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Abstract
This paper extends the progress of single beacon one-way-travel-time (OWTT) range measure-

ments for constraining XY position for autonomous underwater vehicles (AUV). Traditional nav-

igation algorithms have used OWTT measurements to constrain an inertial navigation system

aided by aDoppler Velocity Log (DVL). Thesemethodologies limit AUV applications towhereDVL

bottom-lock is available as well as the necessity for expensive strap-down sensors, such as the

DVL. Thus, deep water, mid-water column research has mostly been left untouched, and vehicles

that need expensive strap-down sensors restrict the possibility of using multiple AUVs to explore

a certain area. This work presents a solution for accurate navigation and localization using a vehi-

cle's odometry determined by its dynamic model velocity and constrained by OWTT range mea-

surements froma topside source beacon aswell as other AUVs operating in proximity.Wepresent

a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Fil-

ter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further

enhances the navigation accuracy and localization. Closed-loop online field results on local waters

aswell as a real-time implementation of two days field trials operating inMonterey Bay, California

during the Keck Institute for Space Studies oceanographic research project prove the accuracy of

this methodology with a root mean square error on the order of tens of meters compared to GPS

position over a distance traveled of multiple kilometers.
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1 INTRODUCTION

Accurate absolute positioning is fundamental to all robots—both to

ensure realtime closed-loop control and to provide position measure-

ments co-located with other observations. While the global position-

ing system (GPS) provides meter-scale absolute positioning of terres-

trial, aerial, and sea-surface robots, the rapid attenuation of GPS in

water precludes its use on submerged robots. Long baseline (LBL),1

ultra-short baseline (USBL)2 or single transponder methods3 have tra-

ditionally provided absolute positioning underwater based on ranges

estimated from acoustic two-way travel times. Those methods are in

contrast to strap down dead-reckoning or odometry methods such as

those provided by Doppler velocity logs (DVLs) and inertial navigation

systems (INSs) which accumulate error over time.4,5 However, most

acoustic methods extend poorly to multiple robots as only a single
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submerged robot can receive and transmit acoustic positioning signals

at a time. Thus, as the number of robots increases, the rate of posi-

tion updates decreases proportionally to the inverse of the number of

robots.

One-way-travel-time (OWTT) navigation provides a solution that

enables simultaneous positioning of multiple robots from a single

acoustic beacon by constraining strap-down navigation systems, and,

when coupled with increasingly mature autonomous surface vessels

(ASVs), provides a framework for navigatingmultiple submergedAUVs

from one or more ASVs or in fact from an AUV which periodically

surfaces.6,7 Further, as will be shown in this work, the method is

adaptable to low-quality odometry, avoiding the need for expensive

and high-power inertial and acoustic systems. As such, the method is

well suited to equipping the emerging class of low-cost micro-AUVs8,9

and long-duration systems such as underwater gliders10 or long-range
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AUVs11 with bounded error navigation. Also, it enables bounded nav-

igation for AUV operations in the mid-water column either during

descents in deep water or to provide spatially dense surveys of fine

scale physical or chemical features.12 It is additionally well suited to

aiding navigation in under-ice studies which face the added challenge

that upward facing DVLs measure the AUV speed relative to a non-

inertial frame—i.e., translating and rotating ice.13

Fundamental to OWTT ranging is a synchronized time base across

all platforms. Highly accurate and synchronized clocks, such as a chip-

scale atomic clock (CSAC)14 or a temperature compensated crystal

oscillator (TXCO),15 on both the beacon and the receiving vehicle are

needed to accurately measure the one-way-travel-time of the acous-

tic packet. While CSACs initially promised an extremely stable time

reference for relatively little power, recent manufacturing and aging

issues have tempered those expectations.16 Using this synchronized

time, the time of launch and transmission location are encoded in

the transmitted packet such that any receiving vehicle can compute a

range fromaknown locationwithwhich to constrain its ownnavigation

solution.

As the received range only constrains the navigation solution, the

observability of the system is an important area of consideration, espe-

cially for single beacon ranging.17 Prior efforts have proven observ-

ability of single beacon ranging through analysis of the Fisher Informa-

tionMatrix18 andwhich trajectories are observable.17 Otherwork has

examined optimal trajectories of a team of AUVs to enhance observ-

ability and thus improve the navigational accuracy.19

Other works have investigated the use of multiple cooperating

vehicles which share varying amounts of information to further con-

strain their navigation.20–22 A significant challenge in using inter-

vehicle ranges for position estimates is preventing overconfidence

in the solution through the sharing of correlated covariance infor-

mation or double counting.23 Prior work has largely dealt with this

challenge by preserving prior measurement information and extend-

ing the state with each new measurement which has limited scala-

bility and suitability for real-time processing. Approximations to this

approach have been presentedwhich compress priormeasurements24

or which avoid transmitting the correlation terms of the covariance

matrix.25

Despite the aforementioned advantages, successful post-

processing of experimental results using OWTT range measurements

are rare. Salient examples include centralized15 and decentralized26

filters, approximate filters for bandwidth limited communications,25

cooperative navigation with kayaks23 and cooperative ranging and

bathymetric navigation.27 Rarer are results that incorporate odome-

try from non-DVL sources such as the recent work with underwater

glider tracking over short distances21 and long distances under ice.28

Completely absent are presentations of experimental validations of

closed-loop solutions.

This work builds upon prior efforts and presents for the first time

experimental results of closed-loop OWTT navigation using multi-

ple AUVs. Further, a direct comparison between model velocity aided

odometry and DVL aided odometry is presented, illustrating the flexi-

bility of the method. The methodology was developed based on post-

processing of field data collected during the Keck Institute for Space

F IGURE 1 Diagram of the one-way-travel-time navigation process
where the autonomous underwater vehicle (AUV) transits in frame (a)
with its estimation uncertainty growing over time. In frame (b) theAUV
receives a rangewhich reduces its uncertainty and updates its location
estimate

Studies (KISS) “Satellites to the Seafloor” project conducted in Mon-

terey Bay, CA in September, 2016.29 With this data an Extended

Kalman Filter (EKF) and Particle Filter (PF) were developed each with

a bias estimator. Subsequently the EKF solution was demonstrated in

closed-loop feedback into the navigation solution during field trials

nearWoods Hole, MA.

