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  During surgery, medical practitioners rely on the mobile C-Arm medical x-ray 

system (C-Arm) and its fluoroscopic functions to not only perform the surgery but also 

validate the outcome.  Currently, technicians reposition the C-Arm arbitrarily through 

estimation and guesswork.  In cases when the positioning and repositioning of the C-Arm 

are critical for surgical assessment, uncertainties in the angular position of the C-Arm 

components hinder surgical performance.  This thesis proposes an integrated approach to 

automatically reposition C-Arms during critically acute movements in orthopedic surgery.  

Robot vision and control with deep learning are used to determine the necessary angles of 

rotation for desired C-Arm repositioning.  Novelty lies within the integration of the 

methods and their application to the C-Arm for the purpose of accurate repositioning.  

More specifically, a convolutional neural network is trained to detect and classify internal 

bodily structures.  Image generation using the fast Fourier transform and Monte Carlo 

simulation is included to improve the robustness of the training progression of the neural 

network. With the incorporation of image generation, classification of the chest, neck, and 

leg were improved by 13.75%, 10.00%, and 11.67%, respectively.  Image processing and 

feature matching techniques are used to couple the output of the neural network with 

control points.  Matching control points between a reference x-ray image and a test x-ray 

image allows for the determination of the projective transformation relating the images.  

From the projective transformation matrix, the tilt and orbital angles of rotation of the C-

Arm are calculated.  This information is then sent to the kinematic model of the C-Arm so 

that it may reposition itself back to the desired reference position based on the input angles.  
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Overall, the approaching method links several different procedures into one large system 

that governs C-Arm movements.  The mode of the overarching methodology innovatively 

applies image processing with convolutional neural networks to extract rotation matrices 

that may be used for assessing the orientation of the C-Arm with respect to the frame of 

the reference image.  The originality of the proposition is presented in a way such that 

methods are not limited to the application of C-Arm repositioning.  In fact, any robotic 

system associated with automatic repositioning of its linkages to a desired orientation is 

compatible to the modes outlined in this thesis.  For validation, an experiment is run on a 

mobile C-Arm Mini prototype to justify the cogency of the integrated approach.  When 

rotating the tilt and orbital linkages of the C-Arm Mini prototype by 5°  and 8° , 

respectively, from the origin, the proposed method repositions the linkages by 5.4° and 

8.3°, resulting in an overshoot of nearly 0.5°.  Key results indicate that the proposed 

method is successful in repositioning mobile C-Arms to a desired position within 8.9% 

error for the tilt and 3.5% error for the orbit.  Comparisons between the spatial coordinates 

before and after repositioning proves a positional error of only 0.08 inches along the y-

coordinate of the global coordinate system; no errors existed for the x- and z-coordinates 

of the positions.  As a result, the guesswork entailed in fine C-Arm repositioning is replaced 

by a better, more refined method.  Ultimately, confidence in C-Arm positioning and 

repositioning is reinforced, and surgical performance with the C-Arm is improved.  This 

includes minimizing operation time, reducing operation costs, eliminating unwanted 

exposure to radiation from multiple x-ray images, curtailing the risk of infection for the 

patient, and reducing the uncertainties entailed in the repositioning of mobile C-Arms.
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Chapter 1 

Introduction 

1.1 Background/Motivation 

  The mobile C-Arm medical x-ray imaging system (C-Arm) is a radiographic 

machine that captures fluoroscopic x-ray images of patients during surgery.  The name 

originates from the device’s physical appearance in which a large “C” shaped linkage 

connects the x-ray source generator to an image intensifier or flat-panel detector [1].  

During surgery, operating subjects rest on a flatbed positioned between the ends of the C-

Arm, making it possible for surgeons to view medical x-ray images of patients in real time.  

C-Arms found in operating rooms in hospitals across the United States and parts of Europe 

are most commonly equipped with five degrees of freedom. 

  The two translational degrees of freedom account for the up-down and in-out 

movements; the remaining three degrees of freedom constitute the rotational movements, 

yaw, roll, and pitch, of the C-Arm.  In context to C-Arm imaging systems, the yaw, roll, 

and pitch are colloquially referred to as the wig-wag, tilt, and orbit, respectively, as shown 

in Fig 1.  Because of its remarkable mobility, the C-Arm has become a major medical 

device and a key contributor to successful operations. 

   

 

Figure 1.  Schematic of C-Arm Components and Their Movements [2] 

 
  However, C-Arms still lack capability in terms of fine auto-repositioning.  

Interestingly enough, the mobile C-Arm itself has no issues in executing a movement with 
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exactness.  Rather, it is the movement approximations made by the C-Arm technician that 

prevent accurate repositioning.  Especially in surgeries requiring subtle movements, the 

lack of precision in current C-Arm repositioning methods often leaves surgeons 

exasperated.  Attempts have been made to succor C-Arm technicians, as discussed in 

upcoming sections, but no foolproof method has yet been proposed. 

 
1.2 Problem Statement 

  With as much success as the C-Arm has had, the system, however, is in no shape 

perfect.  Plenty of room for improvements exists.  For instance, C-Arms are still 

maneuvered manually during surgery and require a skilled x-ray technician to operate. The 

manual maneuvering of the C-Arm is sufficient most of the time; however, complications 

with positioning accuracies arise during sensitive procedures.  Certain surgical procedures 

require large equipment and the interaction of multiple operators. In those surgeries where 

large equipment is used, the C-Arm is rolled off to the side to allow for more room.  The 

problem emerges when the C-Arm must be repositioned back to its original position with 

respect to the patient.  Placing the C-Arm back to its exact position is vital for before-and-

after x-ray image comparisons, validation of the surgical procedures, and diagnosis of 

remaining medical conditions.  This repositioning of the C-Arm oftentimes becomes 

difficult, inaccurate, or a repetitive process.  At times, multiple x-rays are taken to validate 

the repositioning of the C-Arm, exposing patients, surgeons, and x-ray technicians to 

unnecessary radiation [3].  Furthermore, for every minute that passes because of the 

repositioning the C-Arm, the cost of surgery will increase.  The cost includes the payment 

of the x-ray technician and rent of the operation room and equipment.  In addition to the 

cost, the longer a patient is exposed to the environment through surgery, the risk of 

infection increases for that person, meaning that if the repositioning time of the C-Arm was 

reduced, the risk of infection is also reduced in correlation. 

 

1.3 Scope/Framework 

  The objective of this thesis is to develop a method for automatic and autonomous 

repositioning of acute movements in current C-Arms.  More specifically, robot vision and 

deep learning algorithms will be applied to the x-ray images and coupled to a kinematic 
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model of the C-Arm system for relatively small albeit precise movements.  With a physical 

prototype, referred to as the C-Arm Mini (CAM), a complete kinematic model for the 

system was derived based on the actual mechanics, boundaries, and dimensions of the 

model.  To reposition the C-Arm back to a previous location, Vicon motion capture 

technology was used.  A local coordinate system was assigned to the C-Arm, and a global 

coordinate system was assigned to the operation flatbed, allowing the orientation of the C-

Arm to be referenced to the flatbed.  This will take care of the up-down, in-out translations 

and the wig-wag, tilt and orbital rotations as part of the main repositioning process (macro-

repositioning).  This thesis will focus on improving the final rotation movements, the tilt 

and orbital rotations 𝜃  and 𝜃  as shown in Fig. 2, to result in a much more accurate 

repositioning process (micro-repositioning).  Focus is placed on what the desired input 

angles should be, how to detect them, and how to match them to reference points/angles 

through image processing and deep learning. 

 

  

          (a)         (b) 

Figure 2.  Angles of Rotation (a) Tilt – Front View (b) Orbit – Side View 

 
  Figure 3 details the scope of this thesis with respect to the overall concept.  The 

region highlighted by the orange bounds entails the micro-repositioning approach used to 

acutely move the C-Arm’s tilt and orbital rotations for accurate repositioning.  The region 
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encompassed by the green bounds represents the initial and quicker macro-repositioning 

movements.  The processes shaded by the blue bounds is the portion of the overall concept 

that is shared between the macro- and micro-repositioning approaches.  The shared 

processes include the kinematic model and physical repositioning of the C-Arm. The 

macro-repositioning approach uses markers and reflected infra-red (IR) signals with a 

Vicon Motion Capture system to reposition a virtual C-Arm model in synchronization with 

the physical C-Arm.  This research is focused solely on the micro-repositioning approach 

in which difference between x-ray image orientations are used to make fine rotations in the 

tilt and orbit linkages. Again, the general process flow of the micro-repositioning used in 

this thesis is demonstrated within the orange bounds of Fig. 3. 

 

 

Figure 3.  The Scope of this Study (Orange Bounds) in Context to the Overall Concept 
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  The outcome of this work will improve the overall workings of C-Arms in the 

operation room; this includes minimizing time spent on maneuvering the C-Arm, 

eliminating the need to take multiple x-ray images to check for correct alignment, reducing 

the risk of infection, improving the accuracy of C-Arm repositioning, and decreasing the 

overall cost of operation. 

 
1.4 Outline of Thesis 

  The thesis is structured as follows:  In Chapter One, an introduction to the study 

was provided.  In the introduction, the background, motivation, problem statement, and 

scope of the study were given.  Chapter Two describes the literature review; current 

research on the C-Arm repositioning is examined with respect to image processing and 

artificial intelligence methods.  The procedures and methodology of the study are detailed 

in Chapter Three.  More specifically, the applications and methods of a convolutional 

neural network (CNN), supervised learning, network training, image generation, projective 

transformations, and point feature matching are all explained.  The importance of camera 

calibration and the extraction method of the tilt and orbital rotation angles is also provided 

in Chapter Three.  Key results are tabulated and discussed in Chapter Four.  Chapter Four 

also discusses the results of an experimental case study using the CAM.  To conclude the 

thesis, Chapter Five delivers a brief summary, discusses the implications of the study, and 

assigns future work and other possible implementations.  
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Chapter 2 

Literature Review 

2.1 Image Processing 

  Augmented reality is a major research topic in image-guided C-Arm surgery that 

focuses heavily on image processing.  Computer vision and image processing techniques 

are used extensively with intraoperative x-ray images to visualize bone configurations for 

orthopedic, trauma interventive, and other such surgeries [4].  In these systems, the x-ray 

image source and video camera are paralleled.  The unison of both image acquisition 

system synchronizes the footage that they collect in the time domain.  Using homography 

and camera calibration processes, the positional overlay of both frames can be corrected in 

the space domain [5].  In other words, this method ensures that both the video images and 

x-ray images are in near-perfect alignment.  The workings of the augmented reality method 

can be translated over and applied to the C-Arm for the purpose of automatic repositioning. 

  Image processing techniques such as image registration is also common in imaged-

guided C-Arm systems.  Similar to the methods used in augmented reality-based platforms, 

x-ray images are realigned based on pre-operative fluoroscopic calibrations and pose 

transformations [6].  Reference pins of known orientation are used to define the pose of 

the surgical object, typically a bone fragment.  The change in pin orientation can then be 

used to calculate the equivalent transformation of the x-ray image orientation.  Uploading 

this information into software for 3D projection contour modeling allows the 3D model to 

be registered (realigned) with the 2D x-ray image.  The registered image allows the surgeon 

to see more detail and, thus, improving surgical outcome.  However, this method requires 

external parameters such as the pin and knowledge of its orientation for every registration 

attempt.  Registering images without the need of an external reference pin would make 

registration processes less demanding and improve the workflow. 

  Researches in academia have attempted to address a few of the persisting issues 

that exist with repositioning the C-Arm during operations.  The current literature proposes 

a few developing methods of C-Arm repositioning that focus on automatic movement.  

Imaging methods have been developed for areas of interest that lie within the border of the 

radiographs.  In one of these methods, an image can be re-centered by choosing a new 

location to be the image center; with the user’s input, the edge-lying area of interest is 
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moved to the center of the image by automatic repositioning of the C-Arm [7].  This 

method of automated positioning and repositioning has been made possible through image 

processing; however, this proposed repositioning method is not fully automatic as it 

requires user input for determination of the desired region.  In other words, as it currently 

stands, the C-Arm is capable of moving on its own, but it still needs an external input from 

a technician to approximate or pinpoint the desired center point. 

  Developments have been made to where the C-Arm may be maneuvered more 

accurately using three-dimensional coordinate systems.  An initial reference element is 

used in the coordinate system to pinpoint the current location of the C-Arm.  The 

orientation deviation between the reference element and the location point is measured 

using markers and computerization.  Using an intraoperative approach, a motorized exact 

positioning unit is then capable of positioning the C-Arm based on directional data 

provided by the system, after which the surgeon assesses the results of the C-Arm 

repositioning [8].  Although such an approach fairs well in determining the current position 

of the C-Arm and how it should move to reposition to a desired point, the repositioning 

itself is relies on a global positioning system that makes acute movements and small 

deviations difficult to process.  Because of this, the validity of the reposition of the C-Arm 

is largely based on the satisfaction of the surgeon. 

  The current literature has also ventured into the possibility of incorporating image 

processing applications to assist in patient repositioning.  The method involves taking a 

reference x-ray image of the patient body part of surgical interest, mapping the x-ray image 

to reconstruct a radiograph from three-dimensional scanning data, superimposing the 

generated image with a differently orientated x-ray image, detecting the positional error 

using specific landmarks compatible to both images, and relocating the patient based off 

the detected positional error [9].  With this process, the C-Arm’s rotational and 

translational components are assumed to be locked and unchanging, and only the patient 

and flatbed are the variable components.  This can be problematic in situations where the 

C-Arm’s orbit and tilt rotations must be moved to unhinge the C-Arm from the patient and 

flatbed.  Unless an automated flatbed capable of tilting the patient at various angles is used, 

no positioning of the patient or flatbed can be made to exactly reposition the patient back 

to the reference orientation.  Moreover, the positioning method presented by the current 
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literature still relies on manual maneuvering of the moving object, which is the patient and 

flatbed in this case. 

