6,106 research outputs found

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    Modeling of thermally induced skew variations in clock distribution network

    Get PDF
    Clock distribution network is sensitive to large thermal gradients on the die as the performance of both clock buffers and interconnects are affected by temperature. A robust clock network design relies on the accurate analysis of clock skew subject to temperature variations. In this work, we address the problem of thermally induced clock skew modeling in nanometer CMOS technologies. The complex thermal behavior of both buffers and interconnects are taken into account. In addition, our characterization of the temperature effect on buffers and interconnects provides valuable insight to designers about the potential impact of thermal variations on clock networks. The use of industrial standard data format in the interface allows our tool to be easily integrated into existing design flow

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Ingress of threshold voltage-triggered hardware trojan in the modern FPGA fabric–detection methodology and mitigation

    Get PDF
    The ageing phenomenon of negative bias temperature instability (NBTI) continues to challenge the dynamic thermal management of modern FPGAs. Increased transistor density leads to thermal accumulation and propagates higher and non-uniform temperature variations across the FPGA. This aggravates the impact of NBTI on key PMOS transistor parameters such as threshold voltage and drain current. Where it ages the transistors, with a successive reduction in FPGA lifetime and reliability, it also challenges its security. The ingress of threshold voltage-triggered hardware Trojan, a stealthy and malicious electronic circuit, in the modern FPGA, is one such potential threat that could exploit NBTI and severely affect its performance. The development of an effective and efficient countermeasure against it is, therefore, highly critical. Accordingly, we present a comprehensive FPGA security scheme, comprising novel elements of hardware Trojan infection, detection, and mitigation, to protect FPGA applications against the hardware Trojan. Built around the threat model of a naval warship’s integrated self-protection system (ISPS), we propose a threshold voltage-triggered hardware Trojan that operates in a threshold voltage region of 0.45V to 0.998V, consuming ultra-low power (10.5nW), and remaining stealthy with an area overhead as low as 1.5% for a 28 nm technology node. The hardware Trojan detection sub-scheme provides a unique lightweight threshold voltage-aware sensor with a detection sensitivity of 0.251mV/nA. With fixed and dynamic ring oscillator-based sensor segments, the precise measurement of frequency and delay variations in response to shifts in the threshold voltage of a PMOS transistor is also proposed. Finally, the FPGA security scheme is reinforced with an online transistor dynamic scaling (OTDS) to mitigate the impact of hardware Trojan through run-time tolerant circuitry capable of identifying critical gates with worst-case drain current degradation

