1,641 research outputs found

    Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals

    Full text link
    Unilateral spatial neglect is a common consequence of stroke that directly affects the performance of activities of daily living. This impairment is traditionally assessed with paper-and-pencil tests that can lack correspondence to real life and are easily compensated. Virtual reality can immerse patients in more ecological scenarios, thus providing therapists with new tools to assess and train the effects of this impairment in simulated real tasks. This paper presents the clinical validation and convergent validity of a low-cost virtual reality system for training street-crossing in stroke patients with and without neglect. The performance of neglect patients was significantly worse than the performance of non-neglect and healthy participants. In addition, several correlations between the scores in the system and in the traditional scales were detected.This study was funded in part by Ministerio de Educacion y Ciencia Spain, Projects Consolider-C (SEJ2006-14301/PSIC), "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII" and the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008-157).Navarro, MD.; Llorens RodrĂ­guez, R.; NoĂ©, E.; Ferri, J.; Alcañiz Raya, ML. (2013). Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychological Rehabilitation. 23(4):597-618. https://doi.org/10.1080/09602011.2013.806269S597618234Allegri, R. F. (2000). AtenciĂłn y negligencia: bases neurolĂłgicas, evaluaciĂłn y trastornos. Revista de NeurologĂ­a, 30(05), 491. doi:10.33588/rn.3005.99645Appelros, P., Karlsson, G. M., Seiger, Åke, & Nydevik, I. (2002). Neglect and Anosognosia After First-Ever Stroke: Incidence and Relationship to Disability. Journal of Rehabilitation Medicine, 34(5), 215-220. doi:10.1080/165019702760279206Baheux, K., Yoshizawa, M., & Yoshida, Y. (2007). Simulating hemispatial neglect with virtual reality. Journal of NeuroEngineering and Rehabilitation, 4(1). doi:10.1186/1743-0003-4-27Boian, R. F., Burdea, G. C., Deutsch, J. E. and Winter, S. H. Street crossing using a virtual environment mobility simulator.Paper presented at 3rd Annual International Workshop on Virtual Reality. Lausanne, Switzerland.Broeren, J., Samuelsson, H., Stibrant-Sunnerhagen, K., Blomstrand, C., & Rydmark, M. (2007). Neglect assessment as an application of virtual reality. Acta Neurologica Scandinavica, 116(3), 157-163. doi:10.1111/j.1600-0404.2007.00821.xBuxbaum, L. J., Ferraro, M. K., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., 
 Coslett, H. B. (2004). Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology, 62(5), 749-756. doi:10.1212/01.wnl.0000113730.73031.f4Buxbaum, L. J., Palermo, M. A., Mastrogiovanni, D., Read, M. S., Rosenberg-Pitonyak, E., Rizzo, A. A., & Coslett, H. B. (2008). Assessment of spatial attention and neglect with a virtual wheelchair navigation task. Journal of Clinical and Experimental Neuropsychology, 30(6), 650-660. doi:10.1080/13803390701625821Castiello, U., Lusher, D., Burton, C., Glover, S., & Disler, P. (2004). Improving left hemispatial neglect using virtual reality. Neurology, 62(11), 1958-1962. doi:10.1212/01.wnl.0000128183.63917.02Conners, C. K., Epstein, J. N., Angold, A., & Klaric, J. (2003). Journal of Abnormal Child Psychology, 31(5), 555-562. doi:10.1023/a:1025457300409Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Fordell, H., Bodin, K., Bucht, G., & Malm, J. (2011). A virtual reality test battery for assessment and screening of spatial neglect. Acta Neurologica Scandinavica, 123(3), 167-174. doi:10.1111/j.1600-0404.2010.01390.xGupta, V., Knott, B. A., Kodgi, S., & Lathan, C. E. (2000). Using the «VREye» System for the Assessment of Unilateral Visual Neglect: Two Case Reports. Presence: Teleoperators and Virtual Environments, 9(3), 268-286. doi:10.1162/105474600566790Hartman-Maeir, A., & Katz, N. (1995). Validity of the Behavioral Inattention Test (BIT): Relationships With Functional Tasks. American Journal of Occupational Therapy, 49(6), 507-516. doi:10.5014/ajot.49.6.507Jannink, M. J. A., Aznar, M., de Kort, A. C., van de Vis, W., Veltink, P., & van der Kooij, H. (2009). Assessment of visuospatial neglect in stroke patients using virtual reality: a pilot study. International Journal of Rehabilitation Research, 32(4), 280-286. doi:10.1097/mrr.0b013e3283013b1cJehkonen, M., Laihosalo, M., & Kettunen, J. (2006). Anosognosia after stroke: assessment, occurrence, subtypes and impact on functional outcome reviewed. Acta Neurologica Scandinavica, 114(5), 293-306. doi:10.1111/j.1600-0404.2006.00723.xKatz, N., Ring, H., Naveh, Y., Kizony, R., Feintuch, U., & Weiss, P. L. (2005). Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with Unilateral Spatial Neglect. Disability and Rehabilitation, 27(20), 1235-1244. doi:10.1080/09638280500076079Kim, D. Y., Ku, J., Chang, W. H., Park, T. H., Lim, J. Y., Han, K., 