  Considerable efforts have been made to improve the repositioning capabilities of 

the C-Arm by optimizing the use of the computed tomography and C-Arm imaging with 

external tracking systems. To alleviate some of the drawbacks faced by these systems, a 

variety of Camera-Augmented Mobile C-Arm solutions have been proposed to calibrate 

the C-Arm’s projection geometry online by attaching a camera and image intensifier and 

detector to the mobile C-Arm. The integrated Camera-Augmented Mobile C-Arm system 

makes it possible to enable intraoperative navigation without an external tracking system; 

however, additional procedures are required for the setup of the Camera-Augmented 

Mobile C-Arm as well as its associated calibrations, which translates over to a need for 

additional time and professional skills [10] [11]. 

  Distortions are also present in both optical video camera and x-ray imaging in some 

of the current developments. These systems require calibration at every orientation for 

more exact distortion rectifications. Distortions requiring corrections not as urgently 

depend on models and precomputed look-up tables [10]. In addition, these systems lead to 

inaccuracy due to a slightly reduced distance between the radiation source and image 

intensifier, creating more problems that require further handling by well-trained operators 

for additional calibration processes.  Although these methods improve on the C-Arm 

repositioning accuracy, they are ultimately tradeoffs for additional operation time and more 

knowledgeable and experienced technicians.  To overcome these issues, this thesis uses 

the calibration parameters of the C-Arm x-ray image capturing system to account for 

unwarranted distortions.  Additionally, the proposed solution needs to be executed only 

once per C-Arm. 

 

2.2 Artificial Intelligence in Medical Imaging 

  Recent advancements in artificial intelligence have also made their way into the 

realm of operating rooms, specifically with x-ray imaging.  The current literature presents 

methods of detecting a variety of diseases through artificial intelligence radiographic 

models.  Tuberculosis, pneumonia, cancer, and other medical conditions can be detected 

and classified with deep learning neural networks as accurately as expert radiologists [12].  
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Deep learning radiographic models are also in the works of determining the likelihood of 

cancer development in the body and predicting the probability of its spread.  Such models 

make use databases composed of thousands of x-ray images.  However, these studies have 

focused solely on the chest for potential diseases; the potential to apply these models for 

the purpose of C-Arm movement has not yet been investigated.  This may be due to some 

of the limitations that come with deep learning.  For instance, open access to large 

databases of real x-ray images is difficult to come by.  Although there are some open 

sources, a vast majority x-ray images are locked away in hospitals due to privacy rights 

and other legal jurisdiction.  Not only this but access to multiple areas of the body, not just 

the chest, is needed to create a well-rounded deep learning algorithm.  Developing further 

into these deep learning models, specifically detection and classification, can be beneficial 

for determining points of interest within an x-ray image. 

  Researchers, however, have been able to use deep learning for the detection of body 

parts during orthopedic procedures.  In spinal surgery, detection of lumbar vertebrae in C-

Arm x-ray images have made it possible for surgeons to find and detail the area of surgical 

interest more accurately [13].  Even in abnormal cases where pathological conditions and 

uncertain, multi-angle image views are involved, the lumbar vertebrae detection of the deep 

learning algorithm highly improves surgical confidence.  To automatically detect the 

lumbar vertebrae, a CNN was modeled to indicate the location of the region of surgical 

interest within a C-Arm x-ray image.  The model utilizes a two-stage approach: pre-

processing of the training data and fusion of features to combine vertebrae shape and 

texture information for detection improvements.  In this case, detection was the only goal, 

and the possibility of incorporating the work for C-Arm repositioning was not considered. 

  Deep learning models with CNN have also been used to address challenges faced 

in C-Arm surgeries involving pedicle screw implants [14].  The neural network categorizes 

regions within x-ray images into the screw head, screw shaft, and background.  Once the 

pedicle screws are detected, geometric relationships were used to map the transformation 

needed to position the screw.  A biplanar setup correlates the object of interest and acquired 

x-ray images to the preoperative and global coordinate frames.  With this relationship, the 

major axes of the pose estimated screws are compared against each other.  The deviation 

between the axes are calculated to provide an error estimation between their respective 



10 
 

orientations.  The locations of the screw tips are also compared to estimate their difference.  

Overall, the CNN detected and categorized the pedicle screw shaft and screw head with 

84.5% and 67.1% accuracy, respectively.  The deviation errors for the tunnel axis angle 

and screw tip locations ranged from 1° to 3° and 1𝑚𝑚 to 2𝑚𝑚, respectively [14].  The 

methods and procedures conducted by this research can be represented as a leitmotif to the 

work presented in this thesis, making it an appealing source for the automatic repositioning 

of the C-Arm. 

  The use of CNNs for the purpose of image registration in x-rays becomes obvious 

when the workings of CNNs are studied.  By using pixel spatial correlations, CNNs 

correlate each pixel to its neighboring pixels [15].  The closer two pixels are on the image 

plane, the more highly correlated will those pixels be.  As more correlations are formed, 

the number of neurons and parameters relating the correlations are increased.  Depending 

on the image size, the number of neurons and parameters quickly multiply over the training 

progression.  With hidden layers added in between, exponential overflow of neuron 

connections occurs, making the CNN impossible large to assess.  To overcome this issue, 

a single parameter may be assigned to a multitude of neurons as through grouping.  As a 

result, every successive group of neurons will reduce the number of parameters by a set 

factor and, thus, preventing unreasonable deepness in the network layers. 

  Improved variations of CNNs have also been developed by researchers working on 

deep learning networks.  When labeled training data is scarce, a Regions with CNN features 

(R-CNN) can be administered to maintain quality results even with minimal training data.  

R-CNNs capitalize on supervised pre-training and domain-specific fine-tuning to gauge 

the training process towards a desired end result [16].  Instead of computing CNN features 

on an entire x-ray image, region proposals are extracted at the initial stages of the learning 

process to filter out the background and other likely sources of noise.  The R-CNN then 

performs convolution and gradient descent analysis on the proposed regions only.  

Ultimately, R-CNNs facilitate network training of relatively small training data sets. 

  Artificially intelligence has also proven itself to be useful in the augmented reality 

platform.  With the use of a Kinect sensor, machine learning is used to improve the 

augmented reality scene in such a way that surgeons are able to better perceive depth and 

overall scene understanding [17].  The Kinect sensor provides the machine learning model 
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information such as the color space, depth, and x-ray image data for training.  With the 

help of image processing and computer vision, the information provided to the machine 

learning model can be used to produce background modeling, object identification, and 

determination of anatomy in x-ray images.  The results were coupled into the augmented 

reality system to render a more realistic virtual model.  Experimental trials were also 

performed to collect qualitative results from expert surgeons and 4th year medical students.  

In the end, the machine learning-based augmented reality system presented promising 

results for mitigating confusion and challenges in surgery simulations. 

 

2.3 Fast Fourier Transform and Monte Carlo Simulation 

  The training of CNNs is an intensive process requiring extensive amounts of 

training data.  In context to this thesis, a plethora of x-ray images are needed to adequately 

train a CNN for object detection of orthopedic structures.  Due to the limitations of this 

research, x-ray images were generated from pre-existing x-ray images and incorporated 

into the training data set of the CNN.  Using the fast Fourier transform (FFT) coupled with 

the Monte Carlo simulation (MCS), image generation is made possible.  Therefore, a 

thorough review of FFT with MCS is proposed as a preliminary study. 

  With exponentially-growing technological advancements, images are becoming 

larger and more refined as image data increases in capacity.  With larger image data files, 

image processing and image handling is, in turn, becoming more and more complex and 

exhaustive.  This not only impedes on the viability of image processing, but it also 

increases processing time.  Additionally, the transfer of image data from computer sources 

to server system destinations via electronic modes of transference is becoming growingly 

expensive [18].  Fortunately, the development of FFT has made it possible to convert data 

functions into integrals of wave functions.  Represented as sine and cosine composites, the 

FFT allows for easier manipulation and transfer of structured data, including digitized x-

ray images.  Once processed in the frequency domain, the inverse FFT may be applied to 

revert the data back to its original form without losing any unwarranted information [19].  

Currently, FFT has been used in image processing for a variety of goals: contrast 

enhancement, edge detection, sharpening, linear and non-linear filtering, zooming, noise 

removal, etc. [20]. 
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  In order to create unique images, MCS was implemented for randomization of the 

image data.  Researches who have already made endeavors with MCS have used its 

methods to address quantitative problems.  For instance, MCS has been used to generate 

random objects and process for the observation of system behaviors in economics, to 

generate repeated samples for the estimation of numerical quantities in science 

applications, and to optimize complicated engineering problem solutions through 

randomized algorithms [21]. 

 

2.4 Forward and Inverse Kinematic Models 

  Multiple kinematic representations of several different C-Arm models have been 

presented in the current literature.  Some of the most common methods of establishing a 

kinematic model involve the use of a geometric approach to define an exact mathematical 

configuration.  In such methods, the C-Arm is modeled as a robotic arm, and an analytical 

solution to the inverse kinematics is developed [22].  The forward kinematic model can 

also be developed using the Denavit-Hartenberg parametric scheme [23].  Inverse 

kinematic models have been established through closed-form solutions to place the C-Arm 

fluoroscope at a desired position [24] [25]. 

  Radiation exposure is another motive for developing kinematic models for C-Arms.  

As discussed before, unwarranted radiation is a major problem in extensive and 

challenging interventional procedures.  Both patient and staff are forced to endure the 

damaging effects of prolonged exposure to radiation.  Because of this, pose optimization 

methods have been introduced to improve the efficiency of C-Arm movement during trying 

operations [26].  General solutions for fluoroscopic C-Arms have also been formulated 

through joint parameterization of robotized C-Arms [25].   

  Researchers at the University of Texas at Tyler have already designed, built, and 

manufactured a mobile prototype of an autonomous CAM capable of robotic movements 

in five degrees of freedom.  With their partnership, the CAM will be used for experimental 

purposes of the methods proposed in this thesis.  A full kinematic model of the CAM was 

also developed to establish a reliable function relating the input parameters, such as 

positions or angles, to the inverse kinematic model.  The actual movements of the C-Arm 

will be performed using the forward kinematic model.  
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Chapter 3 

Methodology 

3.1 Overview 

  Before diving into the details of the methods and procedures, a swift rundown of 

the methodology is issued to provide a general understanding of the organization and order 

of the approach as a whole.  A comprehensive overview of the overall workings and 

procedures of the methodology is described in Fig. 4. 

 

 

Figure 4.  Flow Chart of the Overarching Approach  

  

  Following the schematic in Fig. 4, a reference and test x-ray image are both sent to 

a deep learning neural network for object (bone) detection where the points defining the 

region of interest of the detected object are found.  It should be noted that the neural 
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network uses generated images, using fast Fourier transform (FFT) and Monte Carlo 

simulation (MCS), in its training database to improve detection and classification 

accuracies.  The reference and test x-ray images are also imported to a feature matching 

algorithm where similar points between the two x-ray images are linked.  All of the 

extracted points from the reference image are correlated to all of the extracted points from 

the test image to create a projective transformation matrix.  The resulting transformation 

matrix can then be used to register, or realign, the skewed test image.  The transformation 

matrix can also be used to extract the angles necessary for rotating the tilt and orbital 

rotations of the C-Arm such that it automatically repositions itself to the desired 

orientation. 

 

3.2 Deep Learning 

  Deep learning applications with MATLAB were used to create a training network 

capable of object detection [27]. A CNN is one of the most popular algorithms for deep 

learning with images and videos due to its high efficiency and accuracy in featuring 

objects.  Because of this, a CNN was used in performing feature detection of various x-ray 

images depicting bodily structures such as the neck, chest, and leg. An overview of the 

fundamental components driving a standard CNN is summarized in Fig. 5.  As shown in 

the figure, CNN’s are composed of several stages, or layers, that power the detection and 

classification processes.  In the following subsections, details of each of the layers are 

discussed in application to object detection in digital x-ray images. 

 

 

Figure 5.  Convolutional Neural Network [28] 
 

3.2.1 Convolutional Neural Network 

  CNNs work by matching smaller parts of images, called features, to one another. 

Using image features rather than entire images is more beneficial for a number of reasons.  
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For one, computers are literal in their image matching capabilities, which means that even 

the slightest difference between two images will be seen as a mismatch, regardless of how 

similar the images may be.  For instance, two identical images cannot be matched if one of 

them is altered in the slightest.  Since the likelihood that the entirety of an image’s pixel 

intensity matrix matches exactly with that of another image is extremely low, object 

detection becomes practically impossible.  However, matching image features is far more 

likely to result in a match since only small but relevant components are considered.  This 

makes the use of features a much more reliable method for detecting objects within images. 

  Examples of these features are mini-images that can vary in size anywhere from 

3 × 3 pixels up to any odd-numbered square image.  These features are typically basic 

geometric shapes such as edges, lines, squares, rectangles, circles, or any other simple yet 

commonly found shape; Fig. 6 is an example of two different features.  For simplicity, 

black, white and gray pixels were used to represent the pixel intensity of the feature. 

 

   
(a)    (b) 

Figure 6.  Features Used for Vertical Edge Detection (a) Background to Bone (b) Bone to 
Background 

 
 
  The features in Fig. 6 can be used to determine whether an image portrays an edge 

of a leg bone.  This can be done through image filtering where the features are passed over 

a test image to estimate the likelihood that the image does in fact depict a leg bone.  Unlike 

strict matching where the end result is either a perfect match or no match at all, filtering 

allows the CNN to calculate the probability of a match.  Filtering works by lining up the 

feature and the test image, multiplying each image pixel by the corresponding feature pixel, 

adding up them all up, and dividing by the total number of pixels in the feature.  To 

demonstrate this process, the feature in Fig. 6 (a) will be used to filter the test image in Fig. 

7. 



