5 research outputs found

    Current research in lidar technology used for the remote sensing of atmospheric aerosols

    Get PDF
    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed.Peer ReviewedPostprint (published version

    Climatology of the Aerosol Extinction-to-Backscatter Ratio from Sun-Photometric Measurements

    No full text
    Abstract—The elastic lidar equation contains two unknown atmospheric parameters, namely, the particulate optical extinction and backscatter coefficients, which are related through the lidar ratio (i.e., the particulate-extinction-to-backscatter ratio). So far, independent inversion of the lidar signal has been carried out by means of Raman lidars (usually limited to nighttime measurements), high-spectral-resolution lidars, or scanning elastic lidars under the assumption of a homogeneously vertically stratified atmosphere. In this paper, we present a procedure to obtain the lidar ratio at 532 nm by a combined Sunphotometer–aerosol-model inversion, where the viability of the solution is largely reinforced by assimilating categorized air-mass back-trajectory information. Thus, iterative lidar-ratio tuning to reconstruct the Sun-photometric aerosol optical depth (AOD) is additionally constrained by the air-mass back trajectorie

    Climatology of the aerosol extinction to backscatter ratio from sun photometric measurements

    Get PDF
    The elastic lidar equation contains two unknown atmospheric parameters, namely, the particulate optical extinction and backscatter coefficients, which are related through the lidar ratio (i.e., the particulate-extinction-to-backscatter ratio). So far, independent inversion of the lidar signal has been carried out by means of Raman lidars (usually limited to nighttime measurements), high-spectral-resolution lidars, or scanning elastic lidars under the assumption of a homogeneously vertically stratified atmosphere. In this paper, we present a procedure to obtain the lidar ratio at 532 nm by a combined Sunphotometer– aerosol-model inversion, where the viability of the solution is largely reinforced by assimilating categorized air-mass back-trajectory information. Thus, iterative lidar-ratio tuning to reconstruct the Sun-photometric aerosol optical depth (AOD) is additionally constrained by the air-mass back trajectories provided by the hybrid single-particle Lagrangian integratedtrajectory model. The retrieved lidar ratios are validated with inversions of lidar data based on the Klett–Fernald–Sasano algorithm and with the Aerosol Robotic Network (AERONET)- retrieved lidar ratios. The estimated lidar ratios concur with the AERONET-retrieved lidar ratios and with those of the well-known KFS inversion constrained with Sun-photometric AOD values and embedded single-scattering models. The proposed method can be applied to routinely extract climatological values of the lidar ratio using measurements of direct solar irradiance (more numerous than those of sky radiance)

    Publicacions 2010. Campus del Baix Llobregat UPC

    Get PDF
    En aquest document s'han recopilat totes les publicacions realitzades pel professorat del Campus del Baix Llobregat de la UPC durant el període comprés entre l'1 de Gener i el 31 d'Octubre de 2010.Preprin

    Lidar and S-band radar profiling of the atmosphere : adaptive processing for boundary-layer monitoring, optical-parameter error estimation, and application cases

