9 research outputs found

    Analysis of low-density parity-check codes on impulsive noise channels

    Get PDF
    PhD ThesisCommunication channels can severely degrade a signal, not only due to fading effects but also interference in the form of impulsive noise. In conventional communication systems, the additive noise at the receiver is usually assumed to be Gaussian distributed. However, this assumption is not always valid and examples of non-Gaussian distributed noise include power line channels, underwater acoustic channels and manmade interference. When designing a communication system it is useful to know the theoretical performance in terms of bit-error probability (BEP) on these types of channels. However, the effect of impulses on the BEP performance has not been well studied, particularly when error correcting codes are employed. Today, advanced error-correcting codes with very long block lengths and iterative decoding algorithms, such as Low-Density Parity-Check (LDPC) codes and turbo codes, are popular due to their capacity-approaching performance. However, very long codes are not always desirable, particularly in communications systems where latency is a serious issue, such as in voice and video communication between multiple users. This thesis focuses on the analysis of short LDPC codes. Finite length analyses of LDPC codes have already been presented for the additive white Gaussian noise channel in the literature, but the analysis of short LDPC codes for channels that exhibit impulsive noise has not been investigated. The novel contributions in this thesis are presented in three sections. First, uncoded and LDPC-coded BEP performance on channels exhibiting impulsive noise modelled by symmetric -stable (S S) distributions are examined. Different sub-optimal receivers are compared and a new low-complexity receiver is proposed that achieves near-optimal performance. Density evolution is then used to derive the threshold signal-tonoise ratio (SNR) of LDPC codes that employ these receivers. In order to accurately predict the waterfall performance of short LDPC codes, a nite length analysis is proposed with the aid of the threshold SNRs of LDPC codes and the derived uncoded BEPs for impulsive noise channels. Second, to investigate the e ect of impulsive noise on wireless channels, the analytic BEP on generalized fading channels with S S noise is derived. However, it requires the evaluation of a double integral to obtain the analytic BEP, so to reduce the computational cost, the Cauchy- Gaussian mixture model and the asymptotic property of S S process are used to derive upper bounds of the exact BEP. Two closed-form expressions are derived to approximate the exact BEP on a Rayleigh fading channel with S S noise. Then density evolution of different receivers is derived for these channels to nd the asymptotic performance of LDPC codes. Finally, the waterfall performance of LDPC codes is again estimated for generalized fading channels with S S noise by utilizing the derived uncoded BEP and threshold SNRs. Finally, the addition of spatial diversity at the receiver is investigated. Spatial diversity is an effective method to mitigate the effects of fading and when used in conjunction with LDPC codes and can achieve excellent error-correcting performance. Hence, the performance of conventional linear diversity combining techniques are derived. Then the SNRs of these linear combiners are compared and the relationship of the noise power between different linear combiners is obtained. Nonlinear detectors have been shown to achieve better performance than linear combiners hence, optimal and sub-optimal detectors are also presented and compared. A non-linear detector based on the bi-parameter Cauchy-Gaussian mixture model is used and shows near-optimal performance with a significant reduction in complexity when compared with the optimal detector. Furthermore, we show how to apply density evolution of LDPC codes for different combining techniques on these channels and an estimation of the waterfall performance of LDPC codes is derived that reduces the gap between simulated and asymptotic performance. In conclusion, the work presented in this thesis provides a framework to evaluate the performance of communication systems in the presence of additive impulsive noise, with and without spatial diversity at the receiver. For the first time, bounds on the BEP performance of LDPC codes on channels with impulsive noise have been derived for optimal and sub-optimal receivers, allowing other researchers to predict the performance of LDPC codes in these type of environments without needing to run lengthy computer simulations