    Degradation Models and Optimizations for CMOS Circuits

    Get PDF
    Die GewĂ€hrleistung der ZuverlĂ€ssigkeit von CMOS-Schaltungen ist derzeit eines der grĂ¶ĂŸten Herausforderungen beim Chip- und Schaltungsentwurf. Mit dem Ende der Dennard-Skalierung erhöht jede neue Generation der Halbleitertechnologie die elektrischen Felder innerhalb der Transistoren. Dieses stĂ€rkere elektrische Feld stimuliert die DegradationsphĂ€nomene (Alterung der Transistoren, Selbsterhitzung, Rauschen, usw.), was zu einer immer stĂ€rkeren Degradation (Verschlechterung) der Transistoren fĂŒhrt. Daher erleiden die Transistoren in jeder neuen Technologiegeneration immer stĂ€rkere Verschlechterungen ihrer elektrischen Parameter. Um die FunktionalitĂ€t und ZuverlĂ€ssigkeit der Schaltung zu wahren, wird es daher unerlĂ€sslich, die Auswirkungen der geschwĂ€chten Transistoren auf die Schaltung prĂ€zise zu bestimmen. Die beiden wichtigsten Auswirkungen der Verschlechterungen sind ein verlangsamtes Schalten, sowie eine erhöhte Leistungsaufnahme der Schaltung. Bleiben diese Auswirkungen unberĂŒcksichtigt, kann die verlangsamte Schaltgeschwindigkeit zu Timing-Verletzungen fĂŒhren (d.h. die Schaltung kann die Berechnung nicht rechtzeitig vor Beginn der nĂ€chsten Operation abschließen) und die FunktionalitĂ€t der Schaltung beeintrĂ€chtigen (fehlerhafte Ausgabe, verfĂ€lschte Daten, usw.). Um diesen Verschlechterungen der Transistorparameter im Laufe der Zeit Rechnung zu tragen, werden Sicherheitstoleranzen eingefĂŒhrt. So wird beispielsweise die Taktperiode der Schaltung kĂŒnstlich verlĂ€ngert, um ein langsameres Schaltverhalten zu tolerieren und somit Fehler zu vermeiden. Dies geht jedoch auf Kosten der Performanz, da eine lĂ€ngere Taktperiode eine niedrigere Taktfrequenz bedeutet. Die Ermittlung der richtigen Sicherheitstoleranz ist entscheidend. Wird die Sicherheitstoleranz zu klein bestimmt, fĂŒhrt dies in der Schaltung zu Fehlern, eine zu große Toleranz fĂŒhrt zu unnötigen Performanzseinbußen. Derzeit verlĂ€sst sich die Industrie bei der ZuverlĂ€ssigkeitsbestimmung auf den schlimmstmöglichen Fall (maximal gealterter Schaltkreis, maximale Betriebstemperatur bei minimaler Spannung, ungĂŒnstigste Fertigung, etc.). Diese Annahme des schlimmsten Falls garantiert, dass der Chip (oder integrierte Schaltung) unter allen auftretenden Betriebsbedingungen funktionsfĂ€hig bleibt. DarĂŒber hinaus ermöglicht die Betrachtung des schlimmsten Falles viele Vereinfachungen. Zum Beispiel muss die eigentliche Betriebstemperatur nicht bestimmt werden, sondern es kann einfach die schlimmstmögliche (sehr hohe) Betriebstemperatur angenommen werden. Leider lĂ€sst sich diese etablierte Praxis der BerĂŒcksichtigung des schlimmsten Falls (experimentell oder simulationsbasiert) nicht mehr aufrechterhalten. Diese BerĂŒcksichtigung bedingt solch harsche Betriebsbedingungen (maximale Temperatur, etc.) und Anforderungen (z.B. 25 Jahre Betrieb), dass die Transistoren unter den immer stĂ€rkeren elektrischen Felder enorme Verschlechterungen erleiden. Denn durch die Kombination an hoher Temperatur, Spannung und den steigenden elektrischen Feldern bei jeder Generation, nehmen die DegradationphĂ€nomene stetig zu. Das bedeutet, dass die unter dem schlimmsten Fall bestimmte Sicherheitstoleranz enorm pessimistisch ist und somit deutlich zu hoch ausfĂ€llt. Dieses Maß an Pessimismus fĂŒhrt zu erheblichen Performanzseinbußen, die unnötig und demnach vermeidbar sind. WĂ€hrend beispielsweise militĂ€rische Schaltungen 25 Jahre lang unter harschen Bedingungen arbeiten mĂŒssen, wird Unterhaltungselektronik bei niedrigeren Temperaturen betrieben und muss ihre FunktionalitĂ€t nur fĂŒr die Dauer der zweijĂ€hrigen Garantie aufrechterhalten. FĂŒr letzteres können die Sicherheitstoleranzen also deutlich kleiner ausfallen, um die Performanz deutlich zu erhöhen, die zuvor im Namen der ZuverlĂ€ssigkeit aufgegeben wurde. Diese Arbeit zielt darauf ab, maßgeschneiderte Sicherheitstoleranzen fĂŒr die einzelnen Anwendungsszenarien einer Schaltung bereitzustellen. FĂŒr fordernde Umgebungen wie Weltraumanwendungen (wo eine Reparatur unmöglich ist) ist weiterhin der schlimmstmögliche Fall relevant. In den