The remainder of this paper is organized as follows: Section 2 dis-

cusses the EKF, PF and bias estimator algorithms. Section 3 describes

the vehicle and experimental set-up. Section 4 presents the results

from the post-processed field trials in Monterey Bay, CA and closed-

loop field trials nearWoods Hole, MA and Section 5 presents our con-

clusions.

2 ONE-WAY-TRAVEL-TIME NAVIGATION

WITH LOW-GRADE ODOMETRY

One-way-travel-time navigation incorporates range measurements

between a transmitter and a receiver by means of acoustic packet

transmissions. Based on a pre-determined timing cycle, the source

transmits an acoustic packet, encoded with its pose information and

time-of-launch (TOL). The receiver decodes this acoustic packet infor-

mation and records its time-of-arrival (TOA). Based on the acous-

tic packet's time of flight (TOF), and knowledge of the transmitting

medium's sound velocity profile, a range is calculated between the

transmitter and the receiver. The source's position information and cal-

culated range is then incorporated into the receiver's state estimator

to update its own navigation estimate. Since the range is calculated

based on TOF of the acoustic packet, both the transmitter and the

receiver must have highly synchronized clocks within an acceptable

tolerance. For example, a timing error of less than 1 ms will result in a

position error of less than 1.5mwith a sound speed of 1500m/s. Using

this information, a range from a source beacon collapses the vehicle's

position area of uncertainty and updates its position estimate as illus-

trated in Figure 1.

To fuse the rangemeasurementwith the vehicle's position estimate,

the standard EKF for one-way-travel-time navigation is extended to

include a bias estimator and to take as its navigation update a model

velocity based dead-reckoning solution. We also present a particle
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filter implementation based on the same inputs which also includes a

bias estimator.

2.1 Tightly coupledOWTT extended Kalman filter

In this section, we present the EKF coupled with a bias estimator. This

EKF algorithm is summarized below in Algorithm 1.

ALGORITHM1 EKFwith water velocity bias estimator

1: Loop

2: Process Kinematic PlantModel Prediction Step at each time
step

3: ifReceiveModel-VelocityMeasurement then

4: ProcessModel-Velocitymeasurement in EKFmeasurement
update step

5: else ifReceiveOWTTRangemeasurement then

6: Augment State Vector & Augment CovarianceMatrix with
beacon position and variance

7: Linearize range equation to process range observation

8: Process rangemeasurement in EKFmeasurement update
step

9: DetermineWater VelocityMeasurement & Run Bias
Estimator

10: Add velocity bias measurement tomodel velocity
measurement

11: end if

12: end loop

Since we consider attitude and depth to be adequately instru-

mented, the three-dimensional OWTT range is projected into the hor-

izontal plane, and only position and velocity are considered.

2.1.1 EKF process andmeasurementmodel

In this EKF, the vehicle's state vector is composed of its horizontal posi-

tion and velocity components:

𝐱𝐯 = [x, y, u, v]T . (1)

Here each x, y pair is the vehicle's position, and each u, v pair the vehi-

cle's component velocity. The vehicle's plant model is estimated by a

linear Continuous White Noise Acceleration Model (i.e., a kinematic

constant velocity model)30 and a non-linear measurement observa-

tion model. The constant velocity model is used to make this algo-

rithm applicable to any AUV, but it does not account for vehicle turn-

ing, thrust, and drag dynamics. As such, this model will have trouble

during turns, but sincemost of the AUV's mission consists of long, con-

stant velocity legs, priorworkhasproven that theerror convergesonce

the vehicle reaches its constant velocity state after a turn, start, or

stop.31

In discrete time, themodels follow the standard form

𝐱𝐯k = 𝐅𝐱𝐯k−1 + 𝐰k−1 (2)

𝐳k = 𝐇k𝐱𝐯k + 𝐯k (3)

where the state transition matrix Fmaps the prior state to the present

with the addition of the noise termw. Here, the state transitionmatrix

is based on a constant velocity model with sampling period, dt:

𝐅 =

⎡⎢⎢⎢⎢⎢⎣

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (4)

For the measurements, z, the model velocity measurement along

with the bias estimation is linear, and the OWTTmeasurement is non-

linear (more details on the bias estimation are presented in Section

2.3). The plant process noise, 𝐰k , and measurement noise, 𝐯k , are con-
sidered zero-mean, Gaussian white noise:

𝐰k ∼  (0,𝐐) (5)

𝐯k ∼  (O,𝐑k). (6)

For the measurement variance matrix, 𝐑, the matrix is diagonal with

the respective measurement (i.e., GPS, model velocity, or range) vari-

ance values:

𝐑gps =
⎡⎢⎢⎣
𝜎
2
gps 0

0 𝜎
2
gps

⎤⎥⎥⎦ (7)

𝐑vel =
⎡⎢⎢⎣
𝜎
2
vel

0

0 𝜎
2
vel

⎤⎥⎥⎦ (8)

Rrng = [𝜎2rng]. (9)

The plant process noise matrix,Q, is definedwith a gain parameter, q̃:

𝐐 = E[𝐯(k)𝐯(k)T] =

⎡⎢⎢⎢⎢⎢⎣

𝜎
2
x 0 0 0

0 𝜎
2
y 0 0

0 0 𝜎
2
u 0

0 0 0 𝜎
2
v

⎤⎥⎥⎥⎥⎥⎦
q̃. (10)

Assuming that the state estimation of position and velocity are inde-

pendent, cross terms may be neglected and the 𝐐 matrix becomes a

diagonal matrix.