16 
 

 

Figure 7.  Test Image Portraying X-ray of Legs 

 
  For this example, the center of the feature is placed over the third column and the 

third row of the test image.  The 3 × 3 area of the test image that is overlapped with the 

feature image will be referred to as the image patch, shown as the green, yellow, and red 

boxes in Fig. 8.  The corresponding pixel values of the feature are then multiplied by the 

pixel values of the image patch.  The top left pixel value of the feature is multiplied by the 

top left pixel value of the image patch.  Then, the top center pixel value of the feature is 

multiplied by the top center pixel value of the image patch.  The same is done to the 

remaining pixels of the feature and image patch; step by step and pixel by pixel, they are 

all multiplied by each other. 

 

 

Figure 8.  Filtering Process 
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  The results of each of the products are then summed up and divided by the total 

number of pixels in the feature.  In other words, the average of the results is taken so that 

a single value may be used to represent the overall match between the feature and the image 

patch.  Since the image patch bordered in green is nearly identical to the feature, it gets a 

high match score where 1 is an exact match and −1 is no match.  The yellow has a slightly 

lower match score, and the red lower still.  This average value will then be placed in a new 

blank image.  The location of the average value in the blank image must be the same as the 

location of the center pixel of the image patch with respect to the whole test image.  

Inserting it into the newly constructed image results in Fig. 9 where the boxes represent 

the size of the image patch and feature.  In order to make this insertion, the feature image 

size should have a pixel center.  For this reason, the size of the feature should be an odd-

numbered square image.  Although it is possible to follow through with the filtering process 

using even-number sized features, the center point of these features is unclear, and 

placement of the filtered results becomes indistinct.  With odd-numbered square features, 

however, all of the confusion is cleared by a definite center point. 

 

 

Figure 9.  Filtering Outcome 
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  The feature is continuously moved to other locations and overlapped with new areas 

on the test image, creating newer image patches to be matched with the feature.  The 

filtering process is repeated with the new image patches, and new values are inserted into 

the blank image.  By moving the filter around to different places in the test image, different 

values are found that indicate how well a feature is expressed at a certain position [29] 

[30].  After covering the entirety of the test image and all possible positions with the 

feature, Fig 9. will transform into a map of where the feature occurs most predominantly.  

Applying the filtering processes over the whole image results in the repeated application 

of the feature over and over again.  This is referred to as convolution.  Figure 10 illustrates 

the convolutional map of the feature from Fig. 6 (a). 

 

 

Figure 10.  Convolutional Map 

 
  In convolution, one image becomes a stack of filtered images (convolutional maps), 

and there are as many filtered images as there are filters (features).  After convolution, the 

output goes through a normalization process.  In CNNs, normalization is performed by a 

rectified linear units (ReLU) layer.  This type of layer performs a simple threshold 

operation, where any input value less than zero will be set to zero [27].  Such an operation 

preserves the mathematical development and prevents disruptions from perpetuating the 
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network.  Compared to other activation functions, the ReLU activation function performs 

substantially better for deep learning applications despite of its simplicity and lack of 

linearity and differentiability [31].  All convolutional maps are passed through the ReLU 

filter. 

  The third layer is called the max pooling layer, and it shrinks the output image stack 

of the ReLU layer.  A square window, typically sized at 2 × 2 or 3 × 3, is defined and 

paced over the rectified convolutional map in strides.  The stride determines the number of 

pixels that the window steps down and to the right as it paces through the filtered image.  

With each step, the maximum value within the window is tracked and used to create a 

smaller image.  Figure 11 demonstrates the max pooling process where the green box is 

the window location before the first stride and the red box is the window location after the 

first stride. 

 

 

Figure 11.  Max Pooling Layer Filtration of Rectified Convolutional Map 

 
  From the Fig. 11, it can be seen that max pooling generates a smaller version of the 

input image.  The detected features, such as the white diagonal line, are preserved whilst 

minimizing the total number of pixels used.  In other words, this layer reduces the size of 

the input image without losing any of the essential information.  By choosing the greatest 



20 
 

value within the window, areas on the original image with the greatest coincidence of 

matching the feature are kept paramount, and since it does not matter where in the window 

the maximum value occurs, sensitivity to position is lessened.  This means that a particular 

feature will still be detected regardless if it is translated slighted to one side or if it is 

partially rotated.  Efficiency is also improved especially when considering large images 

and even larger data sets, as is common for neural networks, that would otherwise require 

undesirable processing time.  All rectified convolutional maps are passed through the max 

pooling layer. 

  The initial layers of the CNN can be represented by the dimensions, color channels, 

and content of the original images; this is equivalent to the initial input of the entire 

network.  The middle layers of the CNN can be summarized by a combination of the 

convolutional, ReLU, and max pooling layers.  More specifically, three consecutive sets 

of convolutional, ReLU, and max pooling layers make up the middle layers.  As shown in 

Fig. 12, the initial layers are passed through a convolutional layer whose output then 

becomes the input of a ReLU layer that sends its output to a max pooling layer.  The output 

of the first max pooling layer then becomes the input of second convolutional layer.  The 

data continues through all three sets until the output of the third and final max pooling is 

connected to the final layers. 

 

 

Figure 12.  Deep Stacking 
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  It should be noted that any combination and any number of layers can be used to 

create a CNN; however, most standard networks require at least a convolutional, ReLU, 

and max pooling layer.  The output of the middle layers will be small matrices, and the 

number of matrices will depend on the number of features used for filtering.  For 

visualization, they can be rearranged into a single column that lists the feature values.  In 

the final layers, sets of fully-connected layers take the feature value lists and convert them 

into lists of indicators.  The strength of these indicators depends on how strongly a value 

predicts the features, and they are ultimately used to determine what category is being 

depicted by an image.  Figuratively speaking, a vote is casted by each of the values in the 

list, and the category with the highest overall vote is said to be what the image most likely 

portrays.  Figure 13 is an example of how the fully-connected layers work, where the 

orange nodes symbolize the neurons within the hidden layers of the CNN. 

 

 

Figure 13.  Fully-Connected Layer 

 
  Generally, multiple sets of fully-connected layers are incorporated.  A fully-

connected layer multiplies the input by a matrix and then adds a bias vector [27].  The 

multiplication matrix determines the weight of each vote, and it is symbolized by the 

thickness of the lines, or the strength of the connections, between the neurons.  The bias 
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vector is responsible for determining how far off the predictions are from the input values, 

and it indicates whether a neuron tends to be active or inactive.  A high bias correlates to 

faster learning, but as a result, they have lower predictivity on complex problems.  On the 

other hand, a low bias uses more assumptions to increase flexibility and to improve 

predictive performance as a trade-off for a slower and more complex system.  Together, 

the weights and biases function so that not all votes are casted equally; some are more 

partial to vote one way while others tend to vote another way.  The actual values that are 

used for the weights, biases, and what the features should be are all governed by a process 

called gradient decent which will be covered in more detail in the section 3.2.3 Network 

Training. 

 

3.2.2 Supervised Learning 

  Supervised learning is a form of deep learning that uses assisted classification to 

develop sensible conclusions.  Unlike unsupervised learning which finds hidden structure 

within unlabeled data, supervised learning uses a pre-labeled training data set.  The training 

data is equipped with both the input and the desired output of each classification.  Each 

input image is paired with a constituting label, which is also referred to as the supervisory 

signal, so that the learning algorithm can formulate an inferred function.  The inferred 

function demonstrates the intended relationship between the input and desired output by 

the means of function approximation through a set of fundamental assumptions.  These 

assumptions state that the inferred function is compliant and consistent with the data, 

allowing for generalizations to be made.  In other words, deep learning algorithms induct 

generalizations based on details and specifics that are provided to it.  Also known as 

inductive bias, it is through the learning process of these generalizations that the algorithm 

is capable of making valid predictions from completely foreign inputs. 

  Figure 14 reveals x-ray input images and their pre-labeled output that is used as 

part of the training data set.  The entirety of the x-ray image is used as the input, but only 

the user-defined region (yellow) is analyzed for features to be used for filtering.  Anything 

outside of the bounded yellow box is ignored while all of the information within it is 

associated to the label.  It is here where the CNN processes are conducted to construct an 

inferred function that links the data image input to the label output. 
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Figure 14.  Pre-Labeled Input Images 

 
  As mentioned before, the yellow boxes encompassing the area of interest are 

predetermined by the user, so for each image, the size and location of the box as well as 

the correct label must be defined and placed into a matrix for proper grouping and indexing.  

Due to the limited resources and lack of open-source x-ray images, only three categories 

were investigated: neck, chest, and leg.  These three categories were chosen strictly because 

of scarce availability of other x-rayed body parts.  Since considerably large data sets are 

needed to develop a deep learning system with adequate decision-making capabilities and 

high accuracies and since these three categories were most abundant of the freely available 

x-ray images, this research will focus on the neck, chest, and leg regions of patients.  

Although this work is limited to these areas, the methods used in this research can be 

applied to any x-ray image just as effectively as long as large batches of x-ray images of 

the body part are included in the training data set. 

 

3.2.3 Network Training 

  Before the CNN can be trained, several training options must be set.  Firstly, the 

mini-batch size must be defined.  The mini-batch size is the number of training images that 

will be used for each iteration.  One iteration is equivalent to one pass through a mini-batch 

sized number of images.  The number of iterations that it takes to cover the entire training 

data set depends on the mini-batch size and the total number of samples used in the training 

data set.  Once all images in a training data set have been passed through, an epoch is said 
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to have been completed.  The maximum number of epochs can vary based on user input.  

For example, if a training data set composed of 1,000 training images is passed through 

using a mini-batch size of 100, it will take 10 iterations to complete a single epoch.  The 

more epochs the training sessions goes through, the more thorough will the network’s 

training on the data set be. 

  In order for the remaining training options (initial learn rate, learn rate drop factor, 

and learn rate drop period) to make sense, the workings of the training process must be 

explained.  Initially, the network starts with random features, weights, and biases.  Using 

backpropagation, the network computes the error at the output, and since the desired output 

is provided by the image labels, the error is defined as the difference between the desired 

output and the predicted output.  Because the initial features, weights, and biases are 

random, the first few iterations will most likely result in large errors.  However, if the 

features, weights, biases are adjusted, the error can be lessened.  To adjust the features, 

weights, and biases in such a way that the error is minimized, a process called gradient 

descent is used.  As more and more iterations are performed, an error function based on 

the adjustments of the features, weights, and biases is formed.  This error function E is a 

representation of the relationship between the output error and the features 𝛷, weights 𝛺, 

and biases 𝛣.  Figure 15 is an example of a simple error function. 

 

 

Figure 15.  Error Function 

 

𝒑(𝛷, 𝛺, 𝛣) 
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 The gradient of the multi-variable error function at any given point can be 

calculated using Eq. (1) to determine the direction of the closest local minimum 

 
 𝒑 = 𝒑 − 𝛾 𝛻𝐸(𝒑 ), 𝑛 ≥ 0 (1) 

 
where 𝒑  is a point on the error function, 𝑛 is the number of steps taken towards the local 

minimum, and 𝛻𝐸 represents the gradient of the function 𝐸.  The step size, 𝛾 , determines 

the size of the step to be taken to reach the next point [32].  The step size can change at 

every iteration, and it is defined by Eq. (2). 

 

 𝛾 =
(𝒑 − 𝒑 ) [𝛻𝐸(𝒑 ) − 𝛻𝐸(𝒑 )]

∥ 𝛻𝐸(𝒑 ) − 𝛻𝐸(𝒑 ) ∥
 (2) 

 
 With each gradient, the features, weights, and biases are adjusted slightly so as to 

bring the error closer towards the local minimum, and as the error approaches convergence, 

the adjustments of the features, weights, and biases are made smaller and smaller to avoid 

excessive overshoot.  Once the slope of the tangent line is zero, the lowest possible output 

error has been reached, and the network will cease to adjust the features, weights, and 

biases for the neural connections relating to that output error.  Since a multi-variable error 

function is considered for training virtually all neural networks, Fig. 16 is a more accurate 

depiction of the gradient decent process. 

 

 

Figure 16.  Gradient Descent on a Multi-Variable Error Function [33] 
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  The initial learn rate training option parameter tells the network how drastically the 

changes to the features, weights, and biases should be to move the error down towards the 

closest local minimum.  If the initial learn rate is too low, the training process will take a 

long time.  If it is too high, the training process is likely to get stuck at a suboptimal result 

[27].  The learn rate drop factor is a multiplicative factor that is applied to the learning rate 

every time a certain number of epochs has passed.  The learn rate drop period is the 

parameter that determines the number of epochs that should be passed before the learn rate 

drop factor is applied. 

 

3.3 Image Processing 

  The purpose of the image processing portion of this research is to improve the 

accuracy of the CNN by generating more images to be used in the training data set and to 

utilize geometric transformations to transform the post-procedural x-ray image to the 

orientation of the pre-procedural reference x-ray image.  The resulting transformation 

matrix can then be used to dictate the tilt and orbital angles required to move the C-Arm 

so that all proceeding x-ray images are near-perfectly aligned with the fixed image. 

 

3.3.1 Image Generation 

 Unfortunately, freely available open-source x-ray images of bodily structures are 

difficult to find.  This poses a problem during the training portion of the neural network.  

To ensure that the CNN can reliably and accurately detect a specific object in the x-ray 

image, thousands of x-ray images are required in its training database.  In other words, the 

larger the training dataset, the better the network will perform.  Because of this, the CNN 

was trained only for chest, neck, and leg detection, but still, availability of x-ray images 

remains scarce.  To make up for the lack of data, the FFT was used with MCS to generate 

additional data sets.  The FFT converts the input (parent) image from the spatial domain to 

the frequency domain, making the data easier to manipulate in the MCS.  The MCS creates 

a filtering ring that is used to filter out certain frequencies in the FFT of the parent image.  