meisten Anwendungen, herrschen weniger harsche Betriebssbedingungen (z.B. sorgen KĂŒhlsysteme fĂŒr niedrigere Temperaturen). Hier können Sicherheitstoleranzen maßgeschneidert und anwendungsspezifisch bestimmt werden, sodass Verschlechterungen exakt toleriert werden können und somit die ZuverlĂ€ssigkeit zu minimalen Kosten (Performanz, etc.) gewahrt wird. Leider sind die derzeitigen Standardentwurfswerkzeuge fĂŒr diese anwendungsspezifische Bestimmung der Sicherheitstoleranz nicht gut gerĂŒstet. Diese Arbeit zielt darauf ab, Standardentwurfswerkzeuge in die Lage zu versetzen, diesen Bedarf an ZuverlĂ€ssigkeitsbestimmungen fĂŒr beliebige Schaltungen unter beliebigen Betriebsbedingungen zu erfĂŒllen. Zu diesem Zweck stellen wir unsere ForschungsbeitrĂ€ge als vier Schritte auf dem Weg zu anwendungsspezifischen Sicherheitstoleranzen vor: Schritt 1 verbessert die Modellierung der DegradationsphĂ€nomene (Transistor-Alterung, -Selbsterhitzung, -Rauschen, etc.). Das Ziel von Schritt 1 ist es, ein umfassendes, einheitliches Modell fĂŒr die DegradationsphĂ€nomene zu erstellen. Durch die Verwendung von materialwissenschaftlichen Defektmodellierungen werden die zugrundeliegenden physikalischen Prozesse der DegradationsphĂ€nomena modelliert, um ihre Wechselwirkungen zu berĂŒcksichtigen (z.B. PhĂ€nomen A kann PhĂ€nomen B beschleunigen) und ein einheitliches Modell fĂŒr die simultane Modellierung verschiedener PhĂ€nomene zu erzeugen. Weiterhin werden die jĂŒngst entdeckten PhĂ€nomene ebenfalls modelliert und berĂŒcksichtigt. In Summe, erlaubt dies eine genaue Degradationsmodellierung von Transistoren unter gleichzeitiger BerĂŒcksichtigung aller essenziellen PhĂ€nomene. Schritt 2 beschleunigt diese Degradationsmodelle von mehreren Minuten pro Transistor (Modelle der Physiker zielen auf Genauigkeit statt Performanz) auf wenige Millisekunden pro Transistor. Die ForschungsbeitrĂ€ge dieser Dissertation beschleunigen die Modelle um ein Vielfaches, indem sie zuerst die Berechnungen so weit wie möglich vereinfachen (z.B. sind nur die Spitzenwerte der Degradation erforderlich und nicht alle Werte ĂŒber einem zeitlichen Verlauf) und anschließend die ParallelitĂ€t heutiger Computerhardware nutzen. Beide AnsĂ€tze erhöhen die Auswertungsgeschwindigkeit, ohne die Genauigkeit der Berechnung zu beeinflussen. In Schritt 3 werden diese beschleunigte Degradationsmodelle in die Standardwerkzeuge integriert. Die Standardwerkzeuge berĂŒcksichtigen derzeit nur die bestmöglichen, typischen und schlechtestmöglichen Standardzellen (digital) oder Transistoren (analog). Diese drei Typen von Zellen/Transistoren werden von der Foundry (Halbleiterhersteller) aufwendig experimentell bestimmt. Da nur diese drei Typen bestimmt werden, nehmen die Werkzeuge keine ZuverlĂ€ssigkeitsbestimmung fĂŒr eine spezifische Anwendung (Temperatur, Spannung, AktivitĂ€t) vor. Simulationen mit Degradationsmodellen ermöglichen eine Bestimmung fĂŒr spezifische Anwendungen, jedoch muss diese FĂ€higkeit erst integriert werden. Diese Integration ist eines der BeitrĂ€ge dieser Dissertation. Schritt 4 beschleunigt die Standardwerkzeuge. Digitale SchaltungsentwĂŒrfe, die nicht auf Standardzellen basieren, sowie komplexe analoge Schaltungen können derzeit nicht mit analogen Schaltungssimulatoren ausgewertet werden. Ihre Performanz reicht fĂŒr solch umfangreiche Simulationen nicht aus. Diese Dissertation stellt Techniken vor, um diese Werkzeuge zu beschleunigen und somit diese umfangreichen Schaltungen simulieren zu können. Diese ForschungsbeitrĂ€ge, die sich jeweils ĂŒber mehrere Veröffentlichungen erstrecken, ermöglichen es Standardwerkzeugen, die Sicherheitstoleranz fĂŒr kundenspezifische Anwendungsszenarien zu bestimmen. FĂŒr eine gegebene Schaltungslebensdauer, Temperatur, Spannung und AktivitĂ€t (Schaltverhalten durch Software-Applikationen) können die Auswirkungen der Transistordegradation ausgewertet werden und somit die erforderliche (weder unter- noch ĂŒberschĂ€tzte) Sicherheitstoleranz bestimmt werden. Diese anwendungsspezifische Sicherheitstoleranz, garantiert die ZuverlĂ€ssigkeit und FunktionalitĂ€t der Schaltung fĂŒr genau diese Anwendung bei minimalen Performanzeinbußen

