24,577 research outputs found

    A closed-loop EKF and multi-failure diagnosis approach for cooperative GNSS positioning

    Get PDF
    Current cooperative positioning with Global Navigation Satellite System (GNSS) for connected vehicle application mainly uses pseudorange measurements. However the positioning accuracy offered cannot meet the requirements for lane-level positioning, collision avoidance and future automatic driving, which needs real-time positioning accuracy of better than 0.5m. Furthermore, there is an apparent lack of research into the integrity issue for these new applications under emerging driverless vehicle applications. In order to overcome those problems, a new Extended Kalman Filter (EKF) and a multi-failure diagnosis algorithm are developed to process both GNSS pseudorange and carrier phase measurements. We first introduce a new closed-loop EKF with partial ambiguity resolution (PAR) as feedback to address the low accuracy issue. Then a multi-failure diagnosis algorithm is proposed to improve integrity and reliability. The core of this new algorithm includes using Carrier phase based Receiver Autonomous Integrity Monitoring (CRAIM) method for failure detection, and the double extended w-test detectors to identify failure. A cooperative positioning experiment was carried out to validate the proposed method. The results show that the proposed closed-loop EKF can provide highly accurate positioning, and the multi-failure diagnosis method is effective in detecting and identifying failures for both code and carrier phase measurements

    Using Reinforcement Learning to Attenuate for Stochasticity in Robot Navigation Controllers

    Get PDF
    International audienceBraitenberg vehicles are bio-inspired controllers for sensor-based local navigation of wheeled robots that have been used in multiple real world robotic implementations. The common approach to implement such non-linear control mechanisms is through neural networks connecting sensing to motor action, yet tuning the weights to obtain appropriate closed-loop navigation behaviours can be very challenging. Standard approaches used hand tuned spiking or recurrent neural networks, or learnt the weights of feedforward networks using evolutionary approaches. Recently, Reinforcement Learning has been used to learn neural controllers for simulated Braitenberg vehicle 3a-a bio-inspired model of target seeking for wheeled robots-under the assumption of noiseless sensors. Real sensors, however, are subject to different levels of noise, and multiple works have shown that Braitenberg vehicles work even on outdoor robots, demonstrating that these control mechanisms work in harsh and dynamic environments. This paper shows that a robust neural controller for Braitenberg vehicle 3a can be learnt using policy gradient reinforcement learning in scenarios where sensor noise plays a non negligible role. The learnt controller is robust and tries to attenuate the effects of noise in the closed-loop navigation behaviour of the simulated stochastic vehicle. We compare the neural controller learnt using Reinforcement Learning with a simple hand tuned controller and show how the neural control mechanism outperforms a naĂŻve controller. Results are illustrated through computer simulations of the closed-loop stochastic system

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing

    Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of FIeld Robotics 35 (2018): 421-434, doi:10.1002/rob.21746.This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity Log (DVL). These methodologies limit AUV applications to where DVL bottom‐lock is available as well as the necessity for expensive strap‐down sensors, such as the DVL. Thus, deep water, mid‐water column research has mostly been left untouched, and vehicles that need expensive strap‐down sensors restrict the possibility of using multiple AUVs to explore a certain area. This work presents a solution for accurate navigation and localization using a vehicle's odometry determined by its dynamic model velocity and constrained by OWTT range measurements from a topside source beacon as well as other AUVs operating in proximity. We present a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Filter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further enhances the navigation accuracy and localization. Closed‐loop online field results on local waters as well as a real‐time implementation of two days field trials operating in Monterey Bay, California during the Keck Institute for Space Studies oceanographic research project prove the accuracy of this methodology with a root mean square error on the order of tens of meters compared to GPS position over a distance traveled of multiple kilometers.This work was supported in part through funding from the Weston Howland Jr. Postdoctoral Scholar Award (BCC), the U.S. Navy's Civilian Institution program via the MIT/WHOI Joint Program (JHK),W. M. Keck Institute for Space Studies, and theWoods Hole Oceanographic Institution
    • 

    corecore