The radius and thickness of the ring are altered randomly within a given range.  Through 

iterative loops, any number of x-ray images can be generated from a single x-ray image.  

Since the radius and thickness of the filters are randomized within a threshold, each 
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generated x-ray image is entirely unique.  Figure 17 shows how the FFT can be used with 

MCS to generate new images. 

 

 

Figure 17.  Image Generation using FFT and MCS 

 
  The generated image in Fig. 17 is much darker in the dark regions of the original 

and much brighter in the bright regions of the original.  Not only this, but the generated 

image is also more saturated in some areas and dimmer in other areas.  For the neural 

network, this means that the details of the generated image are different from the original, 
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but the information and the label classification are inherent to both.  Applying this process 

to all of training images can staggeringly increase the size of the training data set. 

 

3.3.2 Projective Transformation 

  After the CNN is fully trained and ready to be applied to a test image for body part 

detection, image processing is needed to realign the test image with the reference image.  

The reference image, also called the fixed image, is the original x-ray image that is taken 

prior to having the C-Arm relocated out of the way so that the surgeons may perform the 

operation.  The x-ray image taken after the operation is referred to as the moving image, 

and it will closely resemble the fixed image save for minor translation, rotation, stretching, 

and tilting. 

  To register the moving image to the desired orientation of the fixed image, controls 

points from the fixed image must be paired up and matched with controls points of the 

moving image.  When a control point in the fixed image is matched with a control point in 

the moving image, the location of both control points is said to be the same in a global 

system. Since both control points indicate the same location on both the fixed and moving 

images, more and more pairs of control points can be used to create a projective 

transformation matrix that defines the rotations, shifting, tilting, etc., relating the two 

images.  To formulate a workable projective transformation matrix, at least four pairs of 

control points are required, and the more control point pairs are used, the more accurate 

the matching and realignment capabilities of the transformation matrix will be. 

   To determine suitable control point pairs between the fixed and moving image, the 

CNN will be run on both images to detect the bounds of the body part under investigation.  

The four points of the bounding box in the fixed image can then be paired and matched 

with the four points of the bounding box in the moving image.  These points are depicted 

in Fig. 18 where the control point pairs are (𝐴, 𝐹) (𝐵, 𝐺) (𝐶, 𝐻)  and (𝐷, 𝐸) .  For a 

projective transformation, Eq. (3) and (4) are used where 𝑢  and 𝑣  are the x- and y-

coordinates of a control point in the moving image, 𝑥 and 𝑦 are the x- and y-coordinates 

of a control point in the fixed image, and 𝑇 …  are the unknown values of the projective 

transformation matrix (𝑇 = 1 for 2D transformations) [34] [35]. 
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 𝑢 =
(𝑇 𝑥 + 𝑇 𝑦 + 𝑇 )

(𝑇 𝑥 + 𝑇 𝑦 + 𝑇 )
 (3) 

   

 𝑣 =
(𝑇 𝑥 + 𝑇 𝑦 + 𝑇 )

(𝑇 𝑥 + 𝑇 𝑦 + 𝑇 )
 (4) 

 

Both equations are multiplied by the denominator, and since 𝑇 = 1, they can be rewritten 

as Eq. (5) and (6).  

 

 

𝑢 = [𝑥 𝑦 1 0 0 0 −𝑢𝑥 −𝑢𝑦]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑇
𝑇
𝑇
𝑇
𝑇
𝑇
𝑇
𝑇 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5) 

 

 

𝑣 = [0 0 0 𝑥 𝑦 1 −𝑣𝑥 −𝑣𝑦]

⎣
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⎢
⎢
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𝑇
𝑇
𝑇
𝑇
𝑇
𝑇
𝑇
𝑇 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6) 

 

Equations (5) an (6) can be combined to form a linear system consisting of 𝑚 number of 

equations.  The number of equations in Eq. (7) should be equal to the number of paired 

control points. 
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𝑢
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𝑣
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𝑣 ⎦
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⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎡

𝑥 𝑦 1 0 0 0 −𝑢 𝑥 −𝑢 𝑦

𝑥 𝑦 1 0 0 0 −𝑢 𝑥 −𝑢 𝑦

𝑥 𝑦 1 0 0 0 −𝑢 𝑥 −𝑢 𝑦

𝑥 𝑦 1 0 0 0 −𝑢 𝑥 −𝑢 𝑦

⋮
𝑥 𝑦 1 0 0 0 −𝑢 𝑥 −𝑢 𝑦

0 0 0 𝑥 𝑦 1 −𝑣 𝑥 −𝑣 𝑦

0 0 0 𝑥 𝑦 1 −𝑣 𝑥 −𝑣 𝑦

0 0 0 𝑥 𝑦 1 −𝑣 𝑥 −𝑣 𝑦

0 0 0 𝑥 𝑦 1 −𝑣 𝑥 −𝑣 𝑦

⋮
0 0 0 𝑥 𝑦 1 −𝑣 𝑥 −𝑣 𝑦 ⎦
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 (7) 

 
Rewriting Eq. (7) in more general terms results in Eq. (8). 

 [𝑼] = [𝑿][𝑻] (8) 
 
Solving for the [𝑻] gives Eq. (9) which can be used to find the column vector that defines 

any translation, rotation, stretching, or tilting between the images. 

 [𝑻] = [𝑿] [𝑼] (9) 
 
This column vector is then reshaped into a 3 × 3 matrix by transposing the first three, 

middle three, and last three (includes 𝑇 ) rows into columns as shown in Eq. (10) 

 [𝑻] →

𝑇 𝑇 𝑇
𝑇 𝑇 𝑇
𝑇 𝑇 𝑇

 (10) 

 
Applying the inverse of the transformation matrix to the moving image, as shown in Fig. 

18, will result in a registered, or realigned, moving image. 

 

 
Figure 18.  Projective Transformation [36] 



31 
 

3.3.3 Point Feature Matching 

 Figure 19 is an example of the differences between the fixed image and the moving 

image.  The fixed image is shown in green and the moving image as violet.  From the 

figure, it can be seen that the moving image is taken at a different camera height and camera 

angle when compared to the fixed image (8 DOF); this difference is a representation of the 

expected differences between the pre- and post-procedure x-ray images that the surgeon 

will encounter.  A closer look at Fig. 18 reveals that a uniform white color is present at 

points where the moving image overlaps with the fixed image, meaning that if the moving 

image were to be altered so that it perfectly matches the orientation of the fixed image, the 

colors of the two images would overlap exactly to portray the original reference image in 

black and white. 

 

 

Figure 19.  Overlap of Fixed Image (Green) and Moving Image (Violet) 

 
 Because the CNN is only capable of outputting four potential control point pairs, 

the accuracy in alignment of the projective transformation matrix tends to be lower than 

desired.  To overcome this problem, feature points from both the fixed and moving image 

will be extracted and compared against each other.  Using speeded up robust features 

(SURF), a descriptor is used to describe an image feature by using the pixel intensity 

distributions local to a point [37] [38].  Descriptors from different images can be compared 

to find matching pairs.  Those feature points that have the strongest feature similarities are 

paralleled as control point pairs while those that lack or have minimal correlation with 

other points are discarded.  Figure 20 is a demonstration of an additional 29 control point 

pairs that were formed through point feature matching. 
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(a) Fixed Image   (b) Moving Image 

Figure 20.  Multiple Control Point Pairs using SURF Point Matching 

 
 The total number of control points from Fig. 20 plus the additional control points 

from the CNN dictate the number of rows 𝑛 to be used in Eq. (7).  From this, the projective 

transformation matrix needed to register the images can be calculated.  Figure 21 shows 

the miniscule error, high accuracy, and overall correctness of the realignment aptitude of 

the projective transformation matrix. 

 

 

Figure 21.  Overlap of Fixed Image (Green) and Registered Moving Image (Violet) 

 
3.4 Automatic Repositioning 

  To automatically reposition the C-Arm, an automated C-Arm system is needed.  In 

collaboration with the research team at the University of Tyler at Texas, the mobile CAM 

prototype and its kinematic model was used.  During the automatic repositioning process, 

the kinematic model receives data from the projective transformation matrix as part of the 

input.  The projective transformation matrix holds the necessary information required to 
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move the tilt and orbital rotations such that the C-Arm can be repositioned to the desired 

orientation.  The implementation of the projective transformation matrix to the kinematic 

model is vital for properly orientating the C-Arm.  This is because the tilt and orbital 

rotations allow the C-Arm to have the same focal point at an infinite number of different 

orientations.  Figure 22 illustrates how the focal point at one orientation can occupy the 

same exact position in space when in another orientation.  Not only is this true for the 

orbital rotation but also for the tilt rotation [39].  Together, the tilt and orbit make it 

extremely difficult for an algorithm to decide which linkages to activate and move, 

especially when an infinite number of possibilities exist.  The realignment properties of the 

projective transformation matrix, however, nullifies the confusion caused by the limitless 

focal point positions. 

 

  

Figure 22.  Identical Focal Point at Differing Orientations [40] 

 
3.4.1 Camera Calibration 

  In order to orientate the C-Arm such that the post-procedure x-ray image is 

registered with the pre-procedure x-ray image, only one possibility exists, and it is stored 

in the projective transformation matrix.  To retrieve the tilt angle of rotation and the orbital 

angle of rotation from the projective transformation matrix, the calibration matrix of the 

image intensifier electron lens system is needed.  Since the electron lenses have intrinsic 

properties that cause distortions and aberrations between the world frame and image frame 

(much like how optical lenses of a camera inadvertently alter the output image slightly), 

the calibration parameters are needed to account for the errors introduced by the electron 
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lenses [41] [42].  Because the calibration matrix contains only intrinsic parameters, the 

calibration process must only be executed and stored once.  Once found, the calibration 

matrix can be used for any and all future operations of that specific C-Arm.  Since the 

CAM is only a prototype and that does not use an actual x-ray image intensifier and flat-

panel, a camera is used instead as shown in Fig. 23.  Although optical cameras and x-ray 

imaging systems use different methods of image acquisition, the principles of image 

distortion remains the same for both cases.  Therefore, replacing the x-ray imaging system 

with a camera mounted to one end of the C-orbital arm should result in a fundamentally 

equivalent image capturing C-Arm system. 

 

 

Figure 23.  C-Arm Mini with Mounted Camera 

 
  With the help of the camera calibration toolbox for MATLAB, the camera was 

parameterized for calibration before being actually mounted to the CAM [43].  The 

calibration process involved the use of 10 image of a black and white checkerboard; Fig. 

24 shows four examples.  The squares are 30 × 30 𝑐𝑚  in size and distributed evenly 

across the page.  Keeping the camera grounded and in a fixed orientation, images of the 

checkerboard were taken at different orientations.  The greater the variety of orientations 

used, the more robust will the final calibration parameters be. 
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Figure 24.  Calibration Images 

 
  In each calibration image, a 5 × 7 rectangle encompassing 35 squares was defined.  

Since the size of each square is known, a grid can be formed so that all vertices of the 

squares may be defined by a point on the image.  Figure 25 shows the grid formation 

process on one of the calibration images.  The top left corner of the grid is used as the 

origin, and the remaining three corners are used to define the grid boundaries.  Straight 

lines are used to connect the four corners and, thus, creating a rectangle in the world frame.  

In the image frame, however, the lines are not parallel; in fact, they form vanishing points.  

Using basic geometry, the angle of intersection of the gridlines can be calculated and used 

to determine the location of the vanishing points as well as the shape of the rectangular 

grid in the image frame [44]. 

 

 

Figure 25.  Corner Extraction of Checkerboard 
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  As this process is performed over the entire calibration image data set, the intrinsic 

and extrinsic calibration parameters are computed by minimizing the reprojection error 

over all of the calibration parameters.  Non-linear optimization is also done iteratively 

through gradient descent and by explicit computation of the Jacobian matrix [43] [45].  

Figure 26 illustrates the extrinsic parameters that were used during the calibration process. 

 

 

(a) Camera Centered 
 

 

(b) World Centered 

Figure 26.  Extrinsic Parameters during Calibration Process (all units in cm) 
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  Intrinsic calibration parameters that cause deviations between the world frame and 

image frame include the focal length in the x-direction, 𝑓 , and y-direction, 𝑓 , the principal 

point x-coordinate, 𝑝 , and y-coordinate, 𝑝 , and the skew coefficient, 𝑠 [46].  Together, 

these parameters are responsible for the irregularities seen so often in images.  

Incorporating them into a single camera calibration matrix, [𝑲], results in Eq. (11). 

 

 [𝑲] =
𝑓 𝑠 𝑝
0 𝑓 𝑝

0 0 1

 (11) 

 

3.4.2 Angle Extraction 

  To ensure that the projective transformation matrix gives a true and accurate 

mapping between the fixed and moving images, these distortion parameters must be 

accounted for [47].  As shown in Eq. (12), the projective transformation matrix can be 

multiplied by the inverse of the calibration matrix to result in a corrected projective 

transformation matrix (homography), [𝑯], that maps the world frame to the image frame 

[48] [49]. 

 

 [𝑯] =

𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻 𝐻

= [𝑲] [𝑻] (12) 

 

The normalization factor, 𝑁, can be calculated using Eq. (13). 

 

 𝑁 = 𝐻 + 𝐻 + 𝐻  (13) 

 

The rotation column vector 𝒓  can then be found using the normalization factor and the 

first column of the corrected projective transformation matrix in Eq. (14). 

 

 𝒓 =
1

𝑁

𝐻
𝐻
𝐻

 (14) 
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Likewise, rotation column vector 𝒓  is found using Eq. (15). 

 

 𝒓 =
1

𝑁

𝐻
𝐻
𝐻

 (15) 

 
Equation (16) finds rotation column vector 𝒓  by cross-multiplying 𝒓  and 𝒓 . 

 
 𝒓 = 𝒓 × 𝒓  (16) 

 
The results of Eq. (14-16) are then used to create rotation matrix [𝑹] as shown in Eq. (17) 

[50] [51]. 