    Architecture and algorithms for the implementation of digital wireless receivers in FPGA and ASIC: ISDB-T and DVB-S2 cases

    Full text link
    [EN] The first generation of Terrestrial Digital Television(DTV) has been in service for over a decade. In 2013, several countries have already completed the transition from Analog to Digital TV Broadcasting, most of which in Europe. In South America, after several studies and trials, Brazil adopted the Japanese standard with some innovations. Japan and Brazil started Digital Terrestrial Television Broadcasting (DTTB) services in December 2003 and December 2007 respectively, using Integrated Services Digital Broadcasting - Terrestrial (ISDB-T), also known as ARIB STD-B31. In June 2005 the Committee for the Information Technology Area (CATI) of Brazilian Ministry of Science and Technology and Innovation MCTI approved the incorporation of the IC-Brazil Program, in the National Program for Microelectronics (PNM) . The main goals of IC-Brazil are the formal qualification of IC designers, support to the creation of semiconductors companies focused on projects of ICs within Brazil, and the attraction of semiconductors companies focused on the design and development of ICs in Brazil. The work presented in this thesis originated from the unique momentum created by the combination of the birth of Digital Television in Brazil and the creation of the IC-Brazil Program by the Brazilian government. Without this combination it would not have been possible to make these kind of projects in Brazil. These projects have been a long and costly journey, albeit scientifically and technologically worthy, towards a Brazilian DTV state-of-the-art low complexity Integrated Circuit, with good economy scale perspectives, due to the fact that at the beginning of this project ISDB-T standard was not adopted by several countries like DVB-T. During the development of the ISDB-T receiver proposed in this thesis, it was realized that due to the continental dimensions of Brazil, the DTTB would not be enough to cover the entire country with open DTV signal, specially for the case of remote localizations far from the high urban density regions. Then, Eldorado Research Institute and Idea! Electronic Systems, foresaw that, in a near future, there would be an open distribution system for high definition DTV over satellite, in Brazil. Based on that, it was decided by Eldorado Research Institute, that would be necessary to create a new ASIC for broadcast satellite reception. At that time DVB-S2 standard was the strongest candidate for that, and this assumption still stands nowadays. Therefore, it was decided to apply to a new round of resources funding from the MCTI - that was granted - in order to start the new project. This thesis discusses in details the Architecture and Algorithms proposed for the implementation of a low complexity Intermediate Frequency(IF) ISDB-T Receiver on Application Specific Integrated Circuit (ASIC) CMOS. The Architecture proposed here is highly based on the COordinate Rotation Digital Computer (CORDIC) Algorithm, that is a simple and efficient algorithm suitable for VLSI implementations. The receiver copes with the impairments inherent to wireless channels transmission and the receiver crystals. The thesis also discusses the Methodology adopted and presents the implementation results. The receiver performance is presented and compared to those obtained by means of simulations. Furthermore, the thesis also presents the Architecture and Algorithms for a DVB-S2 receiver targeting its ASIC implementation. However, unlike the ISDB-T receiver, only preliminary ASIC implementation results are introduced. This was mainly done in order to have an early estimation of die area to prove that the project in ASIC is economically viable, as well as to verify possible bugs in early stage. As in the case of ISDB-T receiver, this receiver is highly based on CORDIC algorithm and it was prototyped in FPGA. The Methodology used for the second receiver is derived from that used for the ISDB-T receiver, with minor additions given the project characteristics.