746,899 research outputs found

    Uncertainty Quantification of Future Design Rainfall Depths in Korea

    Get PDF
    One of the most common ways to investigate changes in future rainfall extremes is to use future rainfall data simulated by climate models with climate change scenarios. However, the projected future design rainfall intensity varies greatly depending on which climate model is applied. In this study, future rainfall Intensity???Duration???Frequency (IDF) curves are projected using various combinations of climate models. Future Ensemble Average (FEA) is calculated using a total of 16 design rainfall intensity ensembles, and uncertainty of FEA is quantified using the coefficient of variation of ensembles. The FEA and its uncertainty vary widely depending on how the climate model combination is constructed, and the uncertainty of the FEA depends heavily on the inclusion of specific climate model combinations at each site. In other words, we found that unconditionally using many ensemble members did not help to reduce the uncertainty of future IDF curves. Finally, a method for constructing ensemble members that reduces the uncertainty of future IDF curves is proposed, which will contribute to minimizing confusion among policy makers in developing climate change adaptation policies

    Uncertainty and climate change policy

    Get PDF
    The paper consists of a summary of the main sources of uncertainty about climate change, and a discussion of the major implications for economic analysis and the formulation of climate policy. Uncertainty typically implies that the optimal policy is more risk-averse than otherwise, and therefore enhances the case for action to mitigate climate change.climate change, uncertainty

    The Role of Climate in Shaping Western Water Institutions

    Get PDF
    61 pages. Justice Greg Hobbs, June 11, 2003 This preliminary paper was later published in Justice Gregory J. Hobbs, Jr., The Role of Climate in Shaping Western Water Institutions, 7 U. Denv. Water L. Rev. 1 (2003)

    Evaluation of different sources of uncertainty in climate change impact research using a hydro-climatic model ensemble

    Get PDF
    The international research project QBic3 (Quebec-Bavarian Collaboration on Climate Change) aims at investigating the potential impacts of climate change on the hydrology of regional scale catchments in Southern Quebec (Canada) and Bavaria (Germany). Yet, the actual change in river runoff characteristics during the next 70 years is highly uncertain due to a multitude of uncertainty sources. The so-called hydro-climatic ensemble that is constructed to describe the uncertainties of this complex model chain consists of four different global climate models, downscaled by three different regional climate models, an exchangeable bias correction algorithm, a separate method to scale RCM outputs to the hydrological model scale and several hydrological models of differing complexity to assess the impact of different hydro model concepts. This choice of models and scenarios allows for the inter-comparison of the uncertainty ranges of climate and hydrological models, of the natural variability of the climate system as well as of the impact of scaling and correction of climate data on mean, high and low flow conditions. A methodology to display the relative importance of each source of uncertainty is proposed and results for past runoff and potential future changes are presented

    Climate Policy and Uncertainty: The Roles of Adaptation versus Mitigation

    Get PDF
    Climate Policy and Uncertainty: The Roles of Adaptation versus Mitigationclimate change,uncertainty, policy

    Analysis of Climate Policy Targets under Uncertainty

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Although policymaking in response to the climate change is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions targets developed originally for a study by the U.S. Climate Change Science Program. Results are shown for atmospheric concentrations, radiative forcing, sea ice cover and temperature change, along with estimates of the odds of achieving particular target levels, and for the global costs of the associated mitigation policy. Comparison with other studies of climate targets are presented as evidence of the value, in understanding the climate challenge, of more complete analysis of uncertainties in human emissions and climate system response.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors

    SLIDES: A History of Climate Variability and Change in the American West

    Get PDF
    Presenter: Kelly T. Redmond, Regional Climatologist, Western Regional Climate Center (WRCC), Desert Research Institute 65 slide

    SLIDES: Managing Risks Associated With Climate-Related Water Supply Variability

    Get PDF
    Presenter: Dr. Bonnie G. Colby, Professor of Agricultural and Resource Economics, University of Arizona 5 page Outline and 38 slide

    Conference Summary: Water, Climate and Uncertainty: Implications for Western Water Law, Policy, and Management

    Get PDF
    7 pages. Steve Bailey, National Center for Atmospheric Researc
    corecore