 Kim, S. I. (2010). Assessment of post-stroke extrapersonal neglect using a three-dimensional immersive virtual street crossing program. Acta Neurologica Scandinavica, 121(3), 171-177. doi:10.1111/j.1600-0404.2009.01194.xKim, J., Kim, K., Kim, D. Y., Chang, W. H., Park, C.-I., Ohn, S. H., 
 Kim, S. I. (2007). Virtual Environment Training System for Rehabilitation of Stroke Patients with Unilateral Neglect: Crossing the Virtual Street. CyberPsychology & Behavior, 10(1), 7-15. doi:10.1089/cpb.2006.9998Kim, K., Kim, J., Ku, J., Kim, D. Y., Chang, W. H., Shin, D. I., 
 Kim, S. I. (2004). A Virtual Reality Assessment and Training System for Unilateral Neglect. CyberPsychology & Behavior, 7(6), 742-749. doi:10.1089/cpb.2004.7.742Kim, Y. M., Chun, M. H., Yun, G. J., Song, Y. J., & Young, H. E. (2011). The Effect of Virtual Reality Training on Unilateral Spatial Neglect in Stroke Patients. Annals of Rehabilitation Medicine, 35(3), 309. doi:10.5535/arm.2011.35.3.309Krakauer, J. W. (2006). Motor learning: its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19(1), 84-90. doi:10.1097/01.wco.0000200544.29915.ccMcComas, J., MacKay, M., & Pivik, J. (2002). Effectiveness of Virtual Reality for Teaching Pedestrian Safety. CyberPsychology & Behavior, 5(3), 185-190. doi:10.1089/109493102760147150Myers, R. L., & Bierig, T. A. (2000). Virtual Reality and Left Hemineglect: A Technology for Assessment and Therapy. CyberPsychology & Behavior, 3(3), 465-468. doi:10.1089/10949310050078922Peskine, A., Rosso, C., Box, N., Galland, A., Caron, E., Rautureau, G., 
 Pradat-Diehl, P. (2010). Virtual reality assessment for visuospatial neglect: importance of a dynamic task. Journal of Neurology, Neurosurgery & Psychiatry, 82(12), 1407-1409. doi:10.1136/jnnp.2010.217513Romero, M., SĂĄnchez, A., MarĂ­n, C., Navarro, M. D., Ferri, J., & NoĂ©, E. (2012). Utilidad clĂ­nica de la versiĂłn en castellano del Mississippi Aphasia Screening Test (MASTsp): validaciĂłn en pacientes con ictus. NeurologĂ­a, 27(4), 216-224. doi:10.1016/j.nrl.2011.06.006Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual Reality in Brain Damage Rehabilitation: Review. CyberPsychology & Behavior, 8(3), 241-262. doi:10.1089/cpb.2005.8.241Schwebel, D. C., & McClure, L. A. (2010). Using virtual reality to train children in safe street-crossing skills. Injury Prevention, 16(1), e1-e1. doi:10.1136/ip.2009.025288Simpson, G., Johnston, L., & Richardson, M. (2003). An investigation of road crossing in a virtual environment. Accident Analysis & Prevention, 35(5), 787-796. doi:10.1016/s0001-4575(02)00081-7Smith, J., Hebert, D., & Reid, D. (2007). Exploring the effects of virtual reality on unilateral neglect caused by stroke: Four case studies. Technology and Disability, 19(1), 29-40. doi:10.3233/tad-2007-19104Sugarman, H., Weisel-Eichler, A., Burstin, A. and Brown, R.Use of novel virtual reality system for the assessment and treatment of unilateral spatial neglect: A feasibility study. Paper presented at International Conference on Virtual Rehabilitation. ZĂŒrich.Tanaka, T., Sugihara, S., Nara, H., Ino, S., & Ifukube, T. (2005). Journal of NeuroEngineering and Rehabilitation, 2(1), 31. doi:10.1186/1743-0003-2-31Thomson, J. A., Tolmie, A. K., Foot, H. C., Whelan, K. M., Sarvary, P., & Morrison, S. (2005). Influence of Virtual Reality Training on the Roadside Crossing Judgments of Child Pedestrians. Journal of Experimental Psychology: Applied, 11(3), 175-186. doi:10.1037/1076-898x.11.3.175Weiss, P. L. (Tamar), Naveh, Y., & Katz, N. (2003). Design and testing of a virtual environment to train stroke patients with unilateral spatial neglect to cross a street safely. Occupational Therapy International, 10(1), 39-55. doi:10.1002/oti.176Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240. doi:10.1162/105474698565686Wu, H., Ashmead, D. H. and Bodenheimer, B.Using immersive virtual reality to evaluate pedestrian street crossing decisions at a roundabout. Paper presented at 6th Symposium on appied perception in Graphics and Visualization. Chania