[ES] La primera generaci贸n de Televisi贸n Digital Terrestre(DTV) ha estado en servicio por m谩s de una d茅cada. En 2013, varios pa铆ses completaron la transici贸n de transmisi贸n anal贸gica a televisi贸n digital, la mayor铆a de ellas en Europa. En Am茅rica del Sur, despu茅s de varios estudios y ensayos, Brasil adopt贸 el est谩ndar japon茅s con algunas innovaciones. Jap贸n y Brasil comenzaron a prestar el servicio de Difusi贸n de Televisi贸n Digital Terrestre (DTTB) en diciembre de 2003 y diciembre de 2007 respectivamente, utilizando Radiodifusi贸n Digital de Servicios Integrados Terrestres (ISDB-T), tambi茅n conocida como ARIB STD-B31. En junio de 2005, el Comit茅 del 脕rea de Tecnolog铆a de la Informaci贸n (CATI) del Ministerio de Ciencia, Tecnolog铆a e Innovaci贸n de Brasil - MCTI aprob贸 la incorporaci贸n del Programa CI-Brasil, en el Programa Nacional de Microelectr贸nica (PNM). Los principales objetivos de la CI-Brasil son la formaci贸n de dise帽adores de CIs, apoyar la creaci贸n de empresas de semiconductores enfocadas en proyectos de circuitos integrados dentro de Brasil, y la atracci贸n de empresas de semiconductores interesadas en el dise帽o y desarrollo de circuitos integrados. El trabajo presentado en esta tesis se origin贸 en el impulso 煤nico creado por la combinaci贸n del nacimiento de la televisi贸n digital en Brasil y la creaci贸n del Programa de CI-Brasil por el gobierno brasile帽o. Sin esta combinaci贸n no hubiera sido posible realizar este tipo de proyectos en Brasil. Estos proyectos han sido un trayecto largo y costoso, aunque meritorio desde el punto de vista cient铆fico y tecnol贸gico, hacia un Circuito Integrado brasile帽o de punta y de baja complejidad para DTV, con buenas perspectivas de econom铆a de escala debido al hecho que al inicio de este proyecto, el est谩ndar ISDB-T no fue adoptado por varios pa铆ses como DVB-T. Durante el desarrollo del receptor ISDB-T propuesto en esta tesis, se observ贸 que debido a las dimensiones continentales de Brasil, la DTTB no ser铆a suficiente para cubrir todo el pa铆s con la se帽al de televisi贸n digital abierta, especialmente para el caso de localizaciones remotas, apartadas de las regiones de alta densidad urbana. En ese momento, el Instituto de Investigaci贸n Eldorado e Idea! Sistemas Electr贸nicos, previeron que en un futuro cercano habr铆a un sistema de distribuci贸n abierto para DTV de alta definici贸n por sat茅lite en Brasil. Con base en eso, el Instituto de Investigaci贸n Eldorado decidi贸 que ser铆a necesario crear un nuevo ASIC para la recepci贸n de radiodifusi贸n por sat茅lite, basada el est谩ndar DVB-S2. En esta tesis se analiza en detalle la Arquitectura y algoritmos propuestos para la implementaci贸n de un receptor ISDB-T de baja complejidad y frecuencia intermedia (IF) en un Circuito Integrado de Aplicaci贸n Espec铆fica (ASIC) CMOS. La arquitectura aqu铆 propuesta se basa fuertemente en el algoritmo Computadora Digital para Rotaci贸n de Coordenadas (CORDIC), el cual es un algoritmo simple, eficiente y adecuado para implementaciones VLSI. El receptor hace frente a las deficiencias inherentes a las transmisiones por canales inal谩mbricos y los cristales del receptor. La tesis tambi茅n analiza la metodolog铆a adoptada y presenta los resultados de la implementaci贸n. Por otro lado, la tesis tambi茅n presenta la arquitectura y los algoritmos para un receptor DVB-S2 dirigido a la implementaci贸n en ASIC. Sin embargo, a diferencia del receptor ISDB-T, se introducen s贸lo los resultados preliminares de implementaci贸n en ASIC. Esto se hizo principalmente con el fin de tener una estimaci贸n temprana del 谩rea del die para demostrar que el proyecto en ASIC es econ贸micamente viable, as铆 como para verificar posibles errores en etapa temprana. Como en el caso de receptor ISDB-T, este receptor se basa fuertemente en el algoritmo CORDIC y fue un prototipado en FPGA. La metodolog铆a utilizada para el segundo receptor se deriva de la utilizada para el re[CA] La primera generaci贸 de Televisi贸 Digital Terrestre (TDT) ha estat en servici durant m茅s d'una d猫cada. En 2013, diversos pa茂sos ja van completar la transici贸 de la radiodifusi贸 de televisi贸 anal貌gica a la digital, i la majoria van ser a Europa. A Am猫rica del Sud, despr茅s de diversos estudis i assajos, Brasil va adoptar l'est脿ndard japon茅s amb algunes innovacions. Jap贸 i Brasil van comen莽ar els servicis de Radiodifusi贸 de Televisi贸 Terrestre Digital (DTTB) al desembre de 2003 i al desembre de 2007, respectivament, utilitzant la Radiodifusi贸 Digital amb Servicis Integrats de (ISDB-T), coneguda com a ARIB STD-B31. Al juny de 2005, el Comit茅 de l'脌rea de Tecnologia de la Informaci贸 (CATI) del Ministeri de Ci猫ncia i Tecnologia i Innovaci贸 del Brasil (MCTI) va aprovar la incorporaci贸 del programa CI Brasil al Programa Nacional de Microelectr貌nica (PNM). Els principals objectius de CI Brasil s贸n la qualificaci贸 formal dels dissenyadors de circuits integrats, el suport a la creaci贸 d'empreses