357 research outputs found

    Efficiency Guarantees in Auctions with Budgets

    Full text link
    In settings where players have a limited access to liquidity, represented in the form of budget constraints, efficiency maximization has proven to be a challenging goal. In particular, the social welfare cannot be approximated by a better factor then the number of players. Therefore, the literature has mainly resorted to Pareto-efficiency as a way to achieve efficiency in such settings. While successful in some important scenarios, in many settings it is known that either exactly one incentive-compatible auction that always outputs a Pareto-efficient solution, or that no truthful mechanism can always guarantee a Pareto-efficient outcome. Traditionally, impossibility results can be avoided by considering approximations. However, Pareto-efficiency is a binary property (is either satisfied or not), which does not allow for approximations. In this paper we propose a new notion of efficiency, called \emph{liquid welfare}. This is the maximum amount of revenue an omniscient seller would be able to extract from a certain instance. We explain the intuition behind this objective function and show that it can be 2-approximated by two different auctions. Moreover, we show that no truthful algorithm can guarantee an approximation factor better than 4/3 with respect to the liquid welfare, and provide a truthful auction that attains this bound in a special case. Importantly, the liquid welfare benchmark also overcomes impossibilities for some settings. While it is impossible to design Pareto-efficient auctions for multi-unit auctions where players have decreasing marginal values, we give a deterministic O(logn)O(\log n)-approximation for the liquid welfare in this setting

    Multi-item Vickrey-Dutch auctions

    Get PDF
    Descending price auctions are adopted for goods that must be sold quickly and in private values environments, for instance in flower, fish, and tobacco auctions. In this paper, we introduce ex post efficient descending auctions for two environments: multiple non-identical items and buyers with unit-demand valuations; and multiple identical items and buyers with non-increasing marginal values. Our auctions are designed using the notion of universal competitive equilibrium (UCE) prices and they terminate with UCE prices, from which the Vickrey payments can be determined. For the unit-demand setting, our auction maintains linear and anonymous prices. For the homogeneous items setting, our auction maintains a single price and adopts Ausubel's notion of "clinching" to compute the final payments dynamically. The auctions support truthful bidding in an ex post Nash equilibrium and terminate with an ex post efficient allocation. In simulation, we illustrate the speed and elicitation advantages of these auctions over their ascending price counterparts.

    Reservation Exchange Markets for Internet Advertising

    Get PDF
    Internet display advertising industry follows two main business models. One model is based on direct deals between publishers and advertisers where they sign legal contracts containing terms of fulfillment for a future inventory. The second model is a spot market based on auctioning page views in real-time on advertising exchange (AdX) platforms such as DoubleClick\u27s Ad Exchange, RightMedia, or AppNexus. These exchanges play the role of intermediaries who sell items (e.g. page-views) on behalf of a seller (e.g. a publisher) to buyers (e.g., advertisers) on the opposite side of the market. The computational and economics issues arising in this second model have been extensively investigated in recent times. In this work, we consider a third emerging model called reservation exchange market. A reservation exchange is a two-sided market between buyer orders for blocks of advertisers\u27 impressions and seller orders for blocks of publishers\u27 page views. The goal is to match seller orders to buyer orders while providing the right incentives to both sides. In this work we first describe the important features of mechanisms for efficient reservation exchange markets. We then address the algorithmic problems of designing revenue sharing schemes to provide a fair division between sellers of the revenue collected from buyers. A major conceptual contribution of this work is in showing that even though both clinching ascending auctions and VCG mechanisms achieve the same outcome from a buyer perspective, however, from the perspective of revenue sharing among sellers, clinching ascending auctions are much more informative than VCG auctions

    Expressiveness and Robustness of First-Price Position Auctions

    Get PDF
    Since economic mechanisms are often applied to very different instances of the same problem, it is desirable to identify mechanisms that work well in a wide range of circumstances. We pursue this goal for a position auction setting and specifically seek mechanisms that guarantee good outcomes under both complete and incomplete information. A variant of the generalized first-price mechanism with multi-dimensional bids turns out to be the only standard mechanism able to achieve this goal, even when types are one-dimensional. The fact that expressiveness beyond the type space is both necessary and sufficient for this kind of robustness provides an interesting counterpoint to previous work on position auctions that has highlighted the benefits of simplicity. From a technical perspective our results are interesting because they establish equilibrium existence for a multi-dimensional bid space, where standard techniques break down. The structure of the equilibrium bids moreover provides an intuitive explanation for why first-price payments may be able to support equilibria in a wider range of circumstances than second-price payments
    corecore