989). 

The calibration spectra were subjected to PLS regression with the leave-one-

out cross validation using the Unscrambler 7.8 software (Camo Inc., Oslo, 

Norway). The number of latent variables for a model was determined by 

examining a plot of the leave-one-out cross-validation residual variance against 

the number of latent variables obtained from the PLSR. The latent variable of 

the first minimum value of residual variance was selected. Outliers were 

detected using the residual sample variance plot after PLSR. Samples located 

far from the zero line of residual variance were considered outliers and 

excluded from the cross-validation sample set (10%). 

 

3.2.8 Statistical evaluation of PLS model performance 

Root mean square error of calibration (RMSEC) and prediction (RMSEP) are 

measures of average differences between predicted and measured response 

values at calibration and validation stages, respectively (Yitagesu et al., 2009). 

For the evaluation of the model performance, RMSEP was used (Williams and 

Norris, 2001). The RMSEP can be expressed as follows: 

 

                  (3-9) 

 

where  is the predicted value and  is the observed value. 

 

RPD designated as rate of prediction deviation, which is the ratio of standard 

deviation (SD) of the measured values to RMSEP was used to compare 

between different models developed. The third parameter considered was the 

coefficients of determination (R2). In fact, R2 indicates the percentage of the 
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variance in the Y variable that is accounted for by the X variable. A value for R2 

between 0.50 and 0.65 indicates that more than 50% of the variance in Y is 

accounted for variance X, so that discrimination between high and low 

concentrations can be made. A value for R2 between 0.66 and 0.81 indicates 

approximate quantitative predictions, whereas, a value for R2 between 0.82 and 

0.90 reveals good prediction. Calibration models having a value for R2 above 

0.91 are considered to be excellent (Williams, 2003). In the successful analysis 

of agricultural commodities, it is desirable to have R2 >0.50, RPD>5. 

Nevertheless, for samples of complex material, Williams and Norris (2001) 

classified values as follows: RPD<1.0 indicates very poor model/predictions and 

their use is not recommended, RPD between 2.4 and 3.0 indicates poor 

model/predictions where only high and low values are distinguishable, RPD 

between 3.1 and 4.9 indicates fair model/predictions which may be used for 

assessment and correlation, RPD values between 5.0 and 6.4 indicates good 

model/predictions where quantitative predictions are possible, RPD between 6.5 

and 8.0 indicates very good, quantitative model/predictions, and RPD>8.1+ 

indicates excellent model/predictions. However, for complex agricultural 

material such as soil, another RPD standard was reported by researchers 

(Saeys et al., 2005; Viscarra Rossel et al., 2006). Viscarra Rossel et al. (2006) 

classified RPD values as follows: RPD<1.0 indicates very poor 

model/predictions and their use is not recommended; RPD between 1.0 and 1.4 

indicates poor model/predictions where only high and low values are 

distinguishable; RPD between 1.4 and 1.8 indicates fair model/predictions 

which may be used for assessment and correlation; RPD values between 1.8 

and 2.0 indicates good model/predictions where quantitative predictions are 

possible; RPD between 2.0 and 2.5 indicates very good, quantitative 

model/predictions, and RPD>2.5 indicates excellent model/predictions. The 

RPD values obtained in this study was classified according to the latter 

proposed limits, and were used to evaluate the accuracy of PLS models for the 

prediction of OC, MC and clay content. 
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3.2.9 Derivation of Water Holding Capacity index (WHC)   

3.2.9.1 Multiple linear regression analysis    

Key factors affecting the WHC are the OC, CC, PI and BD (see also the 

introduction). Therefore, WHC index can be derived if information about these 

soil properties is available. On-line measured values of OC, CC, PI and BD and 

ECa values measured with EMI are correlated against MC measured with the 

on-line sensor by means of a multiple linear regression analysis (MLR). The 

MLR analysis predicts values of dependant variable Y, when independent 

variables (x1,x2,.…,xp) are given. MC was considered as the dependent variable 

(Y), whereas OC, CC, PI and BD and ECa were considered as the independent 

variables.  MLR was carried out using Microsoft Excel 2010. The values of 

constants of multi linear function were considered as the contribution weight of 

each property on WHC. When a strong correlation between a parameter and 

MC exists the contribution of that particular parameter to WHC was considered 

high and vice versa. 

 

3.2.9.2 Artificial neural network    

Neural networks are simplified biological version of human brain and consist of 

input, hidden and output layers (Günaydin, 2009). The hidden layer of a network 

consists of multiple numbers of neurons. The interconnected neurons have the 

capability to learn from data and can provide strong prediction of required 

output. The number of neurons is determined by training several models with 

different number of neurons and comparing the predictions with reference 

output (Miao et al., 2006, Khalilmoghadam et al., 2009). Having few numbers of 

hidden neurons may result in high training and testing errors, whereas, too 

many hidden neurons might give small training error but still perform poorly 

during testing due to over fitting and high variance (Sinha and Wang, 2008).  

The model to predict WHC (or MC), as a function of OC, CC, PI, BD and ECa 

(independent variables) was developed with ANN, using STATISTICA 11 ANN 
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toolbox (StatSoft, Inc., Tulsa, USA). The network was a multilayer perceptron 

(MLP) ANN using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) training 

algorithm and hyperbolic tangent (Tanh) as the hidden layer is nonlinear 

activations and output layer is linear activation function is as it produced the 

best results compared to other activation functions such as exponential and 

logarithmic functions.  

 

                 

 

 

 

 

 

 

Figure 3-8: Four layer artificial neural network (ANN) used to model the WHC 

prediction 

 

The network consisted of an input layer, a hidden layer and an output layer 

(Figure 3-8). The input layer includes four to five nodes depending on the 

number of input soil properties, whereas the output layer consisted of one node. 

The number of nodes in the hidden layer adjusted during the training and was 

anything from one to ten in order to achieve the optimised network structure 

with the lowest training error (Quraishi and Mouazen 2012). The data set was 

divided into a training set (80%), a validation set (10%) and a test set (10%). 

The training times were set to 1000.     

