760 research outputs found

    Virtual Reality Aided Mobile C-arm Positioning for Image-Guided Surgery

    Get PDF
    Image-guided surgery (IGS) is the minimally invasive procedure based on the pre-operative volume in conjunction with intra-operative X-ray images which are commonly captured by mobile C-arms for the confirmation of surgical outcomes. Although currently some commercial navigation systems are employed, one critical issue of such systems is the neglect regarding the radiation exposure to the patient and surgeons. In practice, when one surgical stage is finished, several X-ray images have to be acquired repeatedly by the mobile C-arm to obtain the desired image. Excessive radiation exposure may increase the risk of some complications. Therefore, it is necessary to develop a positioning system for mobile C-arms, and achieve one-time imaging to avoid the additional radiation exposure. In this dissertation, a mobile C-arm positioning system is proposed with the aid of virtual reality (VR). The surface model of patient is reconstructed by a camera mounted on the mobile C-arm. A novel registration method is proposed to align this model and pre-operative volume based on a tracker, so that surgeons can visualize the hidden anatomy directly from the outside view and determine a reference pose of C-arm. Considering the congested operating room, the C-arm is modeled as manipulator with a movable base to maneuver the image intensifier to the desired pose. In the registration procedure above, intensity-based 2D/3D registration is used to transform the pre-operative volume into the coordinate system of tracker. Although it provides a high accuracy, the small capture range hinders its clinical use due to the initial guess. To address such problem, a robust and fast initialization method is proposed based on the automatic tracking based initialization and multi-resolution estimation in frequency domain. This hardware-software integrated approach provides almost optimal transformation parameters for intensity-based registration. To determine the pose of mobile C-arm, high-quality visualization is necessary to locate the pathology in the hidden anatomy. A novel dimensionality reduction method based on sparse representation is proposed for the design of multi-dimensional transfer function in direct volume rendering. It not only achieves the similar performance to the conventional methods, but also owns the capability to deal with the large data sets

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Flexible robotic device for spinal surgery

    No full text
    Surgical robots have proliferated in recent years, with well-established benefits including: reduced patient trauma, shortened hospitalisation, and improved diagnostic accuracy and therapeutic outcome. Despite these benefits, many challenges in their development remain, including improved instrument control and ergonomics caused by rigid instrumentation and its associated fulcrum effect. Consequently, it is still extremely challenging to utilise such devices in cases that involve complex anatomical pathways such as the spinal column. The focus of this thesis is the development of a flexible robotic surgical cutting device capable of manoeuvring around the spinal column. The target application of the flexible surgical tool is the removal of cancerous tumours surrounding the spinal column, which cannot be excised completely using the straight surgical tools in use today; anterior and posterior sections of the spine must be accessible for complete tissue removal. A parallel robot platform with six degrees of freedom (6 DoFs) has been designed and fabricated to direct a flexible cutting tool to produce the necessary range of movements to reach anterior and posterior sections of the spinal column. A flexible water jet cutting system and a flexible mechanical drill, which may be assembled interchangeably with the flexible probe, have been developed and successfully tested experimentally. A model predicting the depth of cut by the water jet was developed and experimentally validated. A flexion probe that is able to guide the surgical cutting device around the spinal column has been fabricated and tested with human lumber model. Modelling and simulations show the capacity for the flexible surgical system to enable entering the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. A computer simulation with a full Graphical User Interface (GUI) was created and used to validate the system of inverse kinematic equations for the robot platform. The constraint controller and the inverse kinematics relations are both incorporated into the overall positional control structure of the robot, and have successfully established a haptic feedback controller for the 6 DoFs surgical probe, and effectively tested in vitro on spinal mock surgery. The flexible surgical system approached the surgery from the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. The flexible surgical robot removed 82% of mock cancerous tissue compared to 16% of tissue removed by the rigid tool.Open Acces

    Development of an In-Vitro Passive and Active Motion Simulator for the Investigation of Shoulder Function and Kinematics

    Get PDF
    Injuries and degenerative diseases of the shoulder are common and may relate to the joint’s complex biomechanics, which rely primarily on soft tissues to achieve stability. Despite the prevalence of these disorders, there is little information about their effects on the biomechanics of the shoulder, and a lack of evidence with which to guide clinical practice. Insight into these disorders and their treatments can be gained through in-vitro biomechanical experiments where the achieved physiologic accuracy and repeatability directly influence their efficacy and impact. This work’s rationale was that developing a simulator with greater physiologic accuracy and testing capabilities would improve the quantification of biomechanical parameters. This dissertation describes the development and validation of a simulator capable of performing passive assessments, which use experimenter manipulation, and active assessments – produced through muscle loading. Respectively, these allow the assessment of functional parameters such as stability, and kinematic/kinetic parameters including joint loading. The passive functionality enables specimen motion to be precisely controlled through independent manipulation of each rotational degree of freedom (DOF). Compared to unassisted manipulation, the system improved accuracy and repeatability of positioning the specimen (by 205% & 163%, respectively), decreased variation in DOF that are to remain constant (by 6.8°), and improved achievement of predefined endpoints (by 21%). Additionally, implementing a scapular rotation mechanism improved the physiologic accuracy of simulation. This enabled the clarification of the effect of secondary musculature on shoulder function, and the comparison of two competing clinical reconstructive procedures for shoulder instability. This was the first shoulder system to use real time kinematic feedback and PID control to produce active motion, which achieved unmatched accuracy ( These developments can be a powerful tool for increasing our understanding of the shoulder and also to provide information which can assist surgeons and improve patient outcomes

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Acute Angle Repositioning in Mobile C-Arm Using Image Processing and Deep Learning