de semiconductors centrades en projectes de circuits integrats dins del Brasil i l'atracci贸 d'empreses de semiconductors centrades en el disseny i desenvolupament de circuits integrats. El treball presentat en esta tesi es va originar en l'impuls 煤nic creat per la combinaci贸 del naixement de la televisi贸 digital al Brasil i la creaci贸 del programa Brasil CI pel govern brasiler. Sense esta combinaci贸 no hauria estat possible realitzar este tipus de projectes a Brasil. Estos projectes han suposat un viatge llarg i cost贸s, tot i que digne cient铆ficament i tecnol貌gica, cap a un circuit integrat punter de baixa complexitat per a la TDT brasilera, amb bones perspectives d'economia d'escala perqu猫 a l'inici d'este projecte l'est脿ndard ISDB-T no va ser adoptat per diversos pa茂sos, com el DVB-T. Durant el desenvolupament del receptor de ISDB-T proposat en esta tesi, va resultar que, a causa de les dimensions continentals de Brasil, la DTTB no seria suficient per cobrir tot el pa铆s amb el senyal de TDT oberta, especialment pel que fa a les localitzacions remotes allunyades de les regions d'alta densitat urbana.. En este moment, l'Institut de Recerca Eldorado i Idea! Sistemes Electr貌nics van preveure que, en un futur pr貌xim, no hi hauria a Brasil un sistema de distribuci贸 oberta de TDT d'alta definici贸 a trav茅s de sat猫l驴lit. D'acord amb aix貌, l'Institut de Recerca Eldorado va decidir que seria necessari crear un nou ASIC per a la recepci贸 de radiodifusi贸 per sat猫l驴lit. basat en l'est脿ndard DVB-S2. En esta tesi s'analitza en detall l'arquitectura i els algorismes proposats per l'execuci贸 d'un receptor ISDB-T de Freq眉猫ncia Interm猫dia (FI) de baixa complexitat sobre CMOS de Circuit Integrat d'Aplicacions Espec铆fiques (ASIC). L'arquitectura ac铆 proposada es basa molt en l'algorisme de l'Ordinador Digital de Rotaci贸 de Coordenades (CORDIC), que 茅s un algorisme simple i eficient adequat per implementacions VLSI. El receptor fa front a les defici猫ncies inherents a la transmissi贸 de canals sense fil i els cristalls del receptor. Esta tesi tamb茅 analitza la metodologia adoptada i presenta els resultats de l'execuci贸. Es presenta el rendiment del receptor i es compara amb els obtinguts per mitj脿 de simulacions. D'altra banda, esta tesi tamb茅 presenta l'arquitectura i els algorismes d'un receptor de DVB-S2 de cara a la seua implementaci贸 en ASIC. No obstant aix貌, a difer猫ncia del receptor ISDB-T, nom茅s s'introdueixen resultats preliminars d'implementaci贸 en ASIC. Aix貌 es va fer principalment amb la finalitat de tenir una estimaci贸 primerenca de la zona de dau per demostrar que el projecte en ASIC 茅s econ貌micament viable, aix铆 com per verificar possibles errors en l'etapa primerenca. Com en el cas del receptor ISDB-T, este receptor es basa molt en l'algorisme CORDIC i va ser un prototip de FPGA. La metodologia utilitzada per al segon receptor es deriva de la utilitzada per al receptor IRodrigues De Lima, E. (2016). Architecture and algorithms for the implementation of digital wireless receivers in FPGA and ASIC: ISDB-T and DVB-S2 cases [Tesis doctoral no publicada]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/61967TESI

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    Robust wireless sensor network for smart grid communication : modeling and performance evaluation

    Get PDF
    Our planet is gradually heading towards an energy famine due to growing population and industrialization. Hence, increasing electricity consumption and prices, diminishing fossil fuels and lack significantly in environment-friendliness due to their emission of greenhouse gasses, and inefficient usage of existing energy supplies have caused serious network congestion problems in many countries in recent years. In addition to this overstressed situation, nowadays, the electric power system is facing many challenges, such as high maintenance cost, aging equipment, lack of effective fault diagnostics, power supply reliability, etc., which further increase the possibility of system breakdown. Furthermore, the adaptation of the new renewable energy sources with the existing power plants to provide an alternative way for electricity production transformed it in a very large and complex scale, which increases new issues. To address these challenges, a new concept of next generation electric power system, called the "smart grid", has emerged in which Information and Communication Technologies (ICTs) are playing the key role. For a reliable smart grid, monitoring and control of power system parameters in the transmission and distribution