 MLR and ANN were both used to derive WHC index, for individual field and for 

the three fields together (Vicarage, Wypemere and Thetford). The field in 

Input layer 

Inputs Outputs 

Hidden layer Output layer 
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Marshall’s Farm was excluded because it was with grass cover, and lead to 

unsuccessful on-line measurement. After WHC was calculated, values were 

normalised by means of maximum normalisation, by which values of WHC for 

all modelled cases were scaled between 0 and 1. The values of WHC were 

divided into four categories, namely, very high WHC (0.75-1), high (0.5-0.75), 

medium (0.25-0.5) and low WHC (0-0.25). This was to enable deriving 

management zones (e.g. for variable irrigation schemes) based on WHC maps.  

3.2.10 Calculation of available water content (AWC) 

AWC refers to the water content difference between the field capacity and the 

permanent wilting point. AWC in % was calculated using an empirical equation 

developed previously by Waine et al. (2000), as a function of clay and sand 

content:   

 

AWC (%) = 22.547 ln(x) – 4.8811 x + 7.4356                                         (3-10) 

x = - 0.8981 (Tw)2 + 3.8704 (Tw) + 1.9686                                                    (3-11) 

Tw = 0.03 (CC) – 0.004 (sand)                                                                     (3-12) 

 

Where x= fineness class,  

Tw= texture weighing CC. Both Tw and sand content are in %. 

 

By substituting on-line measured CC and laboratory measured sand content (as 

no good vis-NIR model was available to predict sand content), into Eqn (3.10 – 

3.12) AWC was calculated.    
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3.2.11 Development of maps 

Maps of soil properties including MC, OC, CC, PI, BD and ECa were developed 

for all three fields. Two types of maps were developed for each property, 

namely full-point and comparison maps. The full point maps consisted of all on-

line predicted points of MC, OC, CC, PI, BD and ECa. The comparison maps 

compare between on-line predicted and laboratory measured properties based 

on the validation sets.  

Semi-variograms analysis was carried out the full-point maps only using Vesper 

1.63 software developed by the Australian Centre for Precision Agriculture 

(Minasny et al., 2005). An exponential model (Eqn. 3-13 and 3-14) was adopted 

to calculate semi-variance, since it resulted in the lowest root mean square error 

of prediction (RMSEP). 

 

       (3-13) 

                                                  (3-14) 

 Where, γ is semi-variance, C0 is the nugget value, C1 is sill, h is the lag 

distance, and A is range.  

Using the variogram data, full point maps of MC, OC, CC, PI, BD and ECa were 

developed using ArcGIS ArcMap (ESRI ArcGISTM version 10, CA, USA). 

Ordinary kriging was performed using the semi-variogram data to map spatial 

variation accurately. For the comparison maps, since less than 100 points were 

available, the inverse distance weighing (IDW) method was used for both the 

measured and predicted maps of AWC and WHC. For full point maps, predicted 

OC, CC, MC, PI, and BD data was used to carry out kriging based on semi-

variogram data provided in Table 4-8.  
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4 RESULTS AND DISCUSSION 

4.1 Laboratory Results 

4.1.1 Soil Particle Size Distribution (PSD) 

The results of PSD analysis in the four study fields are presented in Table 4-1 

(for average field soil sample) and Figure 4-1a, b, c and d (for individual soil 

samples). The textures of the four fields are different, with sandy silt loam at 

Vicarage field, sandy silty loam at Marshall’s field, silty clay at Wypemere field 

and clay loam at Thetford field. The variability in different textures was evenly 

distributed among these four fields within the samples set obtained, which for 

the essential to establish calibration model of vis-NIR spectroscopy. 

Throughout the process, the UK soil classification scheme was used. 

 

Table 4-1: Average Soil Texture in the Four Study Fields 

Site No.of 

soil 

samples 

Sand% 

(0.063-0.2 

mm) 

Silt% 

(0.002-0.063 

mm) 

Clay 

(<0.002 mm) 

Texture type 

Vicarage  32 42.847  45.464 11.689 Sandy silt loam 

Marshall’s  39 28.44  53.84 17.71 Sandy silt loam 

Wypemere  35  5.076  45.279 49.645 Silty clay 

Thetford  35 43.081  29.491 27.427 Clay loam 

 

The passive influence of soil texture on vis-NIR models for the prediction of 

other soil properties has been highlighted in previous research (Mouazen et al., 

2005b; Stenberg, 2010a; Stenberg et al., 2010b). The soils with higher clay 

contents were expected to result in a higher prediction accuracy compared to 

the soils with a higher content of sand fraction, which is attributed to the scatter 
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effect of sand particles (Mouazen et al., 2010; Kuang and Mouazen, 2013). 

Moreover, the effect was highly complicated, as both MC and texture have 

interactive effects, which need further evaluation, which is outside of the scope 

of the current study. However, the essential element to highlight at this stage is 

that the diverse samples in terms of soil texture have an impact on the 

accuracy of vis-NIR model performance. 
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Figure 4-1: Texture of all samples collected from (a) Vicarage field, (b) Marshall’s 

field, (c) Wypemere field and (d) Thetford field. The soil classification is set 

according to the UK Soil Classification Scheme 
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4.1.2 Organic Carbon (OC), Moisture Content (MC) and Plasticity Index 

(PI) results  

Table 4-2 shows the results of the laboratory analysis of soil properties from the 

four study sites. The results clearly illustrate the differences among the four 

fields and the relationship between these properties. A high OC with a high MC 

and PI were measured at Wypemere field, whereas a low OC with a low MC 

and PI were shown at Vicarage field. However, Wypemere field showed very 

high values of OC and MC compared to the other three fields. High OC was 

found at Wypemere field compared with the other fields across the UK, while 

OC concentrations at Vicarage field, Marshall’s field and Thetford field were 

found to be similar to most fields in the UK. 

 

Table 4-2: Analyses of Organic Carbon (OC), Moisture Content (MC) and 

Plasticity Index (PI) for the Four Study Sites 

Site Propery Min (%) Max (%) Mean (%) SD (%) No. 