 

 [𝑹] =

𝑅 𝑅 𝑅
𝑅 𝑅 𝑅
𝑅 𝑅 𝑅

= [𝒓 𝒓 𝒓 ] (17) 

 
Finally, Eq. (18) and (19) can be used to solve for the tilt angle of rotation, 𝜃 , and the 

orbital angle of rotation, 𝜃 . 

 

 𝜃 = 𝑡𝑎𝑛
𝑅

𝑅
 (18) 

 𝜃 = 𝑠𝑖𝑛 (𝑅 ) (19) 
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Chapter 4 

Results and Discussion 

4.1 Object Detection 

 As discussed in the previous sections, this study is scarce in labeled training data.  

However, thanks to the R-CNN method, the performance of a traditional CNN can be 

drastically improved, regardless of insufficient training data.  R-CNN’s exploit supervised 

pre-training and domain-specific fine-tuning to greatly improve performance [16].  Simply 

put, a pre-trained CNN capable of detecting basic objects with about 75% accuracy is fine-

tuned and tailored towards the interests of this study.  The pre-trained CNN can distinguish 

lines, edges, surfaces, and regions but lacks the proper training for complete and accurate 

classification.  A neural network at such a stage is generalized and can function as a 

foundation for more specific object detection through fine-tuning.  The fine-tuning is 

conducted on the pre-trained CNN by simply introducing it to what little training data exists 

for bone structure detection in x-ray images.  In this manner, a fully trained CNN is 

developed for detection of bone in orthopedic procedures without the need of extravagantly 

large training data sets.  The complete architecture of the neural network is portrayed in 

Fig. 27.  The x-ray images are read in by the image input layer.  The middle layers then 

pass the image data through three stages of convolution, ReLU, and max pooling.  

Substantial downsizing of the image data will have occurred at this point.  In the final 

layers, two fully-connected layers, one ReLU layer, and a softmax layer are used to form 

neurological connections in the hidden layers.  The softmax function was adopted because 

of its ideal multi-classification in the logistic regression model and for the different layers 

of neural networks [52].  The detection and classification results are then displayed by the 

classification output layer.  
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Figure 27.  R-CNN Architecture 

 
 The pre-trained CNN used 10,000  images sized at 32 × 32  pixels that were 

labeled and placed into ten different categories such as dogs, cats, ships, trucks, etc. [23].  

To fine-tune the CNN specifically for the detection of bone structures, 260 x-ray images 

depicting the chest, neck, and legs were labeled and comprised as the training data set.  

This is the entirety of the training data set without the implementation of image generation.  

Out of the 260 x-ray images, 143 were of the category “chest”, 58 were “neck”, 45 were 

“leg”, and 14 were combinations of the three categories (more than one body part was 

depicted in the x-ray image e.g. chest and neck).  The size and number of color channels 

of the x-ray images were used as the image input layer parameters.  For the convolutional 

layers, a total of 32  filters were used except for the third and final convolutional layer 

which used 64 filters.  Each of the filters was sized to be a 5 × 5 matrix, and a padding 

space of 2 pixels was used to prevent the filter from overlapping past the image borders.  

This will cause a 2 -pixel wide frame to be excluded from the +convolutional process.  

Leg 
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Because areas of interest in x-ray images rarely lie along image borders, the exclusion of 

the frame will seldomly impact the outcome.  Even if the area of interest did fall somewhere 

on an image border, the small width of 2 pixels will have an insignificant effect on the 

accuracy.  For the max pooling layer parameters, a 2 × 2 sized window at a stride of 2 

pixels was used.  After passing through the fully-connected layers, the final output is a 

4 × 64 weight function and a bias vector of 4 units.  Table 1 details the learning process of 

the R-CNN as it progresses through 10 epochs without the incorporation of any generated 

images in the training data set. 

 

Table 1.  R-CNN Learning Progression without Image Generation 

Epoch 
Time Elapsed 

(hh:mm:ss) 
Mini-Batch 
Accuracy 

Mini-Batch 
Loss 

Base 
Learning Rate 

𝟏 00: 00: 00 14.84% 1.4338 0.0010 

𝟏 00: 00: 22 92.18% 0.2992 0.0010 

𝟐 00: 00: 46 92.97% 0.2359 0.0010 

𝟑 00: 01: 09 96.09% 0.1335 0.0010 

𝟒 00: 01: 32 99.22% 0.0273 0.0010 

𝟓 00: 01: 57 98.44% 0.0678 0.0010 

𝟔 00: 02: 22 99.22% 0.0610 0.0001 

𝟕 00: 02: 48 99.22% 0.0278 0.0001 

𝟖 00: 03: 13 100.00% 0.0156 0.0001 

𝟗 00: 03: 39 100.00% 0.0096 0.0001 

𝟏𝟎 00: 04: 05 99.22% 0.0202 0.0001 

𝟏𝟎 00: 04: 21 100.00% 0.0091 0.0001 
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  The test data set consisted of 200 images.  From these, 80 depicted the chest, 60 

depicted the leg, and 60 depicted the neck.  The test images were not included in the 

training data set, making it the CNN’s first exposure to those x-ray images.  To determine 

the accuracy of the R-CNN, the network was run on all images of the test data set.  Overall, 

the R-CNN correctly classified 85% of the test images with their true category.  Even 

though a R-CNN was used, the small size of the training data set prevented the neural 

network from properly categorizing a tenth of the test images. Incorporating a larger variety 

of images in the training data set will improve these results.  A summary of the 

classification test results is listed in the confusion matrix shown in Table 2. 

 

Table 2.  Object Classification without Image Generation 

 Prediction 

Ground Truth Chest Neck Leg 

Chest 86.75% 8.33% 11.67% 

Neck 6.25% 85.00% 8.33% 

Leg 7.50% 6.67% 80.00% 

 

 After recording the results shown in Table 2, the R-CNN was reset with the same 

parameters but with the inclusion of 350 additional x-ray images into the training data set 

courtesy of the FFT and MCS image generation process.  Out of the 350  added x-ray 

images, 50  were of the category “chest”, 150  were “neck”, and 150  were “leg”.  

Substantially more neck and leg x-ray images were generated to compensate for the lack 

of images in those categories.  Figure 28 reveals a small sample of the 350 x-ray images 

that were generated using FFT and MCS.  Although the differences between the x-ray 

images are difficult to see, all of them are distinguishable.  The pixels that make up each 

of these images are distributed differently along the rows and columns of the images, and 

the pixel intensity at a certain point on a generated image is likely to be different than that 

of another generated image.  Considering that these slight differences exist over the entirety 

of the x-ray images, all of the generated images are unique in their own.  In other words, a 

simple computer cannot make correlations between any two generated images at face-
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value.  However, a more sophisticated algorithm is still capable of detecting features and 

general trends depicted in the images.  Thus, the R-CNN is still capable of making out what 

each x-ray image means to portray. 

 

 

 

Figure 28.  Image Generation Sample 

 
  With a total of 610 x-ray images in the training data set, the R-CNN was re-trained 

from scratch.  Table 3 lists the training progression of the R-CNN with the updates training 

data set size. 
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Table 3.  R-CNN Learning Progression with Image Generation 

Epoch 
Time Elapsed 

(hh:mm:ss) 
Mini-Batch 
Accuracy 

Mini-Batch 
Loss 

Base 
Learning Rate 

𝟏 00: 00: 00 43.75% 1.3065 0.0010 

𝟏 00: 00: 20 91.41% 0.2271 0.0010 

𝟏 00: 00: 41 99.22% 0.0368 0.0010 

𝟐 00: 01: 02 98.44% 0.0586 0.0010 

𝟐 00: 01: 22 98.44% 0.0558 0.0010 

𝟑 00: 01: 44 97.66% 0.0439 0.0010 

𝟑 00: 02: 05 100.00% 0.0077 0.0010 

𝟑 00: 02: 26 99.22% 0.0198 0.0010 

𝟒 00: 02: 47 100.00% 0.0119 0.0010 

𝟒 00: 03: 08 96.88% 0.0992 0.0010 

𝟓 00: 03: 30 98.44% 0.0568 0.0010 

𝟓 00: 03: 51 100.00% 0.0098 0.0010 

𝟔 00: 04: 13 99.22% 0.0439 0.0001 

𝟔 00: 04: 35 99.22% 0.0182 0.0001 

𝟔 00: 05: 01 99.22% 0.0084 0.0001 

𝟕 00: 05: 23 100.00% 0.0080 0.0001 

𝟕 00: 05: 45 99.22% 0.0164 0.0001 

𝟖 00: 06: 05 100.00% 0.0014 0.0001 
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𝟖 00: 06: 25 100.00% 0.0015 0.0001 

𝟗 00: 06: 46 100.00% 0.0108 0.0001 

𝟗 00: 07: 07 99.22% 0.0123 0.0001 

𝟗 00: 07: 29 100.00% 0.0018 0.0001 

𝟏𝟎 00: 07: 49 99.22% 0.0210 0.0001 

𝟏𝟎 00: 08: 11 100.00% 0.0059 0.0001 

𝟏𝟎 00: 08: 23 100.00% 0.0020 0.0001 

 
 After training with the newly generated x-ray images, the R-CNN was applied to 

the same 200 test x-ray images.  Table 4 accentuates the improvements that the generated 

x-ray images have made in predicting the correct category.  Overall, the implementation of 

image generation using FFT MCS improved the detection accuracy in all three categories, 

indicating that the added images improved the quality of the learning process. 

 

Table 4.  Object Classification with Image Generation 

 Prediction 

Ground Truth Chest Neck Leg 

Chest 100% 1.67% 3.33% 

Neck 0% 95.00% 6.67% 

Leg 0% 3.33% 91.67% 

Improvement +13.75% +10.00% +11.67% 

  

 Using the same 200 test images, the prediction of the chest, neck, and leg improved 

by about 13.75%, 10.00%, and 11.67%, respectively.  Due to the close similarity between 

the chest x-ray images, the newly improved R-CNN was able to detect all of the chest x-

rays without any issues.  The high accuracy of the chest detection can also be attributed to 

the larger chest x-ray samples in the training data set.  The neck and leg prediction 
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categories also improved thanks to the revamped R-CNN; however, a few mis-

categorizations still remained.  Although they have been greatly diminished, these 

persisting errors indicate that the R-CNN struggles to decipher neck and leg x-ray images.  

This is attributed to the fact that a much greater variety of neck and leg x-rays were used.  

For example, uncertainty was introduced to the learning process when both the sagittal and 

coronal views of the neck were used.  Some of the leg x-ray images included the knee 

whereas others included parts of the foot.  These inconsistencies in the training data set 

makes it harder for the R-CNN to extract desired information. 

 Although the accuracy of the deep learning neural network was improved, the 350 

additional training images increased the overall processing time of the learning 

progression.  By comparing the elapsed time between the training progression in Table 1 

and Table 3, it can be seen that the more accurate neural network requires nearly twice the 

processing time.  As is expected with most computationally extensive processes, an 

increase in a system’s accuracy and reliability takes away from its speediness.  However, 

once fully trained, the new and improved R-CNN is capable of detecting and classifying 

objects within an x-ray image as quickly and as swiftly as the initial R-CNN.  Since the 

training of a neural network is only ever required once for the application of the C-Arm, 

the increase in processing time as a trade-off for higher detection accuracy is considered 

favorable.  Figure 29 illustrates some of the successful detections made by the R-CNN after 

having incorporated the generated images using FFT and MCS. 
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(a) 

  
   (b)     (c) 

Figure 29.  Object Detection of (a) Chest, (b) Leg, and (c) Neck 
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  In Fig. 29 (a), a chest x-ray image is shown.  The newly trained CNN correctly 

determined that the bodily structure of interest depicted in the image was a chest.  The 

chest itself is located and encompassed by the yellow bounding box to indicate its location 

and to differentiate it from the rest of the image.  The confidence with which the neural 

network made the detection of the chest in Fig. 29 (a) was calculated by the algorithm to 

be about 95.3%.  In Fig. 29 (b), the x-ray image of a leg was detected with a confidence 

of 99.5%.  In Fig. 29 (c), the neck was detected and classified with 97.8% confidence. 

 

4.2 Image Registration 

 In Fig. 30, the moving image is rotated clockwise on the image plane and tilted 

such that two vanishing points are present.  A total of 15 control point pairs was used in 

formulating the projective transformation matrix.  Out of the 15 points, 4 were drawn from 

the trained R-CNN, and the remaining 11  points were established using point feature 

matching. 

 

 

Figure 30.  Control Point Pairs (11) using Point Feature Matching 

 
 Figure 31 compares the fixed and moving images of two x-ray images before and 

after having applied the projective transformation matrix.  Applying the inverse of the 

projective transformation matrix resulted in Fig. 31 (b).  From the comparison made 

between the fixed image and the registered (re-orientated) moving image, it can be seen 
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that the projective transformation matrix was able to align the moving image with the fixed 

image nearly perfectly, as made evident by the overwhelmingly white colors and lack of 

both green and violet.  Nevertheless, some slight differences between the two exist.  The 

error can be traced back to the accuracy of the R-CNN and the bounding boxes that it 

forms.  Some error also exists in the fact that not all control point pairs from the point 

feature matching method are exact matches. 

 

   
(a) Unregistered    (b) Registered 

Figure 31.  Registration Attempt including Point Feature Matching 

 

4.3 Experimental Validation and Verification 

  As part of the validation and verification process for the automatic repositioning of 

the C-Arm, the CAM was fully equipped and placed in a laboratory environment for 

experimentation and testing.  Since the CAM is only a prototype model, the x-ray image 

capturing system is represented using a camera.  By replacing the image intensifier and 

flat-panel detector with a single camera mounted to one end of the C-orbital, an equivalent 

image capturing system is developed.  Images from the camera may then be treated as x-

ray images that the CAM could potentially generate. 

