414 research outputs found

    Design and Autonomous Stabilization of a Ballistically Launched Multirotor

    Get PDF
    Aircraft that can launch ballistically and convert to autonomous, free flying drones have applications in many areas such as emergency response, defense, and space exploration, where they can gather critical situational data using onboard sensors. This paper presents a ballistically launched, autonomously stabilizing multirotor prototype (SQUID, Streamlined Quick Unfolding Investigation Drone) with an onboard sensor suite, autonomy pipeline, and passive aerodynamic stability. We demonstrate autonomous transition from passive to vision based, active stabilization, confirming the ability of the multirotor to autonomously stabilize after a ballistic launch in a GPS denied environment.Comment: Accepted to 2020 International Conference on Robotics and Automatio

    Morphing Concept for Multirotor UAVs Enabling Stability Augmentation and Multiple-Parcel Delivery

    Get PDF
    This paper presents a novel morphing concept for multirotor Unmanned Aerial Vehicles (UAVs) to optimize the vehicle ight performance during multi-parcel deliveries. Abrupt changes in the vehicle weight distribution during a parcel delivery can cause the UAVs to be unbalanced. This is usually compensated by the vehicle ight control system but the motors may need to operate outside their design range which can deteriorate the stability and performance of the system. Morphing the geometry of a conventional multirotor airframe enables the vehicle to continuously re-balanced itself which improves the overall vehicle performance and safety. The paper derives expressions for the static stability of multirotor UAVs and discusses the experimental implementation of the morphing technology on a Y6 tricopter configuration. Flight test results of multi-parcel delivery scenarios demonstrate the capability of the proposed technology to balance the throttle outputs of all rotors

    A Survey of Offline and Online Learning-Based Algorithms for Multirotor UAVs

    Full text link
    Multirotor UAVs are used for a wide spectrum of civilian and public domain applications. Navigation controllers endowed with different attributes and onboard sensor suites enable multirotor autonomous or semi-autonomous, safe flight, operation, and functionality under nominal and detrimental conditions and external disturbances, even when flying in uncertain and dynamically changing environments. During the last decade, given the faster-than-exponential increase of available computational power, different learning-based algorithms have been derived, implemented, and tested to navigate and control, among other systems, multirotor UAVs. Learning algorithms have been, and are used to derive data-driven based models, to identify parameters, to track objects, to develop navigation controllers, and to learn the environment in which multirotors operate. Learning algorithms combined with model-based control techniques have been proven beneficial when applied to multirotors. This survey summarizes published research since 2015, dividing algorithms, techniques, and methodologies into offline and online learning categories, and then, further classifying them into machine learning, deep learning, and reinforcement learning sub-categories. An integral part and focus of this survey are on online learning algorithms as applied to multirotors with the aim to register the type of learning techniques that are either hard or almost hard real-time implementable, as well as to understand what information is learned, why, and how, and how fast. The outcome of the survey offers a clear understanding of the recent state-of-the-art and of the type and kind of learning-based algorithms that may be implemented, tested, and executed in real-time.Comment: 26 pages, 6 figures, 4 tables, Survey Pape

    Design and control of next-generation uavs for effectively interacting with environments

    Get PDF
    In this dissertation, the design and control of a novel multirotor for aerial manipulation is studied, with the aim of endowing the aerial vehicle with more degrees of freedom of motion and stability when interacting with the environments. Firstly, it presents an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. The effectiveness of this method is demonstrated through simulation. Secondly, a humanoid robot arm is adopted to serve as a 6-degree-of-freedom (DOF) automated flight testing platform for emulating the free flight environment of UAVs while ensuring safety. Another novel multirotor in a tilt-rotor architecture is studied and tested for coping with parametric uncertainties in aerial maneuvering and manipulation. Two pairs of rotors are mounted on two independently-controlled tilting arms placed at two sides of the vehicle in a H configuration to enhance its maneuverability and stability through an adaptive robust control method. In addition, an impedance control algorithm is deployed in the out loop that modifies the trajectory to achieve a compliant behavior in the end-effector space for aerial drilling and screwing tasks

    Design and Autonomous Stabilization of a Ballistically-Launched Multirotor

    Get PDF
    Aircraft that can launch ballistically and convert to autonomous, free-flying drones have applications in many areas such as emergency response, defense, and space exploration, where they can gather critical situational data using onboard sensors. This paper presents a ballistically-launched, autonomously-stabilizing multirotor prototype (SQUID - Streamlined Quick Unfolding Investigation Drone) with an onboard sensor suite, autonomy pipeline, and passive aerodynamic stability. We demonstrate autonomous transition from passive to vision-based, active stabilization, confirming the multirotor’s ability to autonomously stabilize after a ballistic launch in a GPS-denied environment

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Design and Autonomous Stabilization of a Ballistically-Launched Multirotor

    Get PDF
    Aircraft that can launch ballistically and convert to autonomous, free-flying drones have applications in many areas such as emergency response, defense, and space exploration, where they can gather critical situational data using onboard sensors. This paper presents a ballistically-launched, autonomously-stabilizing multirotor prototype (SQUID - Streamlined Quick Unfolding Investigation Drone) with an onboard sensor suite, autonomy pipeline, and passive aerodynamic stability. We demonstrate autonomous transition from passive to vision-based, active stabilization, confirming the multirotor’s ability to autonomously stabilize after a ballistic launch in a GPS-denied environment
    • …
    corecore