    Design for Reliability and Low Power in Emerging Technologies

    Get PDF
    Die fortlaufende Verkleinerung von Transistor-StrukturgrĂ¶ĂŸen ist einer der wichtigsten Antreiber fĂŒr das Wachstum in der Halbleitertechnologiebranche. Seit Jahrzehnten erhöhen sich sowohl Integrationsdichte als auch KomplexitĂ€t von Schaltkreisen und zeigen damit einen fortlaufenden Trend, der sich ĂŒber alle modernen FertigungsgrĂ¶ĂŸen erstreckt. Bislang ging das Verkleinern von Transistoren mit einer Verringerung der Versorgungsspannung einher, was zu einer Reduktion der Leistungsaufnahme fĂŒhrte und damit eine gleichbleibenden Leistungsdichte sicherstellte. Doch mit dem Beginn von StrukturgrĂ¶ĂŸen im Nanometerbreich verlangsamte sich die fortlaufende Skalierung. Viele Schwierigkeiten, sowie das Erreichen von physikalischen Grenzen in der Fertigung und Nicht-IdealitĂ€ten beim Skalieren der Versorgungsspannung, fĂŒhrten zu einer Zunahme der Leistungsdichte und, damit einhergehend, zu erschwerten Problemen bei der Sicherstellung der ZuverlĂ€ssigkeit. Dazu zĂ€hlen, unter anderem, Alterungseffekte in Transistoren sowie ĂŒbermĂ€ĂŸige Hitzeentwicklung, nicht zuletzt durch stĂ€rkeres Auftreten von Selbsterhitzungseffekten innerhalb der Transistoren. Damit solche Probleme die ZuverlĂ€ssigkeit eines Schaltkreises nicht gefĂ€hrden, werden die internen Signallaufzeiten ĂŒblicherweise sehr pessimistisch kalkuliert. Durch den so entstandenen zeitlichen Sicherheitsabstand wird die korrekte FunktionalitĂ€t des Schaltkreises sichergestellt, allerdings auf Kosten der Performance. Alternativ kann die ZuverlĂ€ssigkeit des Schaltkreises auch durch andere Techniken erhöht werden, wie zum Beispiel durch Null-Temperatur-Koeffizienten oder Approximate Computing. Wenngleich diese Techniken einen Großteil des ĂŒblichen zeitlichen Sicherheitsabstandes einsparen können, bergen sie dennoch weitere Konsequenzen und Kompromisse. Bleibende Herausforderungen bei der Skalierung von CMOS Technologien fĂŒhren außerdem zu einem verstĂ€rkten Fokus auf vielversprechende Zukunftstechnologien. Ein Beispiel dafĂŒr ist der Negative Capacitance Field-Effect Transistor (NCFET), der eine beachtenswerte Leistungssteigerung gegenĂŒber herkömmlichen FinFET Transistoren aufweist und diese in Zukunft ersetzen könnte. Des Weiteren setzen Entwickler von Schaltkreisen vermehrt auf komplexe, parallele Strukturen statt auf höhere Taktfrequenzen. Diese komplexen Modelle benötigen moderne Power-Management Techniken in allen Aspekten des Designs. Mit dem Auftreten von neuartigen Transistortechnologien (wie zum Beispiel NCFET) mĂŒssen diese Power-Management Techniken neu bewertet werden, da sich AbhĂ€ngigkeiten und VerhĂ€ltnismĂ€ĂŸigkeiten Ă€ndern. Diese Arbeit prĂ€sentiert neue Herangehensweisen, sowohl zur Analyse als auch zur Modellierung der ZuverlĂ€ssigkeit von Schaltkreisen, um zuvor genannte Herausforderungen auf mehreren Designebenen anzugehen. Diese Herangehensweisen unterteilen sich in konventionelle Techniken ((a), (b), (c) und (d)) und unkonventionelle Techniken ((e) und (f)), wie folgt: (a)\textbf{(a)} Analyse von Leistungszunahmen in Zusammenhang mit der Maximierung von Leistungseffizienz beim Betrieb nahe der Transistor Schwellspannung, insbesondere am optimalen Leistungspunkt. Das genaue Ermitteln eines solchen optimalen Leistungspunkts ist eine besondere Herausforderung bei Multicore Designs, da dieser sich mit den jeweiligen Optimierungszielsetzungen und der Arbeitsbelastung verschiebt. (b)\textbf{(b)} Aufzeigen versteckter Interdependenzen zwischen Alterungseffekten bei Transistoren und Schwankungen in der Versorgungsspannung durch „IR-drops“. Eine neuartige Technik wird vorgestellt, die sowohl Über- als auch UnterschĂ€tzungen bei der Ermittlung des zeitlichen Sicherheitsabstands vermeidet und folglich den kleinsten, dennoch ausreichenden Sicherheitsabstand ermittelt. (c)\textbf{(c)} EindĂ€mmung von Alterungseffekten bei Transistoren durch „Graceful Approximation“, eine Technik zur Erhöhung der Taktfrequenz bei Bedarf. Der durch Alterungseffekte bedingte zeitlich Sicherheitsabstand wird durch Approximate Computing Techniken ersetzt. Des Weiteren wird Quantisierung verwendet um ausreichend Genauigkeit bei den Berechnungen zu gewĂ€hrleisten. (d)\textbf{(d)} EindĂ€mmung von temperaturabhĂ€ngigen Verschlechterungen der Signallaufzeit durch den Betrieb nahe des Null-Temperatur Koeffizienten (N-ZTC). Der Betrieb bei N-ZTC minimiert temperaturbedingte Abweichungen der Performance und der Leistungsaufnahme. Qualitative und quantitative Vergleiche gegenĂŒber dem traditionellen zeitlichen Sicherheitsabstand werden prĂ€sentiert. (e)\textbf{(e)} Modellierung von Power-Management Techniken fĂŒr NCFET-basierte Prozessoren. Die NCFET Technologie hat einzigartige Eigenschaften, durch die herkömmliche Verfahren zur Spannungs- und Frequenzskalierungen zur Laufzeit (DVS/DVFS) suboptimale Ergebnisse erzielen. Dies erfordert NCFET-spezifische Power-Management Techniken, die in dieser Arbeit vorgestellt werden. (f)\textbf{(f)} Vorstellung eines neuartigen heterogenen Multicore Designs in NCFET Technologie. Das Design beinhaltet identische Kerne; HeterogenitĂ€t entsteht durch die Anwendung der individuellen, optimalen Konfiguration der Kerne. Amdahls Gesetz wird erweitert, um neue system- und anwendungsspezifische Parameter abzudecken und die VorzĂŒge des neuen Designs aufzuzeigen. Die Auswertungen der vorgestellten Techniken werden mithilfe von Implementierungen und Simulationen auf Schaltkreisebene (gate-level) durchgefĂŒhrt. Des Weiteren werden Simulatoren auf Systemebene (system-level) verwendet, um Multicore Designs zu implementieren und zu simulieren. Zur Validierung und Bewertung der EffektivitĂ€t gegenĂŒber dem Stand der Technik werden analytische, gate-level und system-level Simulationen herangezogen, die sowohl synthetische als auch reale Anwendungen betrachten