The EKF updates the state estimate at each time step, k, with a pre-

diction step and subsequent measurement update depending on avail-

ability of a measurement.32

The state is predicted by applying the transition matrix, F, to the

state estimate of the previous step:

𝐱̂−k = 𝐅𝐱̂+
k−1. (11)

Subsequently, the predicted error covariancematrix,𝐏−, is determined

by applying the plant transition matrix to the updated error covari-

ance matrix of the previous step, 𝐏+ and the process noise covariance

matrix,Q:

𝐏−
k = 𝐅𝐏+

k−1𝐅
T +𝐐. (12)
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With the availability of a measurement, the Kalman Gain matrix,

K, is computed by being a function of the predicted error covariance,

the respective measurement mapping matrix H, and the respective

measurement noise covariancematrixR:

𝐊k = 𝐏−
k𝐇

T
k (𝐑k +𝐇k𝐏−

k𝐇
T
k )

−1. (13)

The state estimate is then updated by adding the product of the

KalmanGain and themeasurement innovation to the predicted state:

𝐱̂+
k
= 𝐱̂−k +𝐊k(𝐳k −𝐇k𝐱̂−k ). (14)

Lastly, the error covariance is updated using the “Joseph form” of the

Riccati equation, which ensures positive definiteness:33

𝐏+
k
= (𝐈 −𝐊k𝐇k)𝐏−

k (𝐈 −𝐊k𝐇k)T +𝐊k𝐑𝐊T
k . (15)

2.1.2 Rangemeasurement and augmentation

For eachOWTTrangemeasurement, fromeither the surfacebeaconor

another vehicle, the receiving vehicle's state vector and error covari-

ance matrix, 𝐏, is augmented to process the range measurement with

the transmitting beacon's pose, xb, yb:

𝐱aug = [x, y, u, v, xb, yb]T . (16)

The covariance matrix is augmented with the transmitting bea-

con's position uncertainty values, similar to the Naively Distributed

Extended Kalman Filter (NEKF).34 There, the authors show that a

geometry that consists of a single surface transmitting node with mul-

tiple submerged transmitting nodes (which mirrors the geometry in

our field experiments), the NEKF closely follows the 1𝜎 uncertain-

ties of the benchmark Centralized EKF. A similar arrangement has

also been termed the Egocentric ExtendedKalman Filter (EEKF)which

assumes independence among the vehicles ranging by neglecting the

cross covariance terms.25 Motivated by these prior results, the algo-

rithmic simplicity, and lowacoustic bandwidthnecessary,weusea simi-

larmethodduring the transmitting of beacon state uncertainties.Here,

the vehicles covariance 𝐏v is augmented with the beacon's covariance

𝐏b to form the augmented covariance matrix 𝐏aug to process the range
measurement:

𝐏aug =
[
𝐏v 0

0 𝐏b

]
. (17)

The 𝐏v matrix is the vehicle's predicted 4 × 4 Covariance Matrix,

𝐏−, at time, k, of the range measurement. The 𝐏b matrix is a 2 ×
2 diagonal matrix, in which the diagonals are both equal to the

sum of the beacon's variance values requiring only a single value to

be transmitted in the acoustic packet. Transmitting beacon uncer-

tainties in this manner is more conservative than the NEKF or

EEKF methods and thus minimizes the potential for overconfident

solutions.

Once this augmentation process is complete, the measurement

matrix, 𝐇rng is determined to map the vehicle's state vector to the

OWTT range computed by the product of the acoustic packet's TOF

and sound speed. The OWTT range update is based upon the decen-

tralized EKF presented prior.35 Here, xb is the state vector of the bea-

con (either a surface beaconwith access to GPS or another submerged

AUV):

𝐱𝐛 = [x, y]T . (18)

The range between the vehicle at TOA and the beacon at TOL is found

by computing the linear distance between their locations:

zrng =
√

(𝐱vxy − 𝐱bxy )
T(𝐱vxy − 𝐱bxy ) + vrng. (19)

Here, 𝐱vxy and 𝐱bxy are the position of the vehicle at TOA and beacon at

TOL, respectively, and vrng is the noise in the range measurement that

does not change with time. The range equation may then be rewritten

in state vector form

zrng = (𝐱T𝐌T𝐌𝐱)1∕2 + vrng (20)

where

𝐌 = [𝐉v − 𝐉b], vrng ∼  (0,𝐑rng). (21)

Here, 𝐉v and 𝐉b are matrices defined to capture the pose information

of the vehicle and the beacon at TOA and TOL, respectively.∗ Since the

range measurement is non-linear, a Jacobian matrix, evaluated at the

vehicle's augmented predicted state becomes

Hrngk = 𝜕zrng
𝜕𝐱

||||𝐱=𝐱̂−𝐚𝐮𝐠k
= [(𝐱̂−𝐚𝐮𝐠k)

T(𝐌T)(𝐌)(𝐱̂−𝐚𝐮𝐠k)]
−1∕2(𝐱̂−𝐚𝐮𝐠k)

T(𝐌T)(𝐌). (22)

The Kalman Filter measurement update equations (13–15) are then

processed to update the vehicle's pose with the new range measure-

ment. The elements in the augmented state vector and augmented 𝐏
matrix corresponding to the receiving vehicle's state variables are then

savedandareprocessed in theKalmanFilter prediction equations (11–

12) for the next time step.

2.2 Loosely coupledOWTT particle filter

In this section, we present a particle filter (PF) which provides an

update to the EKF based on the OWTT ranging. The PF is presented

to provide a comparative method which better captures the non-

linearities in the rangemeasurementupdate.Here, thePFalso includes

a bias estimator and takes the place of EKF's range measurement aug-

mentation and bias estimator presented in Section 2.3. The PF algo-

rithm is presented in Algorithm 2.

∗ 𝐉v = [𝐈2x2 𝟎2x2], 𝐉b = 𝐈2x2
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ALGORITHM2 PFwith water velocity bias estimator

1: Loop

2: Process Kinematic PlantModel Prediction Step at each time
step

3: ifReceiveModel-VelocityMeasurement then

4: Proceess measurement in EKFmeasurement update step

5: else ifReceiveOWTTRangemeasurement then

6: for i= 1 toN do

7: Propagate particle by DR and apply jitter

8: Compute weight

9: end for

10: Normalize weights

11: Re-sample

12: Compute state estimate

13: Compute water velocity bias

14: end if

15: end loop

In the PF algorithm, the EKF's dead-reckoning solution since the

last range update is used to propagate the prior particles 𝐱i
k−1 with

the state difference Δ𝐱k . To account for the error growth in the dead-
reckoning solution, a proportionate amount of jitter 𝐫k is appliedduring
the particle propagation proportional to the distance traveled through

the 𝛼DR term:

