2,006 research outputs found

    Small-Scale Markets for Bilateral Resource Trading in the Sharing Economy

    Full text link
    We consider a general small-scale market for agent-to-agent resource sharing, in which each agent could either be a server (seller) or a client (buyer) in each time period. In every time period, a server has a certain amount of resources that any client could consume, and randomly gets matched with a client. Our target is to maximize the resource utilization in such an agent-to-agent market, where the agents are strategic. During each transaction, the server gets money and the client gets resources. Hence, trade ratio maximization implies efficiency maximization of our system. We model the proposed market system through a Mean Field Game approach and prove the existence of the Mean Field Equilibrium, which can achieve an almost 100% trade ratio. Finally, we carry out a simulation study motivated by an agent-to-agent computing market, and a case study on a proposed photovoltaic market, and show the designed market benefits both individuals and the system as a whole

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    A Game-theoretic Framework for Revenue Sharing in Edge-Cloud Computing System

    Full text link
    We introduce a game-theoretic framework to ex- plore revenue sharing in an Edge-Cloud computing system, in which computing service providers at the edge of the Internet (edge providers) and computing service providers at the cloud (cloud providers) co-exist and collectively provide computing resources to clients (e.g., end users or applications) at the edge. Different from traditional cloud computing, the providers in an Edge-Cloud system are independent and self-interested. To achieve high system-level efficiency, the manager of the system adopts a task distribution mechanism to maximize the total revenue received from clients and also adopts a revenue sharing mechanism to split the received revenue among computing servers (and hence service providers). Under those system-level mechanisms, service providers attempt to game with the system in order to maximize their own utilities, by strategically allocating their resources (e.g., computing servers). Our framework models the competition among the providers in an Edge-Cloud system as a non-cooperative game. Our simulations and experiments on an emulation system have shown the existence of Nash equilibrium in such a game. We find that revenue sharing mechanisms have a significant impact on the system-level efficiency at Nash equilibria, and surprisingly the revenue sharing mechanism based directly on actual contributions can result in significantly worse system efficiency than Shapley value sharing mechanism and Ortmann proportional sharing mechanism. Our framework provides an effective economics approach to understanding and designing efficient Edge-Cloud computing systems

    Mitigating Free Riding in Peer-To-Peer Networks: Game Theory Approach

    Get PDF
    The performance of peer-to-peer systems is based on the quality and quantity of resource contributions from participating peers. In most systems, users are assumed to be cooperative, but in reality, sharing in peer-to-peer systems is faced with the problem of free riding. In this paper, we model the interactions between peers as a modified gift giving game and proposed an utility exchange incentive mechanism to inhibit free riding. This technique allows peers to either upload or download resources based on their best strategy and interest. Through extensive simulations, we show that this mechanism can increase fairness and encourage resource contribution by peers to the network. This will ensure a resourceful and stable peer- to-peer systems.http://dx.doi.org/10.4314/njt.v34i2.2

    On a Bounded Budget Network Creation Game

    Full text link
    We consider a network creation game in which each player (vertex) has a fixed budget to establish links to other players. In our model, each link has unit price and each agent tries to minimize its cost, which is either its local diameter or its total distance to other players in the (undirected) underlying graph of the created network. Two versions of the game are studied: in the MAX version, the cost incurred to a vertex is the maximum distance between the vertex and other vertices, and in the SUM version, the cost incurred to a vertex is the sum of distances between the vertex and other vertices. We prove that in both versions pure Nash equilibria exist, but the problem of finding the best response of a vertex is NP-hard. We take the social cost of the created network to be its diameter, and next we study the maximum possible diameter of an equilibrium graph with n vertices in various cases. When the sum of players' budgets is n-1, the equilibrium graphs are always trees, and we prove that their maximum diameter is Theta(n) and Theta(log n) in MAX and SUM versions, respectively. When each vertex has unit budget (i.e. can establish link to just one vertex), the diameter of any equilibrium graph in either version is Theta(1). We give examples of equilibrium graphs in the MAX version, such that all vertices have positive budgets and yet the diameter is Omega(sqrt(log n)). This interesting (and perhaps counter-intuitive) result shows that increasing the budgets may increase the diameter of equilibrium graphs and hence deteriorate the network structure. Then we prove that every equilibrium graph in the SUM version has diameter 2^O(sqrt(log n)). Finally, we show that if the budget of each player is at least k, then every equilibrium graph in the SUM version is k-connected or has diameter smaller than 4.Comment: 28 pages, 3 figures, preliminary version appeared in SPAA'1
    • …
    corecore