  To perform the experiment, a scenario was prepared to mimic actual C-Arm 

operation during an orthopedic procedure in which the lower cervical vertebrae in the neck 

is fractured.  In the setup, the CAM and its mounted camera were placed by a flatbed on 

which a neck phantom lies.  A phantom is simply a pictorial representation of an orthopedic 
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structure for simulation of a clinically realistic scenario.  In this case, an x-ray image of a 

neck is the phantom.  The CAM was positioned so that a clear image of the neck can be 

taken; this image will be the pre-procedural reference/fixed image.  The experimental setup 

is shown in Fig. 32. 

 

 

Figure 32.  Experimental Setup 

 
  The CAM’s tilt and orbital angular positions were then changed arbitrarily (but 

within reasonable amount) by 5° and 8°, respectively, to introduce controlled variation to 

the post-procedure test/moving image. A post-procedural image was taken and then 

compared to the pre-procedural image, as exemplified in Fig. 33.  At this stage, the 

procedures and steps outlined in Fig. 4 were initiated. 
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(a) Before Moving the Tilt and Orbital Linkages 

 
(b) After Moving the Tilt and Orbital Linkages by 5° and 8°, respectively. 

Figure 33.  Comparison of Experimental Pre- and Post-Procedural Images of a Neck 

Phantom 

 
  Figure 34 is the output of the R-CNN using the image from Fig. 33 (a).  The neck 

phantom was successfully detected with 82.14%  confidence.  The yellow heading 

detailing the classification and confidence results was enlarged for better visualization.  

The bounding box outlining the region of detection fully encompassed the neck phantom.  

This ensures that the control points are drawn within close proximity to the neck phantom. 
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Figure 34.  Detection of the Neck Phantom 

 
  After extracting the projective transformation matrix from the deep learning 

network and point feature matching system, the camera calibration matrix of the mounted 

camera was found using MATLAB’s camera calibration toolbox [43].  With the camera 

calibration matrix and the projective transformation matrix, Eq. (11-19) were used to find 

the rotation matrix and the tilt and orbital angles of rotation.  Tables 5-7 list the results of 

the first part of the experiment using the images in Fig. 33.  In Table 5, the resulting 

projective transformation, camera calibration parameters, and rotation matrix are shown. 

 

Table 5.  Experimental Results – Matrices 

Matrix Symbol Values 

Projective 
Transformation 

[𝑻] 
1.238 0.065 7.96 × 10
0.099 1.230 1.166 × 10

−200.8 −175.2 1

 

Camera Calibration [𝑲] 
1431 −3.287 1010

0 1434 515.8
0 0 1

 

Rotation [𝑹] 
0.989 0.036 0.147

−0.019 0.987 0.058
−0.148 −0.064 0.977
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  In Table 6, the angles of rotation needed for automatic repositioning of the CAM 

are investigated.  Since the tilt and orbital linkages were rotated by 5°  and 8° , the 

theoretical angles needed to properly reposition the CAM back to its original orientation 

are −5° and −8°.  The actual values that the CAM rotated its tilt and orbital linkages 

during the automatic repositioning process are listed in Table 6 as well.  The difference 

between the actual values and the expected values are also shown.  When compared to the 

initial angles, both the tilt and orbital angles of rotation were off from the expected value 

within less than half of a degree. 

 

Table 6.  Experimental Results – Angles 

Angle of 
Rotation 

Symbol Actual Theoretical % Difference 

Tilt 𝜃  −5.4465° −5.00° 8.936% 

Orbital 𝜃  −8.2802° −8.00° 3.503% 

 

  The spatial position of the CAM was also considered during the automatic 

repositioning process of the experiment.  The forward kinematic model was used to 

triangulate the instantaneous position of the camera.  The focal point of the C-Orbital does 

not change during the movement of the tilt and orbital rotations, making it unsuitable for 

validation through spatial coordinates.  For this reason, the camera position was deemed 

more appropriate for the purpose of this experiment.  Table 7 details the position of the 

camera in a global coordinate system.  The CAM starts at the origin and rotates 5° and 8° 

in tilt and orbital movement to the offset position.  The coordinate point of the offset 

position is recorded.  Using the actual angles from Table 6, the CAM is automatically 

repositioned back to the origin.  The results indicate that the angles sent to the tilt and 

orbital linkages repositioned the CAM back to the origin with acute precision and high 

accuracy.  To be more specific, the 𝑥- and 𝑧- coordinates fell exactly back on the origin 

(within tolerance), and the 𝑦-coordinate was off just short of a tenth of an inch. 
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Table 7.  Experimental Results – Positions 

 Spatial Coordinates 

Position 𝑥 𝑦 𝑧 

Starting (origin) 0.00 𝑖𝑛 0.00 𝑖𝑛 0.00 𝑖𝑛 

Offset 1.029 𝑖𝑛 1.64 𝑖𝑛 −0.16 𝑖𝑛 

Corrected (back to origin) 0.00 𝑖𝑛 −0.08 𝑖𝑛 0.00 𝑖𝑛 

 

  For the second part of the experimental validation and verification process, a third 

and final validation image of the neck phantom was taken after the CAM had repositioned 

itself back to the desired position and orientation.  Figure 35 is an overlap of Fig. 33 (a) 

with the final validation image of the neck phantom after having repositioned the C-Arm 

back to the desired orientation.  Visual inspection of this image accentuates the success of 

the proposed automatic repositioning method.  Save for a few minor distinctions, the final 

validation image is virtually indistinguishable from the starting position depicted in Fig. 

33 (a).  It is important to note that, although the two images look as if they are the same 

image, they are both in fact completely separate and distinct images taken at different 

instances during the repositioning validation process; all similarities are simply a result of 

the accurate repositioning of the C-Arm. 

 

 

Figure 35.  Repositioning Validation through Inspection of Image Realignment 
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Chapter 5 

Conclusion 

5.1 Summary 

  In this thesis, a vigorous method for automatic repositioning of the C-Arm was 

established using deep learning and image processing.  Background on the C-Arm was 

given, and a thorough investigation of the C-Arm in the current literature was provided.  

The literature survey explored the latest advancements of C-Arm repositioning 

amelioration with respect to artificial intelligence and robot vision.  More specifically, the 

integration of CNNs and image processing with C-Arms were reviewed.  The existent 

collaboration with other researchers and their development of a C-Arm Mini prototype for 

experimental purposes was also noted. 

  Detailed explanation behind the theoretical workings of the proposed automatic 

repositioning method was instated.  A deep learning CNN was trained to detect bone 

structures in x-ray images during orthopedic surgery.  Due to limited resources, a pre-

trained R-CNN was fine-tuned for the detection and classification of three distinct body 

parts: chest, neck, and leg.  Not only did the R-CNN improve the processing time of the 

training functions, but it also allowed the use of much smaller training data sets by reducing 

the application of feature filters only to specifically proposed regions.  Image generation 

with FFT and MCS was another key component attributed to the success of this research.  

By filtering and processing training images for generation, the overall dependability of the 

neural network was drastically improved.  The points defining the region of detection were 

then coupled with feature matching points to create a projective transformation matrix.  

Because of their contribution to the distortion of x-ray images, the importance of electron 

lens, or optic lens, camera calibration parameters were introduced.  Accounting for the 

distortions caused by these lens parameters, the rotation matrix and, thus, the tilt and orbital 

angles of rotation of the C-Arm could be calculated from the corrected homography.  These 

angles can be used to automatically reposition a mobile C-Arm to the desired orientation 

when fluoroscopic image realignment is required by the surgeon.  Key results indicate that 

the proposed method makes for satisfactory detection of orthopedic structures and proper 

registration of fluoroscopic images. 
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  An experiment was conducted with the C-Arm Mini prototype to validate the 

results.  A mock surgery was constructed to observe the real-life application of the 

proposed methods in practice.  The projective transformation matrix, tilt and orbital angles 

of rotation, and spatial positions were recorded during the automatic repositioning process.  

Based on the miniscule angle difference error and spatial deviation error, the mockup was 

deemed a success.  A final visual comparison between the pre- and registered post-

procedural x-ray image of the neck phantom further illustrated the validity of the 

reposition. 

 

5.2 Outcome 

  Ultimately, an integrated approach was developed to effectively better the fine auto 

movements during the repositioning of the C-Arm using deep learning CNNs and image 

processing.  The proposed method also rectifies the kinematic-based issue of having an 

infinite number of possible C-Arm orientations for a given focal point down to a single 

possible orientation through projective transformations and angle transformations within 

reference x-ray images.  Neither professional experience nor detailed calculations are 

required in the repositioning process. 

 

5.3 Implications 

  The C-Arm repositioning method outlined in this study can be used to reposition 

the C-Arm back to its original position with respect to the patient in an accurate and 

efficient fashion.  This allows surgeons to assess and validate surgical procedures in real 

time with little to no realignment uncertainties.  Additionally, the repetitive process of 

having to take and retake multiple x-ray images for comparison purposes is eliminated.  As 

a result of this, the patient, surgeon, and surgical staff are no longer in jeopardy of 

unwarranted radiation exposure.  Furthermore, the operation time for surgical procedures 

requiring multiple x-ray images and constant C-Arm movements would be greatly reduced.  

Since time consuming surgeries tend to be more expensive, the faster operation time 

consequently reduces the overall cost of operation.  Reliable automatic repositioning of the 

C-Arm system also obviates the need for a C-Arm technician.  Although the C-Arm will 

not be completely self-operating and will always require supervision to some degree, a 
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highly skilled technician is no longer required.  As a final implication, the reduced surgery 

time minimizes the patient’s exposure to the environment, lowering the risk of infection. 

 

5.4 Future Work 

  A few aspects of this study could be improved as part of the future work.  For one, 

the size of the training and testing data sets of the deep learning network can be increased.  

This will not only improve the detection and classification of the CNN, but it will also 

improve the accuracy of the region of detection and bounding box dimensions.   As a result, 

the overall workings and precision of the automatic repositioning will be enhanced.  

Expanding the number of classification categories to include other body parts would also 

improve the robustness of the deep learning network.  Additional orthopedic structures 

may include the spine, the hip, or any other area of the body requiring extensive surgical 

care and C-Arm precision. 

  Another interesting facet to consider for improving the repositioning accuracy of 

the C-Arm entails the use of control feature points only within the region of detection of 

an x-ray image.  Although this would reduce the total number of control points used, the 

quality of the points would be increased since points not of particular interest (i.e. points 

lying outside of the surgical area) would not be included.  Doing so may improve the 

realignment process and worsen image registration or vice versa.  Further testing is needed 

to assess these assumptions. 

  To further increase the credibility of this study, an experiment can be conducted in 

which an actual x-ray image intensifier and flat-panel detector are used instead of a camera.  

Rather than calibrating the optic lens camera on the C-Arm Mini prototype, the calibration 

process will be performed on the x-ray capturing system and its electron lenses of an 

industrial mobile C-Arm.  The resulting calibration matrix can then be used to correct the 

projective transformation matrix between two actual x-ray images.  The outcome of this 

experiment would validate the automatic repositioning of real C-Arms currently used in 

the medical industry.  



58 
 

References 

 

[1]  M. Herzmann, "What is a Mobile C-Arm," Ziehm Imaging, 2006. [Accessed Dec. 
23, 2018]. 

[2]  H. Esfandiari, "Photogrammetric Advances to C-Arm Use in Surgery," Master of 
Science in Geomatics Engineering, University of Calgary, Calgary, Alberta, 2014. 
[Accessed Dec. 23, 2018]. 

[3]  Y. Lee, H. Lee, J. Cho and H. Kim, "Analysis of Radiation Risk to Patients from 
Intraoperative use of the Mobile X-Ray System (C-Arm)," Journal of Research in 
Medical Science, vol. 20, pp. 7-12, 2015.  

[4]  M. Unberath, J. Fotouhi, J. Hajek, A. Maier, G. Osgood, R. Taylor, M. Armand and 
N. Navab, "Augmented Reality-Based Feeback for Technician-in-the-Loop C-Arm 
Repositioning," IEEE, Helthcase Technology Letters, vol. 5, no. 5, p. 143, 2018.  

[5]  X. Chen, H. Naik, L. Wang, N. Navab and P. Fallavollita, "Video-Guided 
Calibration of an Augmented Reality Mobile C-Arm," International Journal of 
Computer Assisted Radiology and Surgery, vol. 9, no. 6, pp. 987-96, 2014.  

[6]  G. Dagnino, I. Georgilas, S. Morad, P. Gibbons, P. Tarassoli, R. Atkins and S. 
Dogramadzi, "Intra-Operative Fiducial-Based CT/Fluoroscope Image Registration 
Framework for Image-Guided Robot-Assisted Joint Fracture Surgery," 
International Journal of Comptuer Assisted Radiology and Surgery, vol. 12, no. 8, 
pp. 1383-97, 2017.  

[7]  N. Binder, L. Matthaus, R. Burgkart and A. Schweikard, "A Robotic C-Arm 
Fluoroscope," International Journal of Medical Robotics and Computer Assisted 
Surgery, pp. 108-116, 2005.  

[8]  N. Suhm, "Method of Automatic Guiding a C-Arm X-ray Device". United States 
Patent 6,491,429 B1, 10 December 2002. 

[9]  S. Froehlich, C. Schlossbauer and A. Blumhofer, "Exact Patient Positioning by 
Comparing Reconstructed X-ray Images and Linac X-ray Images". United States 
Patent 6,516,046 B1, 4 February 2003. 

[10] N. Navab, S. Heining and J. Traub, "Camera Augmented Mobile C-Arm (CAMC): 
Calibration, Accuracy Study, and Clinical Applications," IEEE Transactions on 
Medical Imaging, vol. 29, no. 7, pp. 1412-23, 2010.  



59 
 

[11] T. Klein, S. Benhimane, J. Traub, S. Heining, E. Euler and N. Navab, "Interactive 
Guidance System for C-arm Repositioning Without Radiation," Bildverarbeitung 
für die Medizin, pp. 21-25, 2007.  