𝐱ik = 𝐱ik−1 + Δ𝐱k + 𝐫k (23)

𝐫k =  (0, 𝛼DR||Δ𝐱k||). (24)

Here, the range time step is indicated by k, the number of particles by

N and the particle index by i. The particle weights w̃i
k
are then com-

puted by comparing the range measurement 𝐳k with the estimated

range from each particle to the transmitting beacon's location 𝐱b using
a normal distribution:

w̃i
k = p(𝐳k|||𝐱ik − 𝐱b||, 𝜎pf ). (25)

The normal distribution is defined by 𝜎pf , estimated using a range

dependent error term 𝛼rng and the square root of the norm of the bea-

con's position estimate co-variance 𝐏b:

𝜎pf = 𝛼rng ∗ 𝐳k + ||𝐏b||1∕2 . (26)

The raw particle weights w̃i
k
are then normalized to wi

k
such that their

sum is equal to one to form them into a probability distribution:

wi
k =

w̃i
k

N∑
i=1

w̃i
k

. (27)

To adjust the particle locations so they best capture the informative

portion of the probability density function the particles are then re-

sampled. While there are several options for re-sampling algorithms

here we use systematic re-sampling outlined in Algorithm 3.36 This

method provides a fast and simple way to represent the probability

density through evenly weighted particles, requiring the particle loca-

tions and weights as inputs and providing the re-sampled particles as

outputs. The algorithm operates by first taking the cumulative sum of

the particle weights, forming an increasing set of values from zero to

one. A random number is then drawn from a uniform distribution on

the interval [0,1] and the index of the cumulative sum found in which

the random number is equal to the value of the cumulative sum. The

particle at the index in the old set is then stored at i in the re-sampled

set for output. In this way, particles with high weight are divided into

many particles as they occupy a large portion of the cumulative sum

and particleswith small weights are discarded as they occupy a negligi-

ble portion of the cumulative sum.

ALGORITHM3 Systematic Re-sampling

1: Cumulative sum of weights

2: for i= 0 toN do

3: Draw random number on [0,1]

4: Find index of random number in cumulative sum

5: Store particle at index for output

6: end for

The updated state 𝐱̂k may then be estimated by simply computing

the average of the re-sampled particles locations:

𝐱̂k =
1
N

N∑
i=1

𝐱ik. (28)

The updated state estimate is then fused back into the EKF's naviga-

tion solutionwhich continues dead-reckoning on every speed estimate

until the next range is received.

2.3 Velocity bias estimator

For dead-reckoning AUVs moving in mostly straight lines the primary

source of error accumulation may be assumed to be due to unknown

and varying ocean currents and modeled velocity estimation errors.

These errors present themselves as a persistent bias in the state

update if they are changing much slower than the frequency of range

measurements. To improve the dead-reckoning performance a veloc-

ity bias estimator may be written based on the state update bias and

the time difference between ranges. With each range measurement,

the EKF or PF output may be used to determine a velocity error mea-

surement:

𝐳vel =
(𝐱̂+x,y − 𝐱̂−x,y)TOA

Δt
. (29)

Here, Δt is the time between the current range measurement and the

previous range measurement, and x,y refer to the position variables

of the vehicle's state. Further, a clock bias estimator may be included

based on the difference between the range measurement and the

range estimate from the difference of the EKF's or PF's state estimate

and the beacon location. To estimate these biases the EKF and PF are

extended with a Kalman Filter (KF) whose state includes the XY veloc-

ity and clock bias. This process of separating the bias estimation from

the primary estimator breaks off the linear portion of the estimator
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from the non-linear portion, keeping the number of states in the non-

linear portion small:37

𝐱bias =
⎡⎢⎢⎢⎣
v̄x
v̄y
t̄

⎤⎥⎥⎥⎦ . (30)

With the 𝐅̄ and 𝐇̄ matrices equal to the identity matrices, the KF pre-

dicts the bias estimator co-variance 𝐏̄− through addition of the prior

bias estimator covariance and the process noise covariancematrix 𝐐̄:

𝐏̄−
k = 𝐅̄𝐏̄+

k−1𝐅̄ + 𝐐̄. (31)

The bias estimator covariance prediction is then used to compute the

co-variance innovation 𝐒̄ through addition of the EKF or PF covariance
𝐏+ for the velocity bias and the norm of the EKF or PF covariance for

the time bias:

𝐒̄k = 𝐏̄−
k +

[
𝐏+
k

𝟎
𝟎 ||𝐏+

k
||
]
. (32)

The measurement innovation 𝐲̄ is computed through the subtraction

of the bias estimator state prediction from the velocity measurement

in Eq. (29) and the quotient of the range error estimate and the sound

speed:

𝐲̄k =
[

𝐳vel, k
(zrng,k − ||𝐱̂−

xy,k
− 𝐱b||)v−1ss

]
− 𝐇̄𝐱̂bias,k−1. (33)

The Kalman gain 𝐊̄ is then computed as the product of the predicted

covariance and inverted covariance innovation.

𝐊̄k = 𝐏̄−
k 𝐇̄𝐒̄−1k (34)

Using these terms, the bias estimator's state and covariance are

updated through application of the Kalman gain to the measurement

innovation and by the sequential algebraic Riccati equation respec-

tively:

𝐱̂bias,k = 𝐱̂bias,k−1 + 𝐊̄k𝐲̄k (35)

𝐏̄+
k
= 𝐏̄−

k + 𝐊̄k𝐒̄k𝐊̄T
k . (36)

The outputs of this KF are used to adjust the velocity estimates in

the EKF and to adjust the received range estimates. Previous work

has described a similar method to the one described here that esti-

mates range-based averaged currents (RACs) for use with underwa-

ter gliders.28 That approach estimates a new current estimate after a

series of OWTT range measurements. Conversely, the bias estimator

in this work conducts a new estimate sequentially after each OWTT

measurement from any beacon.