Samples 

Vicarage 

 

 

Marshall’s   

OC 

MC 

PI 

OC 

MC 

PI 

1.227 

15.51 

2.190 

1.119 

20.91 

5.700 

4.527 

23.20 

12.60 

2.049 

26.19 

11.73 

1.571 

18.69 

5.774 

1.376 

22.42 

8.205 

0.754 

2.19 

2.198 

0.220 

1.40 

1.525 

32 

32 

32 

32 

39 

39 

Wypemere  OC 

MC 

PI 

1.500 

26.87 

14.58 

17.85 

52.81 

31.04 

9.472 

40.24 

20.11 

3.416 

6.54 

4.065 

35 

35 

35 

Thetford OC 

MC 

PI 

1.068 

14.53 

9.200 

7.107 

26.23 

22.83 

2.213 

19.57 

15.92 

1.265 

3.09 

3.848 

35 

35 

35 

SD = Standard deviation   
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Table 4-2 also indicates that variations in these soil properties between the four 

fields are considerable for example MC in Vicarage = 18.69, Marshall's = 22.42, 

Wypemere = 40.24 and in Thetford = 19.57. This must be taken into account 

when analysing the data using vis-NIR spectroscopy, as sample statistics 

including the range and SD highly affect the vis-NIR model performance (Kuang 

and Mouazen, 2011). These authors found that in a sample set with of a large 

SD and concentrations range, not only large RPD and R2 values are expected, 

but also a large RMSEP.  

 

4.2 Soil volumetric moisture content measured by Theta Probe 

Table 4-3 shows the accuracy of the Theta probe for the measurement of 

average field volumetric MC. It is documented that the soil texture strongly 

affects the accuracy of Theta probe measurement of volumetric MC (Kaleta et 

al., 2005). Therefore, variable accuracy was recorded in different fields.  For 

example, low accuracy was recorded at heavy soil texture (silt clay) in 

Wypemere field, whereas a better accuracy was recorded at light soils (sandy 

silt loam) in Vicarage field. 

 

 

 

 

 

 

 

 

Site No. 

samples 

Mean (%) Max (%) Min 

(%) 

SD (%) RPD 

Vicarage 18 19.19 30.4 5.8 8.2 1.08 

Marshall’s 21 25.2 31.8 12.8 4.07 0.86 

Wypemere 21 25.95 36.10 15.7 6.42 0.34 

Thetford 21 17.38 29.9 10.4 5.6 0.84 

Table 4-3: Theta probe measurement of volumetric moisture content (MC) m3 /m-3 

from the four study sites 
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4.3 Soil apparent Electrical Conductivity (ECa)   

Soil ECa values varied, depending on the soil texture and the soil MC. Table 

4-4 shows the average apparent ECa (in mS/m) in the three study fields, as 

EMI measurement took place only in these three fields. The data highlights 

similar average ECa values measured at Vicarage field and Marshall’s field, 

whereas high ECa value was measured at Wypemere Farm, which may be 

attributed to the high values of MC, OC and PI (Table 4-2). Indeed, the 

Wypemere field values are about 25% higher than the corresponding values 

of Marshall’s field and Vicarage field. Moreover, it reflects the same trends 

in OC, MC and PI values in this field (Table 4-2). The variations in ECa 

values between fields and between zones within any specific field cannot be 

used for successful quantitative analyses of soil OC, CC, MC or PI, as EMI 

is simultaneously affected by various parameters including texture, 

compaction, salinity, MC and organic matter content (Sudduth et al., 2005; 

Hezarjaribi and Sourell, 2007; Kuang et al., 2011). 

 

Table 4-4: Average ECa Measured at Two Different Depths (Shallow and Deep) in 

Three Fields 

Site Shallow ECa(mS/m) Deep ECa (mS/m) 

Vicarage 

Marshall’s 

9.20 

10.52 

33.51 

29.81 

Wypemere 24.716 75.049 

 

Maps of ECa illustrate clear spatial differences. Figure 4-2 indicates that ECa 

could be divided in a W-E direction into six clear zones, especially at the deep 

soil layer (0 cm to 120 cm). 
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Figure 4-2: Spatial variation of apparent Electrical Conductivity (ECa) at two 

different depths: shallow (0 cm to 40 cm, left) and deep (0 cm to 120 cm, right) at 

Vicarage field  

 

The ECa ranges measured in the current work were smaller than the values in 

previous studies (Aldhumayri, 2012). The smallest ECa values in two depths 

were shown in the middle variation of the ECa maps of Vicarage field and 

Marshall’s field. Figure 4-3 shows that the ECa reading at Marshall’s field, 

which is clearly of a lower range than that at Vicarage field. However, in the 

deep layer, higher ECa values are recorded than in the shallow layer.  
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Figure 4-3: Spatial variation of apparent Electrical Conductivity (ECa) at two 

different depths: shallow (0 cm to 40 cm, left) and deep (0 cm to 120 cm, right) at 

Marshall’s field 

 

As illustrated at Wypemere field (Figure 4-4), much higher ECa ranges were 

recorded, which is in line with high levels of MC, OC and PI measured in this 

field. Also in Wypemere field the highest CC was measured (Table 4-1).  

 

 

Figure 4-4: Spatial variation of apparent Electrical Conductivity (ECa) at two 

different depths: shallow (0 cm to 40 cm, left) and deep (0 cm to 120 cm, right) at 

Wypemere field 
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The large differences in ECa values measured at the three study fields suggest 

that ECa data should be used with caution. This is because the upper end of 

the ECa map at Vicarage field is almost equal to the lower end of the two 

depths measured at Wypemere field. The differences might be attributed to the 

different soil properties (see Table 4-2) or the different soil textures (see Table 

4-1).  