[12] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri and R. Summers, "ChestX-ray8: 
Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised 
Classification and Localization of Common Thorax Diseases," IEEE Computer 
Vision and Pattern Recognition, 2017.  

[13] Y. Li, W. Liang, Y. Zhang, H. An and J. Tan, "Automatic Lumbar Vertebrae 
Detection Based on Feature Fusion Deep Learning for Partial Occluded C-Arm X-
Ray Images," IEEE Conference for Engineering in Medicine and Biology Society, 
2016.  

[14] H. Esfandiari, R. Newell, C. Anglin, J. Street and A. Hodgson, "A Deep Learning 
Framework for Segmentation and Pose Estimation of Pedicle Screw Implants Based 
on C-Arm Fluoroscopy," International Journal of Computer Assisted Radiology 
and Surgery, vol. 13, no. 8, pp. 1269-82, 2018.  

[15] A. Gad, "Convolutional Neural Networks," in Practical Computer Vision 
Applications using Deep Learning with CNNs, Menoufia, Egypt, Apress, pp. 183-
227, 2018. 

[16] R. Girshick, "Rich Feature Hierarchies for Accurate Object Detection and Semantic 
Segmentation," Computer Vision and Pattern Recognition, Berkeley, California, 
2014. 

[17] O. Pauly, B. Diotte, P. Fallavollita, S. Weidert, E. Euler and N. Navab, "Machine 
Learning-Based Augmented Reality for Improved Surgical Scene Understanding," 
Elsevier, Computerized Medical Imaging and Graphics, vol. 41, pp. 55-60, 2014.  

[18] A. Woodard, G. Lynch and D. Berenson, "Server Based Extraction, Transfer, 
Storage, and Processing of Remote Settings, Files and Data". United States Patent 
7032011 B2, 18 April 2006. 

[19] I. Ismaili, S. Khowaja and W. Soomro, "Image Compression, Comparison Between 
Discrete Cosine Transform and Fast Fourier Transform and the Problems 
Associated with DCT," in Internatinoal Conference on Image Processing, 
Computer Vision, and Pattern Recognition, 2013.  

[20] S. Arunachalam, S. Khairnar and B. Desale, "Implementation of Fast Fourier 
Transform and Vedic Algorithm for Image Enhancement using MATLAB," 
Applied Mathematical Sciences, vol. 9, no. 45, pp. 2221-32, 2015.  



60 
 

[21] D. Kroese and R. Rubinstein, "Monte Carlo Methods," Computational Statistics, 
vol. 4, no. 1, pp. 44-58, 2011.  

[22] J. Iqbal, R. u. Islam and H. Khan, "Modeling and Analysis of a 6 DOF Robotic Arm 
Manipulator," Canadian Journal on Electrical and Electronics Engineering, vol. 3, 
no. 6, 2012.  

[23] F. Steinparz, "Co-ordinate Transformation and Robot Control with Denavit-
Hartenberg Matrices," Elsevier, Journal of Microcomputer Applications, vol. 8, no. 
4, pp. 303-16, 1985.  

[24] L. Wang, "Closed-Form Inverse Kinematics for Interventional C-Arm X-ray 
Imaging with Six Degrees of Freedom: Modeling and Application," IEEE 
Transactions on Medical Imaging, vol. 31, no. 5, pp. 1086-99, 2012.  

[25] L. Matthaus, "Closed-Form Inverse Kinematic Solution for Fluoroscopic C-Arms," 
Advanced Robotics, vol. 21, no. 8, pp. 869-86, 2012.  

[26] N. Rodas, J. Bert, D. Visvikis and M. d. Mathelin, "Pose Optimization of a C-Arm 
Imaging Device to Reduce Intraoperative Radiation Exposure of Staff and Patient 
During Interventional Procedures," IEEE International Conferernce on Robotics 
and Automation, 2017.  

[27] "Object Detection Using Deep Learning," 10 August 2018. [Online]. Available: 
https://www.mathworks.com/help/vision/examples/object-detection-using-deep-
learning.html?s_tid=mwa_osa_a. [Accessed 2 February 2019]. 

[28] R. Gandhi, "Build Your Own Convolutional Neural Network in 5 mins," 18 May 
2018. [Online]. Available: https://towardsdatascience.com/build-your-own-
convolution-neural-network-in-5-mins-4217c2cf964f. [Accessed 21 March 2019]. 

[29] J. Wu, "Introduction to Convolutional Neural Networks," National Key Lab for 
Novel Software Technology, 2017.  

[30] "Introduction to Convolutional Neural Networks," Stanford University, Stanford, 
California, 2018. 

[31] X. Glorot, A. Bordes and Y. Bengio, "Deep Sparse Rectifier Neural Networks," 
University of Montreal, Montreal, Quebec, 2011. 

[32] J. Barzilai and J. Borwein, "Two-Point Step Size Gradient Methods," IMA Journal 
of Numerical Analysis, pp. 141-8, 1998.  



61 
 

[33] H. Avjyan, "Stochastic Gradient Descent with Code and Implementation," 22 
October 2018. [Online]. Available: https://medium.com/@hakobavjyan/stochastic-
gradient-descent-sgd-10ce70fea389. [Accessed 19 January 2019]. 

[34] A. Goshtasby, "Piecewise linear mapping functions for image registration," Pattern 
Recognition, vol. 19, pp. 459-66, 1986.  

[35] A. Goshtasby, "Image registration by local approximation methods," Image and 
Vision Computing, vol. 6, pp. 255-61, 1998.  

[36] K. Schmid, D. Marx and A. Samal, "Tridimensional Regression for Comparing and 
Mapping 3D Anatomical Structures," Anatomy Research International, vol. 2012, 
2011.  

[37] H. Bay and A. Ess, "Speeded-Up Robust Features (SURF)," ETH Zurich, 
Katholieke Universiteit Leuven, 2008. 

[38] H. Bay and A. Ess, "SURF: Speeded Up Robust Features," Computer Vision and 
Image Understanding, vol. 110, no. 3, pp. 346-59, 2008.  

[39] H. Livyatan, Z. Yaniv and L. Joskowicz, "Robust Automatic C-Arm Calibration for 
Fluoroscopy-Based Navigation: A Practical Approach," School of Computer 
Science and Engineering, The Hebrew University of Jerusalem, 2002. 

[40] D. Weijiang, "Lift Apparatus for Supporting C-Arm or U-Arm and Medical X-ray 
Machine Having the Same". United States Patent 20110243309, 10 October 2011. 

[41] P. Hawkes, "The Correction of Electron Lens Aberrations," Elsevier, 
Ultramicroscopy, 2015.  

[42] H. Liu, H. J and L. Fajardo, "Lens Distortion in Optically Coupled Digital X-ray 
Imaging," American Association of Physicists in Medicine, Medical Physics, vol. 
27, no. 5, 2000.  

[43] J. Bouguet, "Camera Calibration Toolbox for Matlab," 14 October 2015. [Online]. 
Available: http://www.vision.caltech.edu/bouguetj/calib_doc/. [Accessed 28 March 
2019]. 

[44] B. Caprile and V. Torre, "Using Vanishing Points for Camera Calibration," 
International Journal of Computer Vision, vol. 4, no. 2, pp. 127-39, 1990.  

[45] J. Weng, P. Cohen and M. Herniou, "Camera Calibration with Distortion Models 
and Accuracy Evaluation," IEEE, Transactions on Pattern Analysis and Machine 
Intelligence, vol. 14, pp. 965-80, 1992.  



62 
 

[46] M. Pollefeys, R. Koch and L. V. Gool, "Self-Calibration and Metric Reconstruction 
Inspite of Varying and Unknown Intrinsic Camera Parameters," International 
Journal of Computer Vision, vol. 32, no. 1, pp. 7-25, 1998.  

[47] E. Dubrofsky, "Homography Estimation," Master's thesis, Department of Computer 
Science, The University of British Columbia Vancouver, 2009. 

[48] Z. Zhang, "A Flexible New Technique for Camera Calibration," Microsoft 
Research Technical Report, 1998. 

[49] Z. Zhang, "Flexible Camera Calibration by Viewing a Plane from Unknown 
Orientations," in International Conference of Computer Vision, 1999.  

[50] R. Hartley, "Self-Calibration from Multiple Views with a Rotating Camera," in 
European Conference of Computer Vision, 1994.  

[51] M. Brown and D. Lowe, "Recognizing Panorama," in International Conference of 
Computer Vision, 2003.  

[52] S. Lim and D. Lee, "Stable Improved Softmax using Constant Normalisation," 
Electronics Letters, vol. 53, no. 23, pp. 1504-6, 2017.  

 

 

  



63 
 

Appendix A 

Object Detection for Orthopedic Surgery 
 
cifar10Data = 'D:\Machine Learning'; 
[trainingImages,trainingLabels,testImages,testLabels] = 
helperCIFAR10Data.load(cifar10Data); 
  
numImageCategories = 10; 
  
% Create the image input layer for 32x32x3 CIFAR-10 images 
[height, width, numChannels, ~] = size(trainingImages); 
  
imageSize = [height width numChannels]; 
inputLayer = imageInputLayer(imageSize); 
  
% Convolutional layer parameters 
filterSize = [5 5]; 
numFilters = 32; 
  
middleLayers = [ 
    convolution2dLayer(filterSize, numFilters, 'Padding', 2) 
    reluLayer() 
    maxPooling2dLayer(2, 'Stride',2) 
     
    convolution2dLayer(filterSize, numFilters, 'Padding', 2) 
    reluLayer() 
    maxPooling2dLayer(2, 'Stride',2) 
     
    convolution2dLayer(filterSize, 2 * numFilters, 'Padding', 2) 
    reluLayer() 
    maxPooling2dLayer(2, 'Stride',2) 
    ]; 
  
finalLayers = [    
    fullyConnectedLayer(64) 
    reluLayer 
    fullyConnectedLayer(numImageCategories) 
    softmaxLayer 
    classificationLayer 
    ]; 
  
layers = [ 
    inputLayer 
    middleLayers 
    finalLayers]; 
layers(2).Weights = 0.0001 * randn([filterSize numChannels 
numFilters]); 
  
% Set the network training options 
opts = trainingOptions('sgdm', ... 
    'Momentum', 0.9, ... 
    'InitialLearnRate', 0.001, ... 
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    'LearnRateSchedule', 'piecewise', ... 
    'LearnRateDropFactor', 0.1, ... 
    'LearnRateDropPeriod', 8, ... 
    'L2Regularization', 0.004, ... 
    'MaxEpochs', 40, ... 
    'MiniBatchSize', 128, ... 
    'Verbose', true); 
  
doTraining = false; 
  
if doTraining     
    % Train a network. 
    cifar10Net = trainNetwork(trainingImages, trainingLabels, layers, 
opts); 
else 
    % Load pre-trained detector for the example. 
    load('rcnnStopSigns.mat','cifar10Net'); 
end 
  
% Extract the first convolutional layer weights 
w = cifar10Net.Layers(2).Weights; 
  
% rescale the weights to the range [0, 1] for better visualization 
w = rescale(w); 
figure; 
montage(w); 
  
% Run the network on the test set. 
YTest = classify(cifar10Net, testImages); 
  
% Calculate the accuracy. 
accuracy = sum(YTest == testLabels)/numel(testLabels) 
  
folderTrainDetector = 'D:\Machine Learning\Combination\TrainDetector'; 
  
pngFilesTrainDetector = dir(fullfile(folderTrainDetector, '*.png')); 
jpgFilesTrainDetector = dir(fullfile(folderTrainDetector, '*jpg')); 
filesTrainDetector = [pngFilesTrainDetector; jpgFilesTrainDetector]; 
  
imageFilename = {}; 
  
for slice = 1 : length(filesTrainDetector) 
    filenameTrainDetector = fullfile(folderTrainDetector, 
filesTrainDetector(slice).name); 
    imageFilename = [imageFilename; filenameTrainDetector]; 
end 
  
% Define the bounding boxes of each category found in the training 
images (for Supervised Learning) 
Chest = 
{[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,60
0];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
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;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    
[118,84,74,80];[112,72,76,92];[132,82,68,82];[330,450,302,454];[168,132
,120,134];[130,74,78,92];[432,126,98,118];[108,112,100,104];[];[94,48,3
8,34];... 
    
[];[];[684,684,564,394];[152,226,220,214];[130,140,128,116];[94,142,138
,164];[64,70,42,48];[];[30,10,204,190];[72,34,232,200];... 
    
[34,10,222,220];[];[];[];[];[100,100,850,700];[50,50,924,924];[2,2,1022
,1022];[];[];... 
    
[];[];[];[200,200,700,600];[200,200,700,600];[];[];[];[];[200,200,700,6
00];... 
    [];[];[200,200,700,600];[];[200,200,700,600];[];[];[];[];[];... 
    [200,200,700,600];[200,200,700,600];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
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[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600]
;[200,200,700,600];[200,200,700,600];[200,200,700,600];[200,200,700,600
];[200,200,700,600];[200,200,700,600];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[102,104,852,702];[104,104,854,700];[98,100,850,702];[100,98,848,700];[
100,100,850,700];[100,100,850,700];[100,100,850,700];[104,100,850,700];
[100,100,850,700];[100,100,850,700];... 
    
[180,140,660,684];[180,140,660,684];[180,140,660,684];[180,140,660,684]
;[180,140,660,684];[180,140,660,684];[180,140,660,684];[180,140,660,684
];[180,140,660,684];[180,140,660,684];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80
,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,12
0,820,700];[80,120,820,700];... 
    
[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80
,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,12
0,820,700];[80,120,820,700];... 
    
[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80
,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,12
0,820,700];[80,120,820,700];... 
    
[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80
,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,12
0,820,700];[80,120,820,700];... 
    
