298 research outputs found

    Clifford Algebras Meet Tree Decompositions

    Get PDF
    We introduce the Non-commutative Subset Convolution - a convolution of functions useful when working with determinant-based algorithms. In order to compute it efficiently, we take advantage of Clifford algebras, a generalization of quaternions used mainly in the quantum field theory. We apply this tool to speed up algorithms counting subgraphs parameterized by the treewidth of a graph. We present an O^*((2^omega + 1)^{tw})-time algorithm for counting Steiner trees and an O^*((2^omega + 2)^{tw})-time algorithm for counting Hamiltonian cycles, both of which improve the previously known upper bounds. The result for Steiner Tree also translates into a deterministic algorithm for Feedback Vertex Set. All of these constitute the best known running times of deterministic algorithms for decision versions of these problems and they match the best obtained running times for pathwidth parameterization under assumption omega = 2

    Patching Colors with Tensors

    Get PDF

    Homology of Distributive Lattices

    Full text link
    We outline the theory of sets with distributive operations: multishelves and multispindles, with examples provided by semi-lattices, lattices and skew lattices. For every such a structure we define multi-term distributive homology and show some of its properties. The main result is a complete formula for the homology of a finite distributive lattice. We also indicate the answer for unital spindles and conjecture the general formula for semi-lattices and some skew lattices. Then we propose a generalization of a lattice as a set with a number of idempotent operations satisfying the absorption law.Comment: 30 pages, 3 tables, 3 figure

    Fast Algorithms for Join Operations on Tree Decompositions

    Full text link
    Treewidth is a measure of how tree-like a graph is. It has many important algorithmic applications because many NP-hard problems on general graphs become tractable when restricted to graphs of bounded treewidth. Algorithms for problems on graphs of bounded treewidth mostly are dynamic programming algorithms using the structure of a tree decomposition of the graph. The bottleneck in the worst-case run time of these algorithms often is the computations for the so called join nodes in the associated nice tree decomposition. In this paper, we review two different approaches that have appeared in the literature about computations for the join nodes: one using fast zeta and M\"obius transforms and one using fast Fourier transforms. We combine these approaches to obtain new, faster algorithms for a broad class of vertex subset problems known as the [\sigma,\rho]-domination problems. Our main result is that we show how to solve [\sigma,\rho]-domination problems in O(st+2tn2(tlog(s)+log(n)))O(s^{t+2} t n^2 (t\log(s)+\log(n))) arithmetic operations. Here, t is the treewidth, s is the (fixed) number of states required to represent partial solutions of the specific [\sigma,\rho]-domination problem, and n is the number of vertices in the graph. This reduces the polynomial factors involved compared to the previously best time bound (van Rooij, Bodlaender, Rossmanith, ESA 2009) of O(st+2(st)2(s2)n3)O( s^{t+2} (st)^{2(s-2)} n^3 ) arithmetic operations. In particular, this removes the dependence of the degree of the polynomial on the fixed number of states~ss.Comment: An earlier version appeared in "Treewidth, Kernels, and Algorithms. Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday" LNCS 1216

    An overview of knot Floer homology

    Full text link
    Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as the three-manifold undergoes Dehn surgery along a knot. Since its original definition, thanks to the contributions of many researchers, knot Floer homology has emerged as a useful tool for studying knots in its own right. We give here a few selected highlights of this theory, and then move on to some new algebraic developments in the computation of knot Floer homology

    Extensor-coding

    Get PDF
    We devise an algorithm that approximately computes the number of paths of length kk in a given directed graph with nn vertices up to a multiplicative error of 1±ε1 \pm \varepsilon. Our algorithm runs in time ε24k(n+m)poly(k)\varepsilon^{-2} 4^k(n+m) \operatorname{poly}(k). The algorithm is based on associating with each vertex an element in the exterior (or, Grassmann) algebra, called an extensor, and then performing computations in this algebra. This connection to exterior algebra generalizes a number of previous approaches for the longest path problem and is of independent conceptual interest. Using this approach, we also obtain a deterministic 2kpoly(n)2^{k}\cdot\operatorname{poly}(n) time algorithm to find a kk-path in a given directed graph that is promised to have few of them. Our results and techniques generalize to the subgraph isomorphism problem when the subgraphs we are looking for have bounded pathwidth. Finally, we also obtain a randomized algorithm to detect kk-multilinear terms in a multivariate polynomial given as a general algebraic circuit. To the best of our knowledge, this was previously only known for algebraic circuits not involving negative constants.Comment: To appear at STOC 2018: Symposium on Theory of Computing, June 23-27, 2018, Los Angeles, CA, US

    Singular foliations for M-theory compactification

    Get PDF
    We use the theory of singular foliations to study N=1{\cal N}=1 compactifications of eleven-dimensional supergravity on eight-manifolds MM down to AdS3\mathrm{AdS}_3 spaces, allowing for the possibility that the internal part ξ\xi of the supersymmetry generator is chiral on some locus W{\cal W} which does not coincide with MM. We show that the complement MWM\setminus {\cal W} must be a dense open subset of MM and that MM admits a singular foliation Fˉ{\bar {\cal F}} endowed with a longitudinal G2G_2 structure and defined by a closed one-form ω\boldsymbol{\omega}, whose geometry is determined by the supersymmetry conditions. The singular leaves are those leaves which meet W{\cal W}. When ω\boldsymbol{\omega} is a Morse form, the chiral locus is a finite set of points, consisting of isolated zero-dimensional leaves and of conical singularities of seven-dimensional leaves. In that case, we describe the topology of Fˉ{\bar {\cal F}} using results from Novikov theory. We also show how this description fits in with previous formulas which were extracted by exploiting the Spin(7)±\mathrm{Spin}(7)_\pm structures which exist on the complement of W{\cal W}.Comment: 66 pages, 6 tables, 4 figures; v2: added discussion of limit $kappa=0
    corecore