    Get PDF
    During surgery, medical practitioners rely on the mobile C-Arm medical x-ray system (C-Arm) and its fluoroscopic functions to not only perform the surgery but also validate the outcome. Currently, technicians reposition the C-Arm arbitrarily through estimation and guesswork. In cases when the positioning and repositioning of the C-Arm are critical for surgical assessment, uncertainties in the angular position of the C-Arm components hinder surgical performance. This thesis proposes an integrated approach to automatically reposition C-Arms during critically acute movements in orthopedic surgery. Robot vision and control with deep learning are used to determine the necessary angles of rotation for desired C-Arm repositioning. More specifically, a convolutional neural network is trained to detect and classify internal bodily structures. Image generation using the fast Fourier transform and Monte Carlo simulation is included to improve the robustness of the training progression of the neural network. Matching control points between a reference x-ray image and a test x-ray image allows for the determination of the projective transformation relating the images. From the projective transformation matrix, the tilt and orbital angles of rotation of the C-Arm are calculated. Key results indicate that the proposed method is successful in repositioning mobile C-Arms to a desired position within 8.9% error for the tilt and 3.5% error for the orbit. As a result, the guesswork entailed in fine C-Arm repositioning is replaced by a better, more refined method. Ultimately, confidence in C-Arm positioning and repositioning is reinforced, and surgical performance with the C-Arm is improved

    Enhanced pre-clinical assessment of total knee replacement using computational modelling with experimental corroboration & probabilistic applications

    No full text
    Demand for Total Knee Replacement (TKR) surgery is high and rising; not just in numbers of procedures, but in the diversity of patient demographics and increase of expectations. Accordingly, greater efforts are being invested into the pre-clinical analysis of TKR designs, to improve their performance in-vivo. A wide range of experimental and computational methods are used to analyse TKR performance pre-clinically. However, direct validation of these methods and models is invariably limited by the restrictions and challenges of clinical assessment, and confounded by the high variability of results seen in-vivo.Consequently, the need exists to achieve greater synergy between different pre-clinical analysis methods. By demonstrating robust corroboration between in-silico and in-vitro testing, and both identifying & quantifying the key sources of uncertainty, greater confidence can be placed in these assessment tools. This thesis charts the development of a new generation of fast computational models for TKR test platforms, with closer collaboration with in-vitro test experts (and consequently more rigorous corroboration with experimental methods) than previously.Beginning with basic tibiofemoral simulations, the complexity of the models was progressively increased, to include in-silico wear prediction, patellofemoral & full lower limb models, rig controller-emulation, and accurate system dynamics. At each stage, the models were compared extensively with data from the literature and experimental tests results generated specifically for corroboration purposes.It is demonstrated that when used in conjunction with, and complementary to, the corresponding experimental work, these higher-integrity in-silico platforms can greatly enrich the range and quality of pre-clinical data available for decision-making in the design process, as well as understanding of the experimental platform dynamics. Further, these models are employed within a probabilistic framework to provide a statistically-quantified assessment of the input factors most influential to variability in the mechanical outcomes of TKR testing. This gives designers a much richer holistic visibility of the true system behaviour than extant 'deterministic' simulation approaches (both computational and experimental).By demonstrating the value of better corroboration and the benefit of stochastic approaches, the methods used here lay the groundwork for future advances in pre-clinical assessment of TKR. These fast, inexpensive models can complement existing approaches, and augment the information available for making better design decisions prior to clinical trials, accelerating the design process, and ultimately leading to improved TKR delivery in-vivo to meet future demands

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    The biomechanics of knees at high flexion angles before and after Total Knee Arthroplasty

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references (leaves 215-234).Total Knee Arthroplasty (TKA) was initially developed to alleviate pain in the case of severe arthritis of the knee. Restoration of knee motion has been an on going issue for the last decade. Contemporary TKAs appear to provide good knee function in the range of zero to 120⁰ of flexion for most patients. However, many patients rarely can flex tier knees beyond 120⁰ after TKA. Limited information is available regarding the biomechanics of the knee beyond 120⁰ of flexion. Little is known about the biomechanical function of the posterior cruciate ligament in cruciate retaining TKA designs and the interaction of the cam-spine mechanism in posterior-stabilized TKA designs at flexion angles greater than 120⁰. The role of soft tissue constraint at high flexion angles has not yet been explored. The objective of this work was to investigate the biomechanics of the knee at high flexion angles before and after TKA. An in vitro experimental robotic set-up was used to measure six degrees-of-freedom kinematics and soft tissue kinetics of the intact knee. Contemporary TKA designs were then tested on the same specimen using this system to examine the limitations of currently available components to achieve high knee flexion. Both passive and muscle load kinematics were examined. Femoral translation and tibial rotation of the reconstructed knees were compared with that of the intact knees from full extension to 150⁰ of flexion. The study showed that in the intact knee, the amount of posterior femoral translation increased with increasing flexion angles on the passive path and under simulated muscle loads. Similar trend was noted for all TKAs. Yet, after any TKA, the knee exhibited a reduction in posterior femoral translation relative to the intact knee. The(cont.) posterior cruciate ligament in all knees carried lower load at high flexion as compared to the peak load it carried at mid knee flexion. The engagement of the femoral cam with the polyethylene spine in a posterior-stabilized TKA was correlated with an increasing posterior femoral translation. The function of the menisci was not simulated by any of the TKAs. In all knees, the compression of the posterior soft tissue at high knee flexion was correlated with an increase of posterior femoral translation. It is proposed that posterior femoral translation and internal tibial rotation ate high knee flexion are necessary but not sufficient features in achieving high knee flexion. Factors such as posterior soft tissue compression and contact mechanics should be considered.by Ephrat Most.Sc.D
    corecore