3 EXPERIMENTAL CONFIGURATION

The vehicles used during all of the field trials were Ocean-Server,

Inc. Iver-2 AUVs. Two of these vehicles, Iver-106 and Iver-107, were

Ecomapper variants equipped with a Woods Hole Oceanographic

Institution(WHOI) 25-kHz acousticmicro-modem,38a SonTekDoppler

velocity log (DVL), an Ocean-Server compass for attitude estimation,

and a depth sensor. The third Iver-2 vehicle, Iver-136, was similarly

equipped with the WHOI micro-modem 2, compass and depth sen-

sor. Additionally, that vehicle has a dual upward, downward facing 600

kHz RDI phased array DVL, a Microstrain 3DM-GX3-25 and an APS-

1540 fluxgate magnetometer. These vehicles, along with the key com-

ponents used in this work, are shown on board the R/V Shana Rae in

Figure 2.

All three Iver-2 AUVs software systemsweremodified to use 14.04

Ubuntu Linux with the existing control computer running on the Linux

stack in a virtual machine. In this manner the Deep Submergence Lab-

oratory's library of software built around the Lightweight Communi-

cation and Marshaling (LCM) protocol could be leveraged and built

upon.39 Specifically a C++ framework for the implementation of real-

time Kalman Filters and Extended Kalman Filters was developed and

used. In this framework, a base class has methods to execute the com-

putations that are common to all Extended Kalman Filters through

an interface to high-performance linear algebra libraries, whereas a

derived class that inherits from this base class provides methods to

set the elements of the matrices that are application-specific and that

could be time-varying. This approach enabled an effective validation

of the filter common components in the base class, while exposing a

clear and easy to use interface for the implementation of the filter rele-

vant to this application. The application-specific filter developed using

this framework was integrated in NavEst, the Deep Submergence Lab-

oratory's navigation software. NavEst used LCM to interfacewithmul-

tiple sensor drivers running in separate processes, enabling effective

simulation and data replay capabilities of the real-time navigation core

engine.

For timing, a PPSBoard, as discussed previously,40,41 that incorpo-

rates a SeaScan Inc. temperature-compensated crystalline oscillator

was integrated for use as a precision reference. The PPSBoard is linked

to the vehicle's pulse per second (PPS) signal output from the GPS

receiver. It also receives the GPS's NMEA strings and synchronizes its

PPS signal to the GPS derived PPS whenever a valid string is parsed.

The PPS signal from the PPSBoard is transmitted to the linux stack

on the Carrier Detect pin on a RS232 port. The PPSBoard also sends

an NMEA string to the linux stack which enumerates the PPS signal.

These signals are received by an ATOMNetwork Time Protocol (NTP)

Server which runs on board each vehicle, enabling precision timekeep-

ing by the kernel. The PPS signal from the PPSBoard also feeds into the

WHOI micro-modem2 enabling the modem to precisely time transmit

and receive events. Since the RS232 ports in the Iver-2 vehicles do not

have CD lines, a USB-serial converter was used. As such, the polling

frequency of the USB bus of 1 kHz limits the timing accuracy of the

kernel to about 0.5 ms. In practice, the NTP servers on each of vehi-

cles were not observed to drift relative to each beyond the error due

to the polling frequency as the vehicles had regular access to GPS for

synchronization. Thus, for a nominal sound speed velocity of 1500m/s

the timing induced error is below 1m.

In this work the topside acoustic transducer was dangled from the

support vessel. The topside's timing configuration was the same as
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F IGURE 2 AUVs used in the research field trails where from front to back the vehicles are the Iver-136, Iver-107, Iver-106 (left). Layout of key
AUV systems used in this work (right)

F IGURE 3 Block Diagram for the Acoustic Communications system
for both the topside and vehicle nodes

the AUVs except a stand-alone Garmin GPS-16HVS was used and the

software was running on a laptop aboard the support vessel. A gen-

eral schematic of the acoustic communications topology is shown in

Figure 3.

The vehicles and the topside transmitted on a fixed time division

multiple access (TDMA) cycle with a period of 60 s. In the cycle each

vehicle was allocated 10 s to allow sufficient time to reach all vehi-

cles with some buffer for clearing of the acoustic channel. The top of

the minute reset of the TDMA cycle and 10 s vehicle interval facili-

tated easy interpretation by human operators. The remaining 20 s in

the cycle was left for user initiated commands from the topside to the

vehicles such as two-way range, stopmission, startmission and change

way-point.

The dead-reckoning algorithm in this work uses an estimated veloc-

ity computed from the commanded propeller speed. This model was

established by driving the vehicles at the surface of a lake at different

commanded propeller speeds and measuring the speed given by the

GPS. The submerged speed will be slightly different due to additional

drag while the vehicle is at the surface. To compensate for this differ-

ence, the surface speed model is adjusted by performing shallow dives

in straight lines in the lake. Afterwards, the speed model is adjusted

for these dives such that the surfacing error between the last dead-

reckoned location and first good GPS location is minimized.

4 FIELD TRIALS

Two sets of field trials were used to perform this work. The first set

of trials took place in the Monterey Bay Canyon as part of the Keck

Institute for Space Studies funded “Satellites to the Seafloor” year one

research project from August 27, 2016 to September 5, 2016. These

trials were used to develop the algorithms based on the logged data.

Subsequently, a further set of trialswereperformed inOctober2016 in

Ashumet Pond near Woods Hole, MA to examine the closed-loop per-

formance of theOWTTmulti-vehicle navigational aiding.

4.1 Monterey bay field trials

In these trials the Iver-2 AUVs were deployed from the R/V Shana Rae

based out of Santa Cruz, CA, to locations determined to be interesting

basedona300mgridded regional oceanmodel. Thefield trial datapre-

sented in the next section is from data gathered during deployments

on September 1 and 2, 2016 with locations shown in Figure 4. For

the data gathered on September 1, Iver-106 and Iver-107 were in the

water performing the top and bottom half of a 3 km butter-fly pattern.

Because of logistical problems the data from Iver-107 was not logged,

however, Iver-106 was still able to benefit from its acoustic trans-

missions. On September 2, Iver-106 and Iver-107 were deployed to

perform a complete 3km butterfly pattern but in opposite directions.

On each day the topside transducer was dangled from the R/V Shana

Rae which drifted in a central position, re-positioning as needed to

maintain communicationswith the submerged vehicles. For all of these

deployments the AUVs were programmed to perform repeated pro-

files (yos) down to 10 m altitude or 80 m depth. The AUVs used model

velocity based dead-reckoning to navigate between waypoints spaced

evenly along each length of the butterfly pattern.