    Get PDF
    This Ph.D. thesis addresses remote sensing of the atmosphere by means of lidar and S-band clear-air weather radar, and related data signal processing. Active remote sensing by means of these instruments offers unprecedented capabilities of spatial and temporal resolutions for vertical atmospheric profiling and the retrieval of key optical and physical atmospheric products in an increasing environmental regulatory framework. The first goal is this Ph.D. concerns the estimation of error bounds in the inversion of the profile of the atmospheric backscatter coefficient from elastic lidar signals (i.e., without wavelength shift in reception when interacting with atmospheric scatterers) by means of the two-component inversion algorithm (the so-called Klett-Fernald-Sasano¿s algorithm). This objective departs from previous works at the Remote Sensing Lab. (RSLab) of the Universitat Politècnica de Catalunya (UPC) and derives first-order error-propagated bounds (approximate) and total-increment bounds (exact). As distinctive feature in the state of the art, the error bounds merge into a single body both systematic (i.e., user-calibration inputs) and random error sources (finite signal-to-noise ratio, SNR) yielding an explicit mathematical form. The second goal, central to this Ph.D., tackles retrieval of the Atmospheric Boundary Layer Height (ABLH) from elastic lidar and S-band Frequency-Modulated Continuous-Wave (FMCW) radar observations by using adaptive techniques based on the Extended Kalman Filter (EKF). The filter is based on morphological modelling of the Mixing-Layer-to-Free-Troposphere transition and continuous estimation of the noise covariance information. In the lidar-EKF realization the proposed technique is shown to outperform classic ABLH estimators such as those based on derivative techniques, thresholded decision, or the variance centroid method. The EKF formulation is applied to both ceilometer and UPC lidar records in high- and low-SNR scenes. The lidar-EKF approach is re-formulated and successfully extended to S-band radar scenes (Bragg¿s scattering) in presence of interferent noise sources (Rayleigh scattering from e.g., insects and birds). In this context, the FMCW feature enables the range-resolved capability. EKF-lidar and EKF-radar ABLH estimates are cross-examined from field campaign results. Finally, the third goal deals with exploitation of the existing UPC lidar station: In a first introductory part, a modified algorithm for enhancing the dynamic range of elastic lidar channels by ¿gluing¿ analog and photon-counting data records is formulated. In a second part, two case examples (including application of the gluing algorithm) are presented to illustrate the capabilities of the UPC lidar in networked atmospheric observation of two recent volcano eruption events as part of the EARLINET (European Aerosol Research Lidar Network). The latter is part of GALION (Global Atmospheric Watch Atmospheric Lidar Observation Network)-GEOSS (Global Earth Observation System of Systems) framework.La tesis doctoral aborda la teledetecció atmosfèrica amb tècniques lidar i radar (banda S) i llur tractament del senyal. La teledetecció activa amb aquests instruments ofereix resolucions espacials i temporals sense precedents en la perfilometria vertical de l'atmosfera i recuperació de productes de dades òptics i físics atmosfèrics en un marc de creixent regulació mediambiental. El primer objectiu d'aquesta tesi concerneix l'estimació de cotes d'error en la inversió del perfil del coeficient de retrodispersió atmosfèrica a partir de senyals lidar de tipus elàstic (és a dir, sense desplaçament de la longitud d'ona en recepció al interactuar amb els dispersors atmosfèrics) mitjançant l'algorisme d'inversió de dues components de Klett-Fernald-Sasano. Aquest objectiu parteix de treballs previs en el Remote Sensing Lab. (RSLab) de la Universitat Politècnica de Catalunya (UPC) i permet obtenir cotes de primer ordre (aproximades) basades en propagació d'errors i cotes (exactes) basades en el increment total de l'error. Característica diferencial en front l'estat de l'art és l'assimilació d'errors sistemàtics (per exemple, entrades de cal.libració d'usuari) i aleatoris (relació senyal-soroll, SNR, finita) en forma matemàtica explícita. El segon objectiu, central de la tesis, aborda l'estimació de l'altura de la capa límit atmosfèrica (ABLH) a partir de senyal lidar elàstics i d'observacions radar en banda S (ona continua amb modulació en freqüència, FMCW) utilitzant tècniques adaptatives basades en filtrat estès de Kalman (EKF). El filtre es basa en modelat morfològic de la transició atmosfèrica entre la capa de mescla i la troposfera lliure i en l'estimació continua de la informació de covariança del soroll. En el prototipus lidar-EKF la tècnica proposada millora clarament les tècniques clàssiques d'estimació de la ABLH como són les basades en mètodes derivatius, decisió de llindar, o el mètode de la variança-centroide. La formulació EKF s'aplica tant a mesures procedents de ceilòmetres lidar como de la pròpia estació lidar UPC en escenes d'alta i baixa SNR. Addicionalment, l'enfoc lidar-EKF es reformula i s'estén amb èxit a escenes radar en banda S (dispersió Bragg) en presència de fonts de soroll interferent (dispersió Rayleigh de, per exemple, insectes i ocells). En aquest context, la característica FMCW permet la capacitat de resolució en distància. L'estimació de la ABLH amb els prototipus lidar-EKF i radar-EKF s'intercompara en campanyes de mesura. Finalment, el tercer objectiu atén a l'explotació de l'estació lidar UPC existent: En una primera part introductòria, es formula un algorisme modificat de "gluing" per a la millora del marge dinàmic de canals lidar elàstics mitjançant combinació (o "enganxat") de senyals lidar adquirits analògicament i amb foto-comptatge. En una segona part, es presenten dos exemples (incloent l'aplicació de l'algorisme de "gluing") que il.lustren les capacitats del lidar de la UPC en l'observació atmosfèrica de dos recents erupcions volcàniques des de la xarxa d'observació EARLINET (European Aerosol Research Lidar Network). Aquesta última és part de GALION (Global Atmospheric Watch Atmospheric Lidar Observation Network)-GEOSS (Global Earth Observation System of Systems)
    corecore