    Systematic review of sensory stimulation programs in the rehabilitation of acquired brain injury

    Get PDF
    Acquired Brain Injury (ABI) can lead to sensory deficits and compromise functionality. However, most studies have been focused on motor stimulation in stroke and traumatic brain injury (TBI). Sensory stimulation in stroke and mild/moderate TBI has received reduced interest. The main objective of this review is to know the methodological characteristics and effects of sensory programs in ABI. Studies with the purpose of testing the efficacy of those programs were identified through a literature search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Cochrane Collaboration Guidelines. Twenty-three studies were included in this review. The results show that in most studies sensory stimulation started within 12 months after injury and there is no consensus regarding frequency, duration and number of sessions, duration of intervention, and instruments used to assess outcomes. Most programs involved unisensory stimulation, and vision was the predominant target. The most used methods were compensation and somatosensory discrimination training. Most studies used a pre- and post-intervention assessment, with few studies comprising follow-up assessment. Regarding the studies revised, the interventions with positive outcomes in ABI are: compensation, cognitive training, vestibular intervention, somatosensory discrimination training, proprioceptive stimulation with muscle vibration, and sustained attention training with olfactory stimulation. Available findings suggest that sensory stimulation has positive results with immediate and long-term improvements in sensory functioning. This review provides useful information to improve rehabilitation and to design future investigation.info:eu-repo/semantics/publishedVersio

    Exploring perspectives from stroke survivors, carers and clinicians on virtual reality as a precursor to using telerehabilitation for spatial neglect post-stroke

