11,381 research outputs found

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Application of High-precision Timing Systems to Distributed Survey Systems

    Get PDF
    In any hydrographic survey system that consists of more than one computer, one of the most difficult integration problems is to ensure that all components maintain a coherent sense of time. Since virtually all modern survey systems are of this type, timekeeping and synchronized timestamping of data as it is created is of significant concern. This paper describes a method for resolving this problem based on the IEEE 1588 Precise Time Protocol (PTP) implemented by hardware devices, layered with some custom software called the Software Grandmaster (SWGM) algorithm. This combination of hardware and software maintains a coherent sense of time between multiple ethernet-connected computers, on the order of 100 ns (rms) in the best case, of the timebase established by the local GPS-receiver clock. We illustrate the performance of this techniques in a practical survey system using a Reson 7P sonar processor connected to a Reson 7125 Multibeam Echosounder (MBES), integrated with an Applanix POS/MV 320 V4 and a conventional data capture computer. Using the timing capabilities of the PTP hardware implementations, we show that the timepieces achieve mean (hardware based) synchronization and timestamping within 100-150 ns (rms), and that the data created at the Reson 7P without hardware timestamps has a latency variability of 28 µs (rms) due to software constraints within the capture system. This compares to 288 ms (rms) using Reson’s standard hybrid hardware/software solution, and 13.6 ms (rms) using a conventional single-oscillator timestamping model

    Integrated Design Tools for Embedded Control Systems

    Get PDF
    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about important non-functional real-time control systems demands, such as fault-tolerance, safety,\ud reliability, etc.\ud The approach is based on software implementation of CSP process algebra, in a modern way (pure objectoriented design in Java). Furthermore, it is intended that the tool will support the desirable system-engineering stepwise refinement design approach, relying on past research achievements Âż the mechatronics design trajectory based on the building-blocks approach, covering all complex (mechatronics) engineering phases: physical system modeling, control law design, embedded control system implementation and real-life realization. Therefore, we expect that this project will result in an\ud adequate tool, with results applicable in a wide range of target hardware platforms, based on common (off-theshelf) distributed heterogeneous (cheap) processing units

    Fault tolerant architectures for integrated aircraft electronics systems

    Get PDF
    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered
    • …
    corecore