 

         4.4 On-line Measurement 

 4.4.1 Bulk Density (BD) Measurement  

The BD measurement was carried out in the study fields by using the on-line 

multi-sensor platform consisting of draught (measured with a load cell), depth 

(measured with a wheel gauge), and MC sensor based on vis-NIR 

spectroscopy. Equation (3-1) was used to calculate the BD. However, texture 

affects the values of BD derived with Eqn (3-1). Based on ANN, Quraishi and 

Mouazen (2012) enabled the correction of soil texture by developing correction 

factor (CF) for different soil texture classes. This CF was implemented in this 

study to correct for different textures measured in the study fields. Table 4-5 

provides statistics of the corrected on-line measured BD in the study fields. The 

maximum BD of the loam soil measured at Marshall’s field and Thetford field 

were almost of the same (1.677 and 1.691 Mg m-3, respectively). In Wypemere 

field, with silty clay soil type and high MC, a lower BD was measured. No data 

were recorded at Vicarage field, due to technical failure of the system that was 

discovered later during the data analysis.  
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Table 4-5: On-line measured bulk density (BD) in the three study sites 

Site CF BD Mgm-3     

  Min (%) Max (%) Mean (%) SD (%) 

Marshall’s  0.016 0.887 1.677 1.267 0.117 

Wypemere  0.27 0.500 1.355 0.884 0.145 

Thetford 0.079 0.876 1.691 1.340 0.118 

         CF=Correction Factor 

 

The BD maps developed with ordinary kriging based on exponential 

semivariograms are shown in Fig. (4-5). Table 4-6 provides the summary of 

semi-variance of full-point BD maps in the three study fields. The BD maps of 

Marshall’s field shows two clear BD zones of high and low values. However, the 

BD distribution in Wypemere field is more complicated with much smaller values 

than that at Marshall’s field. Three clear BD zones can be observed in Thetford 

field with different BD ranges. 

Table 4-6: Summary of semi-variance properties of bulk density (BD) full-point 

maps in the three study fields 

Site Nugget (C˳ ) Sill (C₁) Range (A₁) Lag size 

    (m) 

RMSEP 

(%) 

Marshall’s 0.0042 0.0082 43.74 0.194 0.0041 

Wypemere 0.0067 0.014 7.91 0.4 0.0011 

Thetford 0.0057 0.0061 46.79 0.333 0.0008 
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Figure 4-5:  Full-point bulk density (BD) maps based on exponential variograms 

shown for Marshall’s field (top), Wypemere field (middle) and Thetford field 

(bottom) 

Lag distance (M) 

Lag distance (M) 

Lag distance (M) 
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4.4.2 On-line soil spectra  

The on-line vis-NIR spectra were collected at Wypemere field, with the spectra 

noisy parts between 305 to 370 and 2150 to 2200 nm removed from two edges 

of the spectra during spectra pre-treatment, as shown in Figure 4-6. This figure 

shows typical soil spectra collected at Wypemere field with low reflectance 

(indicating the high absorption of the soil). The high absorption at Wypemere 

field was explained by either the dark soil colour (Mouazen et al., 2006) or high 

MC (Mouazen et al., 2005) of the soil. Wypemere field has high MC, OC and PI 

content which explains the darker soil colour and also the high absorption and 

low reflection (Figure 4-6).  

 

 

Figure 4-6: On-line soil spectra collected at Wypemere field 

 

4.4.3 Accuracy of on-line vis-NIR measurement of soil properties 

Figure 4-7 explains the different steps performed during this study from data 

collection to validation and mapping.  Approximately 1500 to 2000 points per ha 

were collected (at a rate of 2 points per metre) by the multi-sensor platform, 

which depended on the measurement speed.  

 

Wavelength (nm) 
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Figure 4-7: Schematic illustration of different steps towards online measurement 

and mapping of soil properties 

 

To validate the accuracy of the vis-NIR sensor with laboratory analysis, values 

of the manually collected samples were compared with the on-line vis-NIR 

predicted concentrations at the same positions (Table 4-7). By validating the 

PLS models for the prediction of OC and MC based on 167 samples collected 

in the UK (60 samples collected in the current study), similar accuracy 

indicators (Table 4-7) were obtained as compared to those of previous studies 

(Mouazen et al., 2006; Mouazen et al., 2005; Aldhumayri, 2012). RPD values 

Soil sample collection     

with online measurement 

 

On-line measurement & 

soil sampling 

before online measurement 

Lab chemical measurement & 

optical measurement 

Pre-treatment of soil spectra 

Validation using the 

samples collected during 

on-line measures 

Calibration using the samples 

before on-line measurement 

Data analysis and mapping 
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were above 2 for OC and MC on all fields, except for the MC at Thetford field 

(RPD = 1.94) where prediction performance was classified as good (Viscarra 

Rossel et al., 2006). At Wypemere field, the OC value was larger than 2.5, 

indicating excellent prediction performance (Viscarra Rossel et al., 2006), 

whereas the RPD in the remaining fields were between 2.0 and 2.5, indicating 

very good quantitative model predictions (Viscarra Rossel et al., 2006).  Based 

on the above discussion, it can be confirmed that the accurately of on-line vis-

NIR in these fields with vegetable crop prediction by measuring the OC and 

MC. This accuracy is also comparable with achieved for fields with arable crops 

(Kuang and Mouazen, 2013).  

Table 4-7 shows the validation results of clay model developed based on 167 

samples collected from seven sites in the UK and 95 samples from European 

soil (Kuang and Mouazen, 2011b). A lower accuracy for CC (RPD = 1.41 to 

1.77) was obtained, compared to MC and OC. The prediction accuracy for CC 

can be classified as fair to moderate. Even smaller accuracy was achieved for 

the PI (RPD = 1.25 to 1.45), which can be classified as fair predictions 

(Viscarra Rossel et al., 2006). The lowest accuracy for PI prediction can be 

attributed to the low number of samples (60) used to develop the PI calibration 

model (Kuang and Mouazen, 2012). This necessitates in the future the need to 

consider a larger number of samples, which was not possible to be completed 

under the limited time and resources of the current work. Scatter plots of 

measured versus on-line predicted soil properties are shown in the Figure_Apx-

2. 
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Table 4-7: Summary of the on-line vis-NIR Measurement accuracy of organic 

carbon (OC), moisture content (MC), clay content (CC) and plasticity index (PI) in 

three Fields at Vicarage, Wypemere and Thetford  

Site  R2 RMSEP (%) RPD SD (%) 