Because of the use of dead-reckoning the AUVs navigation error

grows between surfacing due to the ocean currents in the region

which are not accounted for and to errors in the heading reference.

To provide a comparative location for the navigation results developed

here the dead-reckoned solution is corrected in post-processingwith a

water velocity estimatebasedon thedifferencebetween the last dead-

reckoned locationandfirstGPS locationuponsurfacingas illustrated in

Figure 5.
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F IGURE 4 Location of field trials inMoneterey Bay California show-
ing the tracklines of the AUVs for the Sept. 1 (gray) and Sept. 2 trials
(black)

F IGURE 5 Locations of the GPS fixes and dead-reckoning (DR)
showing the GPS corrected dead-reckoning (GPS-DR) which takes the
difference between the last dead-reckoned location and the first GPS
location upon surfacing to compute a depth averaged water velocity
over the prior segment. The depth average water velocity is then used
to correct the DR to the GPS-DR

In this estimate, the water velocities are assumed to be constant

over the prior segment and their effects averaged over the water col-

umn. The GPS corrected dead-reckoning was then used as a bench-

mark for the development of the EKF and PF solution. Using this data

the parameters for the EKF and the PF were selected to minimize the

error across all of the field deployments.

Specifically, for the EKF implementation, 𝐐 is set to the identity

matrix 𝐈

𝐐 = 𝐈 (37)

and the velocity, GPS, range and bias estimate standard deviations as

in Table 1. For the PF implementation the number of particles N, the

dead-reckoning error growth rate 𝛼DR, and the range dependent error

𝛼rng are shown in Table 2.

TABLE 1 Parameters used in the EKF

Parameter Value

𝜎vel 1 (m/s)

𝜎GPS 10 (m)

𝜎rng 0.015 zk (m)

𝜎bias 0.25 (m/s)

TABLE 2 Parameters used in the PF

Parameter Value

N 2000

𝛼DR 0.4

𝛼rng 0.015 zk (m)

For the bias estimator terms we use a value of one, for the velocity

bias terms and for the clock bias termwe use a value of 0.0001:

𝐐 =
⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 0.0001

⎤⎥⎥⎥⎦ . (38)

Several different scenarios may be considered in post-processing

the data to examine the utility of each method. The first scenario con-

sidered is that of simply re-navigating the raw data where the vehi-

cles come to the surface periodically, use GPS to correct any accrued

error and submerge again. Here we also use the bias estimation and

accept transmissions from all vehicles. The second scenario is that of

only using the GPS for initializing the navigation solution and dead-

reckoning from that point on-wardswhile still using thebias estimation

and all beacons transmissions. To examine the utility of the bias estima-

tor, the third scenario does not use the bias estimator or GPS once ini-

tialized but does use transmissions from all the beacons. The last sce-

nario only uses transmissions from the topside beacon, uses the bias

estimator but not GPS after initialization. The performance of the EKF

and the PF in the second scenario, whereGPS is only used for initializa-

tion, is illustrated in Figure 6 for the data from Iver-106 and Iver107 on

September 2, 2017.

During these trials, both vehicles were deployed in the upper left

hand corners of Figure 6 from the R/V Shana Rae. Iver-106 performed

the first two legs before having its propeller fouled with seaweed,

necessitating its recovery. The other vehicle, Iver-107, was able to per-

form all four legs of its mission, requiring recovery due to its batter-

ies being depleted. In re-navigating this data both the EKF and the

PF are able to maintain convergence with errors dependent on the

inter-vehicle geometry and success rate of receptions. The similarity

between the two algorithms, their ability to handle gaps in received

ranges and the ability of the bias estimator to improve the solution is

illustrated in Figure 7.

The RMS error from each vehicle during this scenario is shown

against the 2𝜎 bounds in Figure 8. Here the gap in ranges for Iver-106

from Figure 7 is seen around the 2500 s mark in the top frame. Addi-

tionally, after around8300s, Iver-106 is recovered.During this process

the topside transducer was pulled up on the R/V Shana Rae to allow

for transiting to the recovery location. The effects of this process on
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F IGURE 6 Performance of the one-way-travel-time EKF and PF with bias estimation where the GPS is only used for initialization for Iver-106
(left) and Iver-107 (right) during the September 2 field trials inMonterey Bay, CA
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F IGURE 7 Close up of Iver-106 during the September 2 field trials
in Monterey Bay, CA where the vehicle is traversing from top left to
bottom right. Both the EKF and the PF show similar performance. The
top left shows a period of sparse range measurements after which the
2𝜎 error ellipses are initially large but converge after several success-
ful ranges. The bias estimator also shows its utility to provide a decent
estimate of the velocity bias during the gap in range updates as the EKF
and PF trajectories track the GPS-DRwell

Iver-107's navigation solution are seen from the 8300 s to just past the

10000 s mark. At this point both Iver-106 and the topside transducer

were on deck. The topside transducer was subsequently put back into

thewater around the 11000 smark afterwhich the navigation solution

re-converged. However, due to the lack of the other vehicle the errors

and error bounds are larger past this point.

The summary of all of the different scenarios are listed in Table 3.

In general, the PF implementation seems to slightly out-perform the

EKF solution. In every case the PF improves on the DR error whereas

the EKF improves on the error in every case except when the GPS is

used throughout. During these missions the vehicle's submerged seg-

ments are only about 10 to 12 min long over a distance of around 600

to 800 m. When the GPS is used as available there is very little differ-

TABLE 3 RMS Errors for the EKF and PF during the sept 1 and 2
experiments for vehicle's Iver-106 and Iver-107 which both use the
GPS readingsduring surfacings (All) or ignoreGPS readings exceptdur-
ing initialization (Init), make use of the bias estimation (Yes/No) and
make use all available beacons (All) or only the topside beacon (Top)

Date Vehicle GPS Bias Beacons EKFe PFe DRe

Sept1 106 All Yes All 23m 17m 24m

Sept1 106 Init Yes All 67m 61m 1500m

Sept1 106 Init No All 91m 93m 1500m

Sept1 106 Init Yes Top 212m 119m 1500m

Sept2 106 All Yes All 17m 8m 16m

Sept2 106 Init Yes All 41m 31m 855m

Sept2 106 Init No All 44m 48m 855m

Sept2 106 Init Yes Top 139m 180m 855m

Sept2 107 All Yes All 29m 18m 24m

Sept2 107 Init Yes All 92m 94m 444m

Sept2 107 Init No All 205m 93m 444m

Sept2 107 Init Yes Top 91m 146m 444m

ence among the PF, EKF and the DR solutions as the errors accrued

over this time are also small. However, when the GPS is only used for

initializing the DR solution the differences become more pronounced.