[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80
,120,820,700];[80,120,820,700];[80,120,820,700];[80,120,820,700];[80,12
0,820,700];[80,120,820,700];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
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    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[]}; 
 
Leg = {[];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[114,226,78,174];[100,224,96,194];[110,214,110,194];[];[];[122,220,60,1
90];[];[92,306,132,254];[];[92,110,40,84];... 
    
[124,44,204,274];[74,78,182,286];[];[126,590,262,426];[124,358,136,86];
[];[150,58,120,62];[];[];[];... 
    
[];[10,12,122,204];[28,90,104,102];[26,14,156,216];[124,2,140,604];[];[
];[];[140,6,272,788];[60,30,1050,1252];... 
    [];[];[];[];[];[];[118,10,152,616];[518,32,282,1110];[];[];... 
    
[334,70,314,828];[];[];[];[];[];[270,10,380,1280];[];[4,4,844,1020];[4,
4,330,596];... 
    [];[];[];[194,6,150,570];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[140,6,272,788];[140,6,272,788];[140,6,272,788];[140,6,272,788];[140,6,
272,788];[140,6,272,788];[140,6,272,788];[140,6,272,788];[140,6,272,788
];[140,6,272,788];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[670,220,330,1000];[20,5,250,580];[450,10,370,1000];[40,10,160,480];[62
0,20,470,1260];[50,10,70,220];[530,520,140,450];[20,360,1960,2060];[130
,350,100,260];[460,200,230,590];... 
    
[670,220,330,1000];[670,220,330,1000];[670,220,330,1000];[670,220,330,1
000];[670,220,330,1000];[670,220,330,1000];[670,220,330,1000];[670,220,
330,1000];[670,220,330,1000];[670,220,330,1000];... 
    
[670,220,330,1000];[670,220,330,1000];[670,220,330,1000];[670,220,330,1
000];[670,220,330,1000];[670,220,330,1000];[670,220,330,1000];[670,220,
330,1000];[670,220,330,1000];[670,220,330,1000];... 
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[530,520,140,450];[530,520,140,450];[530,520,140,450];[530,520,140,450]
;[530,520,140,450];[530,520,140,450];[530,520,140,450];[530,520,140,450
];[530,520,140,450];[530,520,140,450];... 
    
[530,520,140,450];[530,520,140,450];[530,520,140,450];[530,520,140,450]
;[530,520,140,450];[530,520,140,450];[530,520,140,450];[530,520,140,450
];[530,520,140,450];[530,520,140,450];... 
    
[530,520,140,450];[530,520,140,450];[530,520,140,450];[530,520,140,450]
;[530,520,140,450];[530,520,140,450];[530,520,140,450];[530,520,140,450
];[530,520,140,450];[530,520,140,450];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,10
20];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,84
4,1020];... 
    
[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,10
20];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,84
4,1020];... 
    
[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,10
20];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,84
4,1020];... 
    
[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,10
20];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,84
4,1020];... 
    
[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,10
20];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,844,1020];[4,4,84
4,1020];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,2
20];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,
70,220];... 
    
[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,2
20];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,
70,220];... 
    
[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,2
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20];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,
70,220];... 
    
[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,2
20];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,
70,220];... 
    
[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,2
20];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,70,220];[50,10,
70,220];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[]}; 
 
Neck = {[];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[132,64,40,26];[134,54,30,16];[154,66,20,14];[342,280,166,168];[224,90,
36,36];[158,60,22,12];[480,84,32,40];[136,70,46,26];[460,430,170,197];[
104,32,16,10];... 
    
[];[];[888,526,140,134];[218,168,70,60];[176,100,36,28];[142,104,40,36]
;[46,76,16,22];[54,152,70,74];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[84,100,296,450];[76,110,244,350];[226,222,176,258];[];[];[320,186,850,
1144];[];[];[24,76,304,422];[];... 
    
[];[168,130,254,360];[];[150,44,178,236];[];[74,324,438,552];[];[644,46
4,1346,1774];[];[];... 
    
[];[];[72,94,252,396];[];[256,110,424,696];[256,110,424,696];[256,110,4
24,696];[256,110,424,696];[256,110,424,696];[256,110,424,696];... 
    
[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696]
;[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696
];[256,110,424,696];[256,110,424,696];... 
    
[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696]
;[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696
];[256,110,424,696];[256,110,424,696];... 
    
[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696]
;[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696
];[256,110,424,696];[256,110,424,696];... 
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[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696]
;[256,110,424,696];[256,110,424,696];[256,110,424,696];[256,110,424,696
];[256,110,424,696];[256,110,424,696];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,
252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396
];[72,94,252,396];... 
    
[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,
252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396
];[72,94,252,396];... 
    
[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,
252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396
];[72,94,252,396];... 
    
[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,
252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396
];[72,94,252,396];... 
    
[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,
252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396];[72,94,252,396
];[72,94,252,396];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258]
;[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258
];[226,222,176,258];[226,222,176,258];... 
    
[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258]
;[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258
];[226,222,176,258];[226,222,176,258];... 
    
[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258]
;[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258
];[226,222,176,258];[226,222,176,258];... 
    
[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258]
;[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258
];[226,222,176,258];[226,222,176,258];... 
    
[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258]
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;[226,222,176,258];[226,222,176,258];[226,222,176,258];[226,222,176,258
];[226,222,176,258];[226,222,176,258];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    [];[];[];[];[];[];[];[];[];[];... 
    
[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,13
46,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[6
44,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];... 
    
[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,13
46,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[6
44,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];... 
    
[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,13
46,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[6
44,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];... 
    
[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,13
46,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[6
44,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];... 
    
[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,13
46,1774];[644,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774];[6
44,464,1346,1774];[644,464,1346,1774];[644,464,1346,1774]}; 
  
T = table(imageFilename,Chest,Leg,Neck) 
A = imread(T.imageFilename{1}); 
A = 
insertObjectAnnotation(A,'Rectangle',T.Chest{1},'Chest','LineWidth',2,'
FontSize',18); 
figure 
imshow(A) 
  
doTraining = true; 
if doTraining 
    options = trainingOptions('sgdm', ... 
        'MiniBatchSize', 128, ... 
        'InitialLearnRate', 1e-3, ... 
        'LearnRateSchedule', 'piecewise', ... 
        'LearnRateDropFactor', 0.1, ... 
        'LearnRateDropPeriod', 5, ... 
        'MaxEpochs', 10, ... 
        'Verbose', true,... 
        'VerboseFrequency',50); 
    rcnn = trainRCNNObjectDetector(T, cifar10Net, options, ... 
        'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.5 
1]) 
else 
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    load('rcnnStopSigns.mat','rcnn') 
end 
  
%% 
% Test R-CNN Bone Detector on a Single Test Image 
  
testImage = imread('Leg (01).jpg'); 
testImage = rgb2gray(testImage); 
[bbox,score,label] = detect(rcnn,testImage,'MiniBatchSize',128, 
'SelectStrongest', true); 
  
[score, idx] = max(score); 
bbox = bbox(idx, :); 
annotation = sprintf('%s: (Confidence = %f)', label(idx), score); 
outputImage = insertObjectAnnotation(testImage, 'rectangle', bbox, 
annotation); 
figure, imshow(outputImage) 
  
%% 
% Test R-CNN Bone Detector on entire Test Data Set 
folderTestDetector = 'D:\Machine Learning\Combination\Test'; 
  
pngFilesTestDetector = dir(fullfile(folderTestDetector, '*.png')); 
jpgFilesTestDetector = dir(fullfile(folderTestDetector, '*jpg')); 
filesTestDetector = [pngFilesTestDetector; jpgFilesTestDetector]; 
  
for zef = 1:80 
    TESTLabels(zef,:) = {'Chest'}; 
end 
for zef = 81:140 
    TESTLabels(zef,:) = {'Leg'}; 
end 
for zef = 141:200 
    TESTLabels(zef,:) = {'Neck'}; 
end 
  
  
Zbboxes = zeros(length(filesTestDetector), 4); 
Zscores = zeros(length(filesTestDetector), 1); 
Zlabels = categorical(length(filesTestDetector),1); 
  
for shizzz = 1:length(filesTestDetector) 
    TESTImage = imread(filesTestDetector(shizzz).name); 
    [Zbbox,Zscore, Zlabel] = detect(rcnn, TESTImage, 'MiniBatchSize', 
128, 'SelectStrongest', true); 
     
    [Zscore, Zidx] = max(Zscore); 
    Zbbox = Zbbox(Zidx, :); 
    Zlabel = Zlabel(Zidx, :); 
    Zannotation = sprintf('%s: (Confidence = %f)', Zlabel, Zscore); 
    ZoutputImage = insertObjectAnnotation(TESTImage, 'rectangle', 
Zbbox, Zannotation); 
    figure, imshow(ZoutputImage) 
     
    Zscores(shizzz) = Zscore; 
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    Zlabels(shizzz,1) = Zlabel; 
     
end 
 
%% 
% Calculate the accuracy. 
Zaccuracy2 = sum(Zlabels == TESTLabels)/numel(TESTLabels); 
average = nanmean(Zscores) 
averageChest = nanmean(Zscores(1:80)) 
averageLeg = nanmean(Zscores(81:140)) 
averageNeck = nanmean(Zscores(141:200)) 
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Appendix B 

Image Generation using FFT and MCS 
 
rng(0,'twister'); 
b = 3.5; 
a = 1.0; 
r = (b-a).*rand(1000,1) + a; 
  
foldername = 'D:\Machine Learning\Combination\TrainDetector'; 
  
for k = 1:200 % number of images to be generated 
    randx = r(randperm(1000, 1)); 
    randy = r(randperm(1000, 1)); 
     
    I = imread('Parent_Image.jpg'); % original image 
    I = rgb2gray(I); 
    F = fft2(double(I)); 
    F = fftshift(F); 
     
    [dimy, dimx] = size(F); 
    [columnsInImage, rowsInImage] = meshgrid(1:dimx, 1:dimy); 
    Cx = dimx/2; 
    Cy = dimy/2; 
    Ro = 5; % outter radius of filter ring 
    Ri = 2; % inner radius of filter ring 
    array2D = (rowsInImage - Cy).^2 + (columnsInImage - Cx).^2; 
    ringPixels = array2D >= (Ri*randy).^2 & array2D <= (Ro*randx).^2; 
    ring = imcomplement(ringPixels); 
     
    T = zeros(dimy, dimx); 
    for h = 1:dimx 
        for e = 1:dimy 
            T(e,h) = F(e,h)*ring(e,h); 
        end 
    end 
     
    T2 = ifftshift(T); 
    T2 = ifft2(T2); 
    T2 = uint8(real(T2)); 
    figure, imshow([F,T]); 
    figure, imshow([I,T2]); 
     
    filename = ['Generated Image # ' num2str(k) '.jpg']; 
    fullFileName = fullfile(foldername, filename); 
    imwrite(T2, fullFileName); 
end  
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Appendix C 

Image Registration using Projective Transformations 
 
fixedImage = imread('pre-procedure.jpg'); 
fixedImage = rgb2gray(fixedImage); 
figure; 
imshow(fixedImage); 
title('Fixed Image'); 
  
movingImage = imread('post-procedure.jpg'); 
movingImage = rgb2gray(movingImage); 
  
figure 
imshowpair(fixedImage, movingImage, 'Scaling', 'joint'); 
  
fixedPoints = detectSURFFeatures(fixedImage); 
movingPoints = detectSURFFeatures(movingImage); 
  
[fixedFeatures, fixedPoints] = extractFeatures(fixedImage, 
fixedPoints); 
[movingFeatures, movingPoints] = extractFeatures(movingImage, 
movingPoints); 
  
pairs = matchFeatures(fixedFeatures, movingFeatures); 
  
matchedFixedPoints = fixedPoints(pairs(:, 1), :); 
matchedMovingPoints = movingPoints(pairs(:, 2), :); 
figure; 
showMatchedFeatures(fixedImage, movingImage, matchedFixedPoints, ... 
    matchedMovingPoints, 'montage'); 
title('Matched Points (Including Outliers)'); 
  
[~, inlierFixedPoints, inlierMovingPoints] = ... 
    estimateGeometricTransform(matchedFixedPoints, matchedMovingPoints, 
'projective'); 
  
figure; 
showMatchedFeatures(fixedImage, movingImage, inlierFixedPoints, ... 
    inlierMovingPoints, 'montage'); 
title('Matched Points (Inliers Only)'); 
  
  
fixedPoints = zeros(inlierFixedPoints.Count,2); 
movingPoints = zeros(inlierMovingPoints.Count,2); 
  
for p = 1:inlierFixedPoints.Count 
    fixedPoints(p,:) = inlierFixedPoints.Location(p,:); 
    movingPoints(p,:) = inlierMovingPoints.Location(p,:); 
end 
  
tform = fitgeotrans(movingPoints, fixedPoints, 'projective'); 
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movingReg = imwarp(movingImage, tform, 'OutputView', 
imref2d(size(fixedImage))); 
figure 
imshow(movingReg); 
  
figure 
imshowpair(fixedImage, movingReg) 
title('Image Registration Results') 
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Appendix D 

Tilt and Orbital Angles of Rotation 

 
% Extract Tilt and Orbital rotation angles 
T = tform.T; 
T = transpose(T); 
 
% my camera’s calibration matrix parameters 
KK = [1.430712510883822e+03 -3.287386352501660 
1.009561839215500e+03;... 
      0 1.434233457820518e+03 5.157919135274227e+02;...                   
      0 0 1]; 
 
% homography matrix 
H = inv(KK)*T; 
  
n = norm(H(:,1)); 
t = H(:,3)/n; 
r1 = H(:,1)/n; 
r2 = H(:,2)/n; 
r3 = cross(r1,r2); 
 
% rotation matrix 
RM = [r1 r2 r3]; 
  
tilt = atan(r3(1)/r3(3))*(180/pi); 
orbit = asin(r3(2))*(180/pi); 
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