OC Vicarage 0.71 0.06 2.00 0.12 

 Wypemere 0.83 0.72 2.57 1.85 

 Thetford 0.83 0.25 2.44 0.61 

MC Vicarage 0.82 0.97 2.06 2 

 Wypemere 0.85 2.49 2.10 5.23 

 Thetford 0.75 1.2 1.94 2.33 

CC Vicarage 0.64 1.4 1.41 1.98 

 Wypemere 0.65 3.94 1.46 5.75 

 Thetford 0.69 3.1 1.77 5.5 

PI Vicarage 0.55 2.6 1.25 2 

 Wypemere 0.66 2.43 1.48 3.6 

 Thetford 0.6 2.77 1.28 3.55 
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4.4.4. Mapping 

4.4.4.1. Comparison maps 

Figures 4-8, 4-9, 4-10 and 4-11 show comparison maps of measured versus 

on-line predicted MC, OC, CC and PI, respectively. Large spatial similarity 

between measured and predicted soil properties can be observed particularly 

for OC and MC, which confirms the robustness and accuracy of the on-line vis-

NIR sensor for the measurement of  MC and OC, which is in line with results 

achieved in a previous work for vegetable crop fields (Al-Dhumayri, 2012). 

Similarly, the on-line sensor provided reasonably similar spatial distribution for 

CC to laboratory measured maps, in two fields (Vicarage and Thetford) out of 

three. Probably the high MC (Table 4-3) recorded in Wypemere field is the 

reason for the low accuracy, as high MC levels in heavy soils seem to worsen 

the situation where the largest deterioration in the prediction accuracy of the 

vis-NIR spectroscopy was recorded (Kuang and Mouazen, 2013). Although the 

statistical evaluation of the on-line prediction of PI shows this property to be the 

worst property to be evaluated with the vis-NIR spectroscopy (Table 4-7), 

comparison maps shows reasonable similarities in all three study fields   
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Figure 4-8: Comparison maps between laboratory- (left) and online-predicted 

(right) measured soil moisture content (MC) at Vicarage (top), Wypemere 

(middle) and Thetford Fields (bottom) 
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Figure 4-9: Comparison maps between laboratory (left) and on-line (right) 

measured soil organic carbon (OC), at Vicarage (top), Wypemere (middle) and 

Thetford fields (bottom) 
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Figure 4-10: Comparison maps between laboratory (left) and on-line (right) 

measured soil clay content (CC) at Vicarage (top), Wypemere (middle) and 

Thetford fields (bottom) 
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Figure 4-11: Comparison maps between laboratory (left) and on-line (right) 

measured soil plasticity index (PI) at Vicarage (top), Wypemere (middle) and 

Thetford fields (bottom) 
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4.4.4.2. Full-point maps 

All data points collected with on-line vis-NIR sensor were used to develop maps 

to illustrate the spatial variation in OC, MC, CC and PI in the three study farms. 

Before kriging, exponential semivariograms were developed using VESPER 1.6 

software. Table 4-8 shows the semi-variance parameters for the studied soil 

properties. ArcGIS 10.0 was utilised to develop the final maps for MC, OC, CC 

and PI, shown for soil MC (Figure 4-12), OC (Figure 4-13), CC (Figure 4-14) 

and PI (Figure 4-15). Strong spatial similarities observable in the three fields 

between CC, PI and MC reflects the strong correlation between these 

properties. This is in line with other reports on the strong correlation between 

these properties (Nelson and Miller, 1992). In fact, the higher the CC and the 

PI, the higher is the soil water holding capacity, hence, MC. Although reports 

suggest OC to be associated with high MC, as OC increases soil absorption of 

water, this seems to be correct in Wypemere Field only, according to the full-

point maps (Figures 4-12 and 4-13).  

Table 4-8: Summary of Semi-variance data of OC, MC, CC and PI in all sites with 

Exponential Model Variograms 

Site Prop (C˳ )  (C₁) (A₁) Lag size 

(m) 

RMSEP 

   (%) 

Vicarage CC 11.43 20.51 25.85 0.371 1.966 

 MC 9.58 15.15 6.133 0.371 2.400 

 OC 0.0035 0.016 49.27 0.371 0.0022 

 PI 8.805 19.81 7.246 0.371 3.346 

Wypemere CC 9.13 24.09 25.46 0.4 2.654 

 MC 13.36 19.55 14.43 0.4 2.377 

 OC 1.011 3.611 24.58 0.4 0.3928 

 PI 7.412 22.47 0.56 0.4 1.738 

Thetford CC 24.21 44.27 27.44 0.344 2.055 

 MC 32.33 55.07 20.36 0.344 3.178 

 OC 1.839 1.912 18.15 0.344 0.277 

 PI 11.56 44.79 0.676 0.344 3.964 
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Figure 4-12: Developed maps of moisture content (MC) of Vicarage (top), 

Wypemere (middle) and Thetford fields (bottom) based on an exponential 

variogram of all online-measured points 

Lag distance (M) 

Lag distance (M) 

Lag distance (M) 
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Figure 4-13: Full-point maps of organic carbon (OC) of Vicarage (top), Wypemere 

(middle) and Thetford fields (bottom) based on an exponential variogram of all 

on-line measured points 

Lag distance (M) 

Lag distance (M) 

Lag distance (M) 
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Figure 4-14: Full-point maps of clay content (CC) of Vicarage (top), Wypemere 

(middle) and Thetford fields (bottom) based on an exponential variogram of all on-

line measured points 

Lag distance (M) 

Lag distance (M) 

Lag distance (M) 
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Figure 4-15: Full-point maps of plasticity index (PI) of Vicarage (top), Wypemere 

(middle) and Thetford fields (bottom) based on an exponential variogram of all 

on-line measured points 

Lag distance (M) 

Lag distance (M) 

Lag distance (M) 
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By comparing the maps of the soil properties measured with the on-line vis-NIR 

sensor (Figures 4-5, 4-11, 4-12, 4-13, 4-14 and 4-15) with the corresponding 

ECa maps measured with the EMI (Figures 4-2 and 4-4), visual (partial) spatial 

similarity between MC and ECa can be observed in Wypemere Field. Zones 

with high ECa associated with low MC and vice versa. In fact, the strongest 

spatial similarity of all properties under consideration including BD exists in 

Wypemere field. One explanation might be the high MC of the field, which is led 

by the high OC, CC and PI. At Vicarage Farm, no correlation was evident 

between ECa and the other soil properties measured with the vis-NIR sensor. 