    A self-timed multipurpose delay sensor for field programmable gate arrays (FPGAs)

    Get PDF
    This paper presents a novel self-timed multi-purpose sensor especially conceived for Field Programmable Gate Arrays (FPGAs). The aim of the sensor is to measure performance variations during the life-cycle of the device, such as process variability, critical path timing and temperature variations. The proposed topology, through the use of both combinational and sequential FPGA elements, amplifies the time of a signal traversing a delay chain to produce a pulse whose width is the sensor’s measurement. The sensor is fully self-timed, avoiding the need for clock distribution networks and eliminating the limitations imposed by the system clock. One single off- or on-chip time-to-digital converter is able to perform digitization of several sensors in a single operation. These features allow for a simplified approach for designers wanting to intertwine a multi-purpose sensor network with their application logic. Employed as a temperature sensor, it has been measured to have an error of ±0.67 °C, over the range of 20–100 °C, employing 20 logic elements with a 2-point calibration

    A Monitoring Infrastructure for FPGA Self-Awareness and Dynamic Adaptation

    Full text link
    Variabilities associated with CMOS evolution affect the yield and performance of current digital designs. FPGAs, which are widely used for fast prototyping and implementation of digital circuits, also suffer from these issues. Proactive approaches start to appear to achieve self-awareness and dynamic adaptation of these devices. To support these techniques we propose the employment of a multi-purpose sensor network. This infrastructure, through adequate use of configuration and automation tools, is able to obtain relevant data along the life cycle of an FPGA. This is realised at a very reduced cost, not only in terms of area or other limited resources, but also regarding the design effort required to define and deploy the measuring infrastructure. Our proposal has been validated by measuring inter-die and intra-die variability in different FPGA families

    Degradation in FPGAs: Monitoring, Modeling and Mitigation

    Get PDF
    This dissertation targets the transistor aging degradation as well as the associated thermal challenges in FPGAs (since there is an exponential relation between aging and chip temperature). The main objectives are to perform experimentation, analysis and device-level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow to mitigate the aging
    • 

    corecore