For instance, when the bias estimator and all received beacons used,

the DR errors of 1500 m, 855 m and 444 m are reduced to 67 m 41 m,

and 92 m for the EKF and 61 m, 31 m and 93 m for the PF during the

September 1, Iver-106, September 2, Iver-106 and September 2, Iver-

107 field trials respectively. If the bias estimation is not used the error

increases slightly in most cases and when only the topside beacon is

used the error generally increases further. These use cases illustrate

the effectiveness of using multiple sources to constrain the error and

the importance of bias estimation to capture persistent errors in the

velocity and time estimates of each platform.

4.2 Ashumet pond field trials

Subsequent to theMontereyBay Field Trials, closed-loopmulti-vehicle

one-way-travel-time navigation was performed during field trials in
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F IGURE 8 Errors and 2𝜎 error bounds of Iver-106 (top) and Iver-107 (bottom) during the September 2 field trials in Monterey Bay, CA. Here,
Iver-106 is recovered after 8300 s and the topside transducer is recovered from 9000 to 11000 s to facilitate recovery of Iver-106
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F IGURE 9 Overviewof vehicle tracks for Iver-136, Iver-106 and theR/VAurelia (topside) for theOctober 25, 2016 closed-loop trials in Ashumet
Pond. Ranges are shownbetween the estimated transmission location and theGPS location of the receiving vehicle for Iver-106 (Left) and Iver-136
(Right)

Ashumet Pond on October 25, 2016. In these trials Iver-106 and Iver-

136 were run on the surface such that the GPS measurements could

be used as ground truth while not being integrated into the naviga-

tion solution except for initialization. The topside was dangled from

the R/V Aurelia, a small rigid hull inflatable boat. Additionally, Iver-

106 was allowed to have its DVL measurements integrated into the

navigation solution while Iver-136 used the model velocity estimates

based on the propeller speed. This difference allows for a direct com-

parison between closed-loop multi-vehicle one-way-travel-time nav-

igation that uses DVL or model velocity based dead-reckoning for

its measurement update. The GPS tracks for each vehicle and the

R/V Aurelia are shown in Figure 9 along with the successful ranges

drawn from the transmission location estimate to the vehicle's GPS

location.

A summary of the trajectories of Iver-106 and Iver-136 dur-

ing these field trials are shown in Figure 10, the errors during the

closed-loop results in Figure 11 and a summary of the RMS errors in

Table 4.

During these trials the vehicles were deployed from shore. Iver-

136 was prepared and deployed first, followed by Iver-106 once

Iver-136 was clearly underway. The R/V Aurelia was then launched,

piloted out to deeperwater and the topside transducer deployed. Dur-

ing this sequence, Iver-136 received ranges with bad beacon location

estimates due to the navigation solution on the topside and Iver-106

not being initialized but the acoustic driver still transmitting on those

platforms. This improper initialization sequence would typically be

mitigated by the use of the GPS measurements while at the surface,

however, in this instance, the GPS was used for initialization only.

These bad beacon location estimates had the effect of biasing Iver-

136's closed-loop EKF estimate at the start of its mission as illus-

trated in Figure 10. In spite of this initial bias the closed-loop EKF solu-

tion managed to converge within 50 m of the GPS track after around

1500 s.

Iver-136's datawas re-navigatedwith the EKF in post-processing to

examine the effects of removing the two bad initial ranges. By remov-

ing these ranges the EKF solution remains much closer to the GPS
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F IGURE 10 Trajectories of the closed-loop one-way-travel-time trials for Iver-106 (Left) and Iver-136 (Right) during the October 25, 2016 field
trials in Ashumet Pond. During these trials Iver-106 used the DVL in its navigation solution while Iver-136 used model velocity based dead-
reckoning. The on-line closed-loop EKF solution with its 𝜎 error bounds are shown against the GPS corrected dead-reckoning and off-line PF
solution
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F IGURE 11 Errors and 2𝜎 error bounds of Iver-106 (Left) and Iver-136 (Right) during the October 25, 2016 field trials in Ashumet Pond, MA.
Here the Iver-106CL-EKF solution usesDVLmeasurementswhile the Iver-136CL-EKF uses amodel velocity based dead-reckoning estimate. Off-
line renavigation of each vehiclewith thePF shows a reduction in error in Iver-106's case by reducing the 𝛼DR to 0.05 and in Iver-136's case by being
less sensitive to the bad initial ranges

TABLE 4 RMS errors for the closed-loop EKF (CL-EKFe), re-
navigated EKF (EKFe), re-navigated PF (PFe) and dead-reckoned (DRe)
solutions during theOctober 25 Ashumet Pond field trials for vehicle's
Iver-106 and Iver-136 which use as their measurement update either
a Doppler velocity log (DVL) or model velocity based dead-reckoning
(M-DR)

Date Vehicle Measurement CL-EKFe EKFe PFe DRe

Oct25 106 DVL 19.6m 6.2m 6.3m 16.5m

Oct25 136 M-DR 51.0m 27.4m 25.8m 67.5m

measurements throughout. Additionally, the re-navigated EKF con-

verges to the closed-loop solution after approximately 1800 s. The PF

was also run in post-processing but allowed to take as inputs the two

bad initial ranges. Here, the PF solution outperforms the EKF, converg-

ing faster and being more robust to outliers. Specifically, if the initial

bad ranges are denied from the EKF solution in post-processing the

error decreases to 27mRMS from51mRMS andmatches closed-loop

solution after it has corrected for the initial bias. The PF solution in

post-processing was found to be robust to the bad ranges, only devi-

ating slightly and resulting in an error of 26 m RMS. These errors are

contrastedwith the dead reckoned error of 68mRMSover a traversed

distance of around 1600m.