At Wypemere field, both the ECa and vis-NIR maps show a clear division of the 

field into similar zones. The similarity between vis-NIR and EMI maps in 

Wypemere field encouraged the inclusion of ECa data for further analyses, 

whereas ECa was excluded for the other two fields, as weak spatial similarity 

between EMI and vis-NIR maps was observed.      

 

4.4.5 Water-Holding Capacity (WHC) Index 

The development of the WHC index may contribute to the improvement of 

placing soil moisture sensor and irrigation scheduling including automated 

variable rate irrigation system. The on-line measured OC, CC, PI, BD and ECa 

were used to determine the WHC in the study sites, as explained in Chapter 3. 

The MLR derived and normalised values of WHC (0-1) were divided into four 

equal classes, namely, low (0 - 0.25), medium (0.26 - 0.5), high (0.51 - 0.75) 

and very high (0.76 - 1). The constant values calculated by MLR are shown in 

Table 4-9 for individual fields and for all three fields data pooled together. This 

Table illustrates that the strongest impact (largest positive constant value) is for 

PI (0.76), BD (1.22) and OC (2.34) in Vicarage, Wypemere and Thetford field, 

respectively However, in Vicarage field a strong negative impact of OC on MC 

(-0.91) was observed, which is in line with full-point maps shown in in Figures 4-

15 and 4-16. Examining the MLR constant values calculated for all three field 

data confirms BD to have the largest negative correlation with MC (constant 
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value = -4.97). This data also shows OC to have the largest correlation with MC 

(1.41). It is worth noting that ECa has in most occasions the smallest correlation 

with MC, confirming the previous discussion that ECa is simultaneously affected 

by several factors (CC, BD, salinity, etc.).  

The smallest constant value in Vicarage Field was for CC (0.09), whereas a 

moderate constant value was calculated for PI. However, negative constants 

were found for OC and ECa, whereas the constant value for BD equals 0. At 

Wypemere Field with a heavy soil texture (silty clay), weak correlation between 

MC with OC and ECa was observed. After BD CC was found to be the second 

influencing factor on MC. A negligible negative influence was that of PI. A very 

high constant was calculated for OC in Thetford field. A weak correlation 

between MC with CC and PI and a negative correlation with BD is observed in 

this field with clay loam soil. It can be concluded that differences in soil texture 

in the 3 different fields are affecting the values of MLR constants. By comparing 

the constant values of the individual fields with the values from all sites (Table 

4-9) differences should be expected in output maps created using either 

individual or combined (all sites) MLR constants.   
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Table 4-9: Constant values of multiple linear regression (MLR) analysis in the       

three fields 

 Vicarage Wypemere Thetford All Sites 

MC 1 1 1 1 

OC -0.91 0.57 2.43 1.41 

CC 0.09 0.81 0.25 0.41 

PI 0.76 -0.03 0.14 -0.03 

BD 0 1.22 -1.62 -4.97 

ECa -0.03 0.13 0 -0.01 

 

Figure 4-16 shows WHC maps calculated based on constant values of MLR 

calculated constants for each individual field and for the three sites. A clear 

increase in WHC towards the southern part of the field is shown by both 

methods of WHC calculation. Both WHC maps are similar to corresponding MC, 

CC and PI maps (Figures 4-12, 4-14 and 4-15). High WHC zones correspond to 

high PI, CC and MC, which indicates that the direction followed to calculate the 

WHC in the current work is correct. Thus, the spatial variation of WHC is in line 

with the corresponding variations in MC, CC and PI, which was explained by 

the positive relationships of these properties with WHC (Nelson and Miller, 

1992). However, as indicated before when compared to CC, MC and PI maps, 

OC map show opposite spatial distribution as compared to WHC map. At 

Wypemere field, some points were with high WHC values at the northern east 

part of the field. A similar tendency was found using both methods. Both maps, 

confirms that the spatial variation in WHC is similar to that of CC, OC, MC and 

PI (Figures 4-12 to 4-15). Zones with high WHC values associate with 
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corresponding zones with high values of MC, CC, PI and OC. Although partial 

similarity can be observed between WHC maps (Figure 4-16) on one side and 

ECa (Figures 4-2 and 4-4) on the other hand, zones with high ECa (correspond 

to zones with low WHC and vice versa. The WHC maps in Thetford Field show 

three classes only, because only few points in the high WHC range of 0.75 – 1 

can be observed. Soil OC was reported to have an influence on WHC (Nelson 

and Miller, 1992). However, this is only particularly clear in Thetford and 

Wypemere fields (Figures 4-13). Similarity between WHC (Figure 4-16) and BD 

(Figure 4-5) maps can only be seen in Thetford and Wypemere fields. Zones 

with high WHC in Thetford field in particular, correspond to zones with low BD 

and vice versa.  
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Figure 4-16: Water-holding capacity (WHC) maps with four classes: low, medium, 

high and very high WHC calculated based on constants of multiple linear 

regression analysis (MLR) of individual field data (left) and all three fields data 

(right)  
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The ANN analysis with similar input data provided, in general, similar WHC 

maps to those calculated with MLR analysis. However, more detailed variation 

within a WHC category was obtained with MLR as compared to ANN. Figure 4-

17 shows the WHC maps based on the ANN tools for individual field and data 

from all three study fields. Similar spatial variations to that obtained with MLR 

(Figure 4-16) can be observed for all fields.  

Table 4-10 shows the average WHC calculated for all sites with ANN and MLR 

analyses. Except for Wypemere field, average WHC calculated with ANN 

analysis were considerably different than the corresponding ones calculated 

with MLR, with the highest differences occurred in the silty clay field at Vicarage 

field.  