    Get PDF
    Spatial neglect is a common and severe cognitive consequence of stroke, yet there is currently no effective rehabilitation tool. Virtual Reality (VR) telerehabilitation tools have the potential to provide multisensory and enjoyable therapies and remotely monitor adherence without the presence of a therapist at all times. Researchers and industry need to better understand end-user perspectives about these technologies to ensure these are acceptable and, ultimately, optimize adherence and efficacy. This study aims to explore end-user perspectives on the use of self-administered VR for spatial neglect in a university environment to identify barriers and facilitators prior to extending its use remotely as a telerehabilitation tool. We used a mixed-method design including focus groups, self-administered questionnaires and interviews with stroke survivors (N = 7), their carers (N = 3) and stroke clinicians (N = 6). End-user perspectives identified clarity of instructions, equipment (cost, available resources) and for some, level of experience with technology as barriers of use. Perceived facilitators were performance feedback, engagement and enjoyment, and psychological benefits associated with self-administered VR telerehabilitation. Overall, end-users were positive and interested in using VR telerehabilitation for spatial neglect. These perspectives enabled us to produce practical recommendations to inform development, enhance engagement and uptake of VR telerehabilitation and inform future studies

    Investigating the Comprehensive Inventory of Thriving (CIT) as a rehabilitation outcome measure

    Get PDF
    Reliable and valid outcome measures are needed in community rehabilitation settings following acquired neurological injury. The Comprehensive Inventory of Thriving (CIT) (Su, Tay and Diener, 2013) was investigated for this purpose. The CIT is a 54 item self-report measure that provides 18 subscales and seven main scales of thriving: Relationships, Engagement, Mastery, Autonomy, Meaning, Optimism and Subjective Well-being. Participants (n=76) were administered the CIT on admission to a community rehabilitation service. The mean age of participants was 54.8 (SD = 17.7), with 43% being male. The main diagnostic groups were cerebrovascular disease (28%), traumatic brain injury (17%) and Parkinson's disease (12%). Internal consistency was moderate to high (α =.6 to .9) for all subscales with the exception of Support (Relationships) and Skills (Mastery); and high (α=.79-.93) for all indexes with the exception of Subjective Wellbeing. Correlational analyses supported the scale groupings. However, the subscales of Support (Relationships) and Skills (Mastery) did not correlate significantly with any subscales. Additionally the Subjective Well-being scale should not be calculated, but instead its three subscales (Negative Feelings, Life Satisfaction, Positive Feelings) used individually. In terms of demographic variables, there were no significant gender differences on CIT scales. Age had low correlations with two Relationships subscales only (Trust r=.23, p=.04; Loneliness r=-.25, p=.03). Diagnostic group minimally influenced CIT scores. Significant between-group differences were only found for Accomplishment (Mastery), with post-hoc analyses indicating higher levels for the cerebrovascular group. The CIT shows considerable promise in rehabilitation outcomes as a reliable and valid multi-component measure of wellbeing

    Virtual environments for stroke rehabilitation: examining a novel technology against end-user, clinical and management demands with reference to UK care provision

    Get PDF
    In the field of post-stroke rehabilitation, there appears to be growing interest in the use of virtual reality (VR)-based systems as adjunct technologies to standard therapeutic practices. The limitations and the potentials of this technology are not, however, generally well understood. The present study thus seeks to determine the value of the technology with reference to end-user requirements by surveying and evaluating its application against a variety of parameters: user focus, clinical effectiveness, marketability and contextual meaningfulness, etc. A key theme in the research considers how a technology developed internationally might interface with care provision demands and cultures specific to the United Kingdom. The barriers to innovation entry in this context are thus examined. Further practical study has been conducted in the field with a small sample of post-stroke rehabilitation patients. The data garnered from these enquiries have informed a detailed system analysis, a strategy for innovation and a broad theoretical discussion as to the effectiveness of the technology in delivering VR environments by which the patient can undertake ‘meaningful’ therapeutic activities. The data reveal that there does appear to be clinical value in using this technology, yet establishing its maximal value necessitates greater integrity among clinicians and engineers, and the furthering of progressive channels for innovation by public health administrators
    • 

    corecore