During Iver-106's mission the vehicle's DR error was significantly

smaller relative to Iver-136's due to the use of the DVLmeasurements

in the navigation solution. During the closed-loop EKF trials the𝐐 and

𝐑 values were kept the same as those used previously in Section 4.1

with the exception of the 𝜎rng which was set to 10 m. For this reason

the performance of the Iver-106's closed-loop EKF with the DVL was

similar to the performance of Iver-136's EKF, neglecting the bad ini-

tial ranges, which only usedmodel velocities. However, a re-navigation

of Iver-106's data with the EKF and PF where the 𝐐 and 𝐑 values are

reduced to account for the DVL measurements had the result of sig-

nificantly reducing the RMS error. The values used forQ and R in Iver-

106's re-navigated EKF are

𝜎vel = 0.05 (m/s) (39)

𝐐 = 𝐈 ∗ 0.01 (40)
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and in the re-navigated PF the 𝜎DR was reduced to 0.05:

𝛼DR = 0.05. (41)

Specifically, the closed-loop EKF solution had an error of around 20 m

RMS on the DVL aided vehicle, Iver-106, compared with 17 m the

dead-reckoning error, respectively. With the adjusted values used in

post-processing the RMS error for the EKF and PF when the DVL is

used decreased down to 6 m RMS. These errors are contrasted with a

dead-reckoning error of 17mRMSover a traversed distance of around

1600m.

5 CONCLUSIONS

To compute the one way travel time (OWTT) navigation updates two

methods are presented, a tightly coupled extended Kalman filter (EKF)

and a loosely coupled particle filter (PF). In the EKF solution, global

positioning system (GPS), Doppler velocity log (DVL), model veloc-

ity and range measurements are fused into the EKF's estimates as

available. During the range measurement update the EKF's state and

covariance matrices are augmented to include the transmitting bea-

con's locationanduncertainty.Conversely, thePF implementation runs

on top of the EKF solution taking the place of the EKF during the range

measurement update. During the range measurement update the PF

uses theEKF's dead-reckoned solution topropagate theparticles, com-

putes a solution using the jitteredbootstrappedPFalgorithmand fuses

the location update back into the EKF solution. In both the EKF and PF,

the state estimates and range measurements may be used as an input

to a bias estimator which computes a velocity and time synchroniza-

tion bias. The bias estimator in this work is implemented as a loosely

coupled Kalman filter whose outputs are used to augment the veloc-

ity estimates used in the dead-reckoning solution and the time of flight

used in the rangemeasurement.

Thesemethodswere developed using data gathered during field tri-

als with two Iver-2 Autonomous Underwater Vehicles (AUVs) and a

topside transducer dangled from the R/V Shana Rae in Monterey Bay,

CA on September 1 and 2, 2016. These trials were used to evaluate the

short term and long term effectiveness of the EKF and PF, the utility

of the bias estimator and the use of a topside only or all to all acous-

tic topology. In the short runs between GPS updates the PF was found

to improve on the dead-reckoning solution whereas the EKF did not.

When the GPS was used only for initialization, both the EKF and the

PF improve on the dead-reckoning performance significantly with the

PF slightly outperforming the EKF inmost cases. If the bias estimator is

not used or when only the topside beacon is used, the EKF and PF per-

form worse than when the bias estimator is used and all beacons are

used.

The EKF solution without the bias estimator was then used in

closed-loop trials on October 25, 2016 in Ashumet Pond, MA. In these

trials two of the Iver-2 AUVs were used in addition to the topside

installed on small rigid hull inflatable boat. One of the AUVs was

allowed to use the DVL as input to the EKFwhereas the other was not,

providing a direct comparison between the closed-loop multi-vehicle

OWTT navigation with a DVL and a model velocity dead-reckoning

solution. In this case both vehiclesmaintained convergencewith errors

of 20 m RMS and 51m RMS respectively despite the bad initial ranges

received by the model velocity aided vehicle. In post-processing the

DVL aided vehicle was able to have its error reduced to 6 m RMS in

both the EKF and PF by adjusting the process noise values account

for the DVL. Further, by removing the bad initial ranges from the EKF

solution in post-processing it was found to converge to the closed-loop

solution with an error of 27 m RMS. The PF solution was found to be

robust to the bad initial ranges in post-processingwith an error of 26m

RMS.

This work includes the first presentation of closed-loop one-way-

travel-time navigation of a group of autonomous underwater vehicles

aided by a topside beacon and extends prior contributions by using

low-grade odometry on the AUVs for the navigation update through

development of both an EKF solution and a PF solution. These esti-

mators include a bias estimator which compensates both for persis-

tent velocity errors due to water currents and modeling errors and

for timing errors due to slowly drifting reference clocks. Further, the

impact of the degraded navigation solution is quantified through a

direct comparison between a DVL aided and model velocity based

dead-reckoning navigation methods. These methods were developed

through extensive open ocean field trials and validated in closed-loop

in a local lake. Together, these contributions provide a demonstration

ofOWTTnavigationmethods suitable to vehicles equipped onlywith a

low-grade odometry solution, acoustic modem and precision clock ref-

erence enabling low power and low cost navigation of groups of AUVs.

The limited requirements of thesemethodsmake it directly applica-

ble to a diverse set of underwater navigation problems. Most directly,

the emerging class of micro-AUVs will directly benefit from the low

cost requirements of the needed hardware enabling further democra-

tizationof theuseofAUVs. Further, thismethod is applicable to naviga-

tional aiding of long duration platforms such as autonomous underwa-

ter gliders and long rangeAUVsdue its lowenergy requirements. It also

provides a natural path for scaling the navigational accuracy of vehicles

whichhaveDVLsandonly turn themonwhenhigh-accuracynavigation

is needed. Thiswork also provides a bounded navigational aid forAUVs

operating under ice, in the mid-water column and during their descent

in deep water where DVLs are often out of range of the bottom. Addi-

tionally, if one ormoreAUVs is used as the topside beacon the research

vessel is no longer neededenabling it to performother tasks in the area

or, in the case of long duration platforms, a completely ship-less survey.
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