 

Table 4-10: Average water holding capacity (WHC) calculated for the three study 

fields using the artificial neural network (ANN) and multiple linear regressions 

(MLR) analysis 

Site WHC (MLR 

for each site) 

WHC (MLR 

for all sites) 

WHC (ANN for 

each site) 

WHC (ANN for all 

sites) 

Vicarage 31.72 22.67 19.45 18.84 

Wypemere 28.24 33.91 28.89 38.18 

Thetford 23.39 19.31 22.12 25.49 
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Figure 4-17: Water-holding capacity (WHC) maps with four classes: low, medium, 

high and very high WHC calculated based on artificial neural network (ANN) of 

individual field data (left) and all three fields data (right) 
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Regardless of method used to drive the WHC values, zones with high WHC will 

suffer of less fluctuation of MC throughout the cropping season, as compared to 

zones with lower WHC. High WHC zones will need smaller number of soil 

moisture sensors, as compared to those with low WHC. For instance, it can be 

proposed that 4 sensor per unit area (e.g. one ha) will be sufficient for category 

1(0 - 0.25), 3 sensors for category 2 (0.25 – 0.50), 2 for category 2 (0.50 – 0.75) 

and 1 for category 4 (0.75 – 1). 

 

4.4.6 Available Water Content (AWC) 

AWC refers to the water content difference between the field capacity and the 

permanent wilting point, which is very important range for plant growth (Hedley 

et al., 2010). These authors attributed variation in MC to the difference in 

topography and to the water stored in the soil profile. The best practice, 

precision and irrigation scheduling decisions were made by them by utilising 

water stored in the soil profile. This accounted for the high-resolution spatial 

and temporal differences in soil water status. Many methods can be used to 

calculate AWC; one way is represented by Equation (3-8) (Waine et al., 2000). 

Table 4-11 shows the average calculated AWC for all study sites based on on-

line measured CC and laboratory measured sand content. The table indicates a 

small difference among different fields, with the largest value of AWC found in 

the fine heavy soil texture in Wypemere field. Also high MC, was accompanied 

with high values of AWC and WHC; the opposite was also true (i.e., low MC 

was accompanied with low AWC and WHC).  
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Table 4-11: Average AWC of the study fields calculated based on on-line 

measured clay content (CC) and laboratory measured sand content 

Site  Fineness Class MC, % AWC, % 

Vicarage 3.2 17.73 17.3 

Wypemere 4.7 30.98 19.3 

Thetford 3.6 27.28 18.4 

 

Figure 4-18 shows the AWC maps for the three study fields. The largest AWC 

calculated for all fields was around 19 %. However, the range of variation differs 

among different fields with the biggest range occurred in Vicarage field and the 

smallest occurred in Wypemere field. Partial spatial similarities can be observed 

between the AWC and WHC maps (Figures 4-17 and 4-18), explaining the 

positive correlation between AWC and WHC, which is only partially captured by 

Eqn (3-8), as only clay and sand fractions were used to calculate AWC. The 

availability of quantitative estimation of AWC will enable the calculation of water 

to be used variably for irrigation in different zones in the three fields. But, the 

calculation of AWC should also be based on other soil properties such as OC, 

BD, MC, PI and ECa, which can be done with the on-line multi-sensor platform.  

However, this requires the development of an empirical equation to calculate 

AWC based on on-line measured soil properties, which is recommended for 

future work. 
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Figure 4-18: Available water content (AWC) in Vicarage (top), Wypemere (middle) 

and Thetford fields (bottom), calculated as a function of on-line measured CC 

and laboratory measured sand content 
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To compare between AWC calculated based on average clay and sand content 

measured with laboratory reference, the PSD analysis method was used for 

each of the four WHC categories (both MLR and ANN) (0 – 0.25; 0.25 – 0.5; 

0.5 – 0.75; 0.75 – 1) with corresponding values of AWC calculated with Eqn (3-

8), based on on-line measured CC for all points and laboratory measured sand 

content for multiple points. The AWC in the three fields with different WHC 

zones was determined for ANN and MLR analysis shown in table_Apx-1.  

The accuracy of the vis-NIR prediction of AWC as compared to laboratory 

measured AWC based on WHC-category measured clay content (CC) and 

sand content with the PSD test shown in table_Apx-2. 

The accuracy of AWC was the largest in Vicarage field and the lowest in 

Thetford field (Table_Apx-2). The predicted AWC in Vicarage field was in a 

close agreement with laboratory measured values for individual (R2 = 0.01 and 

RMSE = 2.08) and multi-field MLR (R2 = 0.99 and RMSE = 2.16) analyses. A 

reasonably good accuracy was also achieved with ANN for multi-field ANN 

analysis in the same field (R2 = 0.76 and RMSE = 2.23). The reason for the 

lower accuracy of predicting AWC in Wypemere and Thetford field, as 

compared to the high accuracy of predicting in Vicarage field is attributed to the 

low CC in this field. This also necessitates the need to develop a more 

complicated model to calculate AWC as a function not only of CC and sand 

content (Eqn 3-8), but also OC, PI, BD and ECa. When this is completed a 

more accurate prediction of AWC will be possible, based on on-line measured 

soil properties. In addition, a new vis-NIR model to predict sand content will be 

needed in the future, in addition to the improvement needed to PI model 

developed in this study with 60 soil samples only. 
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5 CONCLUSIONS 

In this thesis on-line measured bulk density (BD), clay content (CC), moisture 

content (MC), organic carbon (OC), and plasticity index (PI) measured with a 

multi-sensor platform, and apparent electrical conductivity (ECa) measured 

with an electromagnetic induction (EMI) sensor were for the first time fused 

using MLR analysis and ANN to derive a new index designated as WHC. 