segments are crucial. This necessitates the deployment of a robust communication network within the power grid. Traditionally, power grid communications are realized through wired communications, including power line communication (PLC). However, the cost of its installation might be expensive especially for remote control and monitoring applications. More recently, plenty of research interests have been drawn to the wireless communications for smart grid applications. In this regard, the most promising methods of smart grid monitoring explored in the literature is based on wireless sensor network (WSN). Indeed, the collaborative nature of WSN brings significant advantages over the traditional wireless networks, including low-cost, wider coverage, self-organization, and rapid deployment. Unfortunately, harsh and hostile electric power system environments pose great challenges in the reliability of sensor node communications because of strong RF interference and noise called impulsive noise. On account of the fundamental of WSN-based smart grid communications and the possible impacts of impulsive noise on the reliability of sensor node communications, this dissertation is supposed to further fill the lacking of the existing research outcomes. To be specific, the contributions of this dissertation can be summarized as three fold: (i) investigation and performance analysis of impulsive noise mitigation techniques for point-to-point single-carrier communication systems impaired by bursty impulsive noise; (ii) design and performance analysis of collaborative WSN for smart grid communication by considering the RF noise model in the designing process, a particular intension is given to how the time-correlation among the noise samples can be taken into account; (iii) optimal minimum mean square error (MMSE)estimation of physical phenomenon like temperature, current, voltage, etc., typically modeled by a Gaussian source in the presence of impulsive noise. In the first part, we compare and analyze the widely used non-linear methods such as clipping, blanking, and combined clipping-blanking to mitigate the noxious effects of bursty impulsive noise for point-to-point communication systems with low-density parity-check (LDPC) coded single-carrier transmission. While, the performance of these mitigation techniques are widely investigated for multi-carrier communication systems using orthogonal frequency division multiplexing (OFDM) transmission under the effect of memoryless impulsive noise, we note that OFDM is outperformed by its single-carrier counterpart when the impulses are very strong and/or they occur frequently, which likely exists in contemporary communication systems including smart grid communications. Likewise, the assumption of memoryless noise model is not valid for many communication scenarios. Moreover, we propose log-likelihood ratio (LLR)-based impulsive noise mitigation for the considered scenario. We show that the memory property of the noise can be exploited in the LLR calculation through maximum a posteriori (MAP) detection. In this context, provided simulation results highlight the superiority of the LLR-based mitigation scheme over the simple clipping/blanking schemes. The second contribution can be divided into two aspects: (i) we consider the performance analysis of a single-relay decode-and-forward (DF) cooperative relaying scheme over channels impaired by bursty impulsive noise. For this channel, the bit error rate (BER) performances of direct transmission and a DF relaying scheme using M-PSK modulation in the presence of Rayleigh fading with a MAP receiver are derived; (ii) as a continuation of single-relay collaborative WSN scheme, we propose a novel relay selection protocol for a multi-relay DF collaborative WSN taking into account the bursty impulsive noise. The proposed protocol chooses the N鈥檛h best relay considering both the channel gains and the states of the impulsive noise of the source-relay and relay-destination links. To analyze the performance of the proposed protocol, we first derive closed-form expressions for the probability density function (PDF) of the received SNR. Then, these PDFs are used to derive closed-form expressions for the BER and the outage probability. Finally, we also derive the asymptotic BER and outage expressions to quantify the diversity benefits. From the obtained results, it is seen that the proposed receivers based on the MAP detection criterion is the most suitable one for bursty impulsive noise environments as it has been designed according to the