8 research outputs found

    TarTar: A Timed Automata Repair Tool

    Full text link
    We present TarTar, an automatic repair analysis tool that, given a timed diagnostic trace (TDT) obtained during the model checking of a timed automaton model, suggests possible syntactic repairs of the analyzed model. The suggested repairs include modified values for clock bounds in location invariants and transition guards, adding or removing clock resets, etc. The proposed repairs are guaranteed to eliminate executability of the given TDT, while preserving the overall functional behavior of the system. We give insights into the design and architecture of TarTar, and show that it can successfully repair 69% of the seeded errors in system models taken from a diverse suite of case studies.Comment: 15 pages, 7 figure

    Explaining Safety Violations in Real-Time Systems

    Get PDF
    International audienceWe tackle the problem of explaining faults in real-time systems. Intuitively, an explanation of the violation of a safety property by an execution is a concise excerpt of the faulty execution that retains only the elements that were relevant for entailing the violation, thus exhibiting how causes accumulate over time and propagate to entail the effect. Fault explanation therefore goes beyond the well-known concepts of fault diagnosis and localization.We provide a formal definition of causal explanations on dense-time models, based on the wellstudied formalisms of timed automata and zone-based abstractions. Our approach is able to account for limited observability of the faulty execution. We propose a symbolic formalizationto effectively construct such explanations, which we have implemented in a prototype tool. We illustrate our approach on several examples

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Timed Automata Robustness Analysis via Model Checking

    Get PDF
    Timed automata (TA) have been widely adopted as a suitable formalism to model time-critical systems. Furthermore, contemporary model-checking tools allow the designer to check whether a TA complies with a system specification. However, the exact timing constants are often uncertain during the design phase. Consequently, the designer is often able to build a TA with a correct structure, however, the timing constants need to be tuned to satisfy the specification. Moreover, even if the TA initially satisfies the specification, it can be the case that just a slight perturbation during the implementation causes a violation of the specification. Unfortunately, model-checking tools are usually not able to provide any reasonable guidance on how to fix the model in such situations. In this paper, we propose several concepts and techniques to cope with the above mentioned design phase issues when dealing with reachability and safety specifications

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Clock Bound Repair for Timed Systems

    No full text
    We present algorithms and techniques for the repair of timed system models, given as networks of timed automata (NTA). The repair is based on an analysis of timed diagnostic traces (TDTs) that are computed by real-time model checking tools, such as UPPAAL, when they detect the violation of a timed safety property. We present an encoding of TDTs in linear real arithmetic and use the MaxSMT capabilities of the SMT solver Z3 to compute possible repairs to clock bound values that minimize the necessary changes to the automaton. We then present an admissibility criterion, called functional equivalence, that assesses whether a proposed repair is admissible in the overall context of the NTA. We have implemented a proof-of-concept tool called TarTar for the repair and admissibility analysis. To illustrate the method, we have considered a number of case studies taken from the literature and automatically injected changes to clock bounds to generate faulty mutations. Our technique is able to compute a feasible repair for 91% of the faults detected by UPPAAL in the generated mutants.publishe
    corecore