This aimed to optimise the position and number of soil sensors to be used to 

provide input data for variable rate irrigation. The available water content 

(AWC) was calculated using an empirical equation, as a function of on-line 

measured CC and laboratory measured sand content. This was considered 

to enable calculating the amount of water used for variable rate irrigation in 

the vegetable crop production fields. The results achieved allowed for the 

following conclusions to be drawn: 

1- The use of the on-line visible and near infrared (vis-NIR) sensor enabled 

the measurement of moisture content (MC) and organic carbon (OC) 

successfully, with good to excellent accuracy (RPD = 1.94 – 2.54). Less 

accurate measurement of CC and PI was recorded (RPD = 1.25 – 1.77); the 

latter was attributed to the small number of soil samples (60). The prediction 

accuracies of CC and PI were classified as moderate to fair model 

performance. More data are required in order to develop a robust vis-NIR 

calibration model particularly for the PI. 

2- Examining the on-line vis-NIR measurement output revealed that strong 

correlations exist between MC, CC and PI, which is in line with previous 

reports available in the literature. Although OC was reported to have a strong 

correlation with MC, this was true in two out of three fields in the current 

study. 

3- The apparent electrical conductivity (ECa) readings measured with 

Dualem 1S EMI sensor showed only minor correlation with MC and other soil 

properties during the MLR analysis. 
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4- MLR and ANN analyses enabled the calculation of the WHC successfully. 

The WHC maps were developed based on four normalised classes of low (0 

- 0.25), medium (0.25 - 0.5), high (0.5 - 0.75) and very high (0.75 - 1). These 

maps illustrated spatial similarity particularly with CC, PI and MC maps, 

although appreciable similarity with OC map was observed. Since ECa has 

only minor correlation with MC, ECa was found to have a weak effect on 

WHC values derived with MLR and ANN analyses. Spatial similarity between 

WHC and BD map was only recorded in one out of three fields. 

5- The AWC maps derived with empirical model as a function of CC and 

sand content indicated low AWC at zones where low WHC was calculated 

and vice versa.  

Therefore, the use of multi-sensor and data fusion approach was a useful 

concept for guiding the positions and density of the moisture sensor and 

optimising the amount of water used for irrigation.  

 

Future Work 

The research question chosen in this study is highly complicated and needs 

further investigation to evaluate the agronomic, environmental and economic 

consequences of adopting the multi-sensor and data fusion approach to 

derive values of WHC and AWC. Given the time frame of the current MSc 

project, it was not feasible to carry out further developments. Therefore, 

further work is needed to establish robust calibration models of the vis-NIR 

sensor for the measurement of CC and PI by accounting for more fields with 

vegetable crop production. The AWC values were derived in the current work 

using an empirical equation as a function of CC and sand content. A more 

accurate calculation of AWC might be achievable by establishing a new AWC 

model as a function not only of CC and sand content, but OC, PI, ECa and 

BD.  
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Appendix 

 

 

Figure _Apx-1: Shows the online measurement lines (black) and sampling points 

(red), shown in Wypemere field (a) and Thetford field (b) 

(a) 

(b) 
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Figure_Apx-2: Scatter plots of the on-line predicted versus laboratory measured 

moisture content (MC) (a), organic carbon (OC) (b), clay content CC (c) and 

plasticity index (d) at Vicarage Farm (top), Wypemere Farm (middle) and Thetford 

Farm (bottom) 
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Table_APX-1: Comparison between the available water content (AWC) 

calculated by Eqn. (3-8) using on-line predicted clay content (CC) and 

laboratory measured sand content with corresponding AWC values calculated 

based on average laboratory measured CC and sand content of water holding 

capacity (WHC) zones.  

Method WHC Vicarage Farm Wypemere Farm Thetford Farm 

AWC (%) 

On-line 

AWC (%) 

Lab 

AWC (%) 

On-line 

AWC (%) 

Lab 

AWC (%) 

On-line 

AWC (%) 

Lab 

MLR 0-0.25 14.54 14.87 18.83 18.74 16.89 19.09 

0.25-0.5 17.53 16.18 19.37 18.94 18.52 19.22 

0.5-0.75 18.92 16.09 19.33 18.89 19.23 19.36 

0.75-1 19.36 16.64 19.07 18.74 19.39 17.89 

All Fields 

MLR 

0-0.25 13.75 14.84 19.13 18.88 16.47 18.91 

0.25-0.5 17.47 15.93 19.38 19.01 18.43 19.17 

0.5-0.75 19.04 16.30 19.33 18.84 19.22 19.36 

0.75-1 19.38 16.62 19.14 18.71 19.39 16.19 

ANN 0-0.25 17.29 15.44 19.20 18.94 16.26 19.25 

0.25-0.5 18.90 15.38 19.39 18.97 17.39 19.20 

0.5-0.75 18.68 17.00 19.26 18.75 18.60 19.20 
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0.75-1 19.22 16.64 19.03 18.81 18.93 19.24 

All Fields 

ANN 

0-0.25 16.18 15.47 19.20 18.90 17.28 19.03 

0.25-0.5 18.06 15.66 19.35 19.01 18.65 19.28 

 0.5-0.75 19.25 16.92 19.38 18.75 19.23 19.39 

0.75-1 19.37 16.50 19.27 18.82 19.39 16.19 

 

Table_APX-2: Accuracy of the vis-NIR prediction of AWC with Eqn (3-8) as 

compared to laboratory measured AWC based on WHC-category average clay 

content (CC) and sand content measured with PSD test. Comparison is made for 

AWC calculated with artificial neural network and multiple linear regression. (MLR) 

analysis   

Method Vicarage Farm  Wypemere Farm  Thetford Farm  

R2 RPD RMSEP 

(%) 

SD 

(%) 

R2 RPD RMSEP 

(%) 

SD 

(%) 

R2 RPD RMSEP 

(%) 

SD 

(%) 

MLR 0.90 1.05 2.08 2.18 0.83 0.71 0.35 0.25 0.14 0.83 1.38 1.14 

All-MLR 0.99 1.19 2.16 2.58 0.47 0.33 0.40 0.13 0.16 0.65 2.05 1.34 

ANN 0.25 0.34 2.52 0.85 0.22 0.40 0.37 0.15 0.13 0.68 1.78 1.22 

All-ANN 0.76 0.66 2.23 1.48 0.04 0.19 0.45 0.08 0.19 0.52 1.85 0.96 

 

 