statistical behavior of the noise. Different from the aforementioned contributions, talked about the reliable detection of finite alphabets in the presence of bursty impulsive noise, in the thrid part, we investigate the optimal MMSE estimation for a scalar Gaussian source impaired by impulsive noise. In Chapter 5, the MMSE optimal Bayesian estimation for a scalar Gaussian source, in the presence of bursty impulsive noise is considered. On the other hand, in Chapter 6, we investigate the distributed estimation of a scalar Gaussian source in WSNs in the presence of Middleton class-A noise. From the obtained results we conclude that the proposed optimal MMSE estimator outperforms the linear MMSE estimator developed for Gaussian channel

    Coded-OFDM for PLC systems in non-Gaussian noise channels

    Get PDF
    PhD ThesisNowadays, power line communication (PLC) is a technology that uses the power line grid for communication purposes along with transmitting electrical energy, for providing broadband services to homes and offices such as high-speed data, audio, video and multimedia applications. The advantages of this technology are to eliminate the need for new wiring and AC outlet plugs by using an existing infrastructure, ease of installation and reduction of the network deployment cost. However, the power line grid is originally designed for the transmission of the electric power at low frequencies; i.e. 50/60 Hz. Therefore, the PLC channel appears as a harsh medium for low-power high-frequency communication signals. The development of PLC systems for providing high-speed communication needs precise knowledge of the channel characteristics such as the attenuation, non-Gaussian noise and selective fading. Non-Gaussian noise in PLC channels can classify into Nakagami-m background interference (BI) noise and asynchronous impulsive noise (IN) modelled by a Bernoulli-Gaussian mixture (BGM) model or Middleton class A (MCA) model. Besides the effects of the multipath PLC channel, asynchronous impulsive noise is the main reason causing performance degradation in PLC channels. Binary/non-binary low-density parity check B/NB-(LDPC) codes and turbo codes (TC) with soft iterative decoders have been proposed for Orthogonal Frequency Division Multiplexing (OFDM) system to improve the bit error rate (BER) performance degradation by exploiting frequency diversity. The performances are investigated utilizing high-order quadrature amplitude modulation (QAM) in the presence of non-Gaussian noise over multipath broadband power-line communication (BBPLC) channels. OFDM usually spreads the effect of IN over multiple sub-carriers after discrete Fourier transform (DFT) operation at the receiver, hence, it requires only a simple single-tap zero forcing (ZF) equalizer at the receiver. The thesis focuses on improving the performance of iterative decoders by deriving the effective, complex-valued, ratio distributions of the noise samples at the zeroforcing (ZF) equalizer output considering the frequency-selective multipath PLCs, background interference noise and impulsive noise, and utilizing the outcome for computing the apriori log likelihood ratios (LLRs) required for soft decoding algorithms. On the other hand, Physical-Layer Network Coding (PLNC) is introduced to help the PLC system to extend the range of operation for exchanging information between two users (devices) using an intermediate relay (hub) node in two-time slots in the presence of non-Gaussian noise over multipath PLC channels. A novel detection scheme is proposed to transform the transmit signal constellation based on the frequency-domain channel coefficients to optimize detection at the relay node with newly derived noise PDF at the relay and end nodes. Additionally, conditions for optimum detection utilizing a high-order constellation are derived. The closedform expressions of the BER and average BER upper-bound (AUB) are derived for a point-to-point system, and for a PLNC system at the end node to relay, relay to end node and at the end-to-end nodes. Moreover, the convergence behaviour of iterative decoders is evaluated using EXtrinsic Information Transfer (EXIT) chart analysis and upper bound analyses. Furthermore, an optimization of the threshold determination for clipping and blanking impulsive noise mitigation methods are derived. The proposed systems are compared in performance using simulation in MATLAB and analytical methods.Ministry of Higher Education in Ira

    Clipping Demapper for LDPC Decoding in Impulsive Channel

    No full text
    corecore