37,391 research outputs found

    Two ways to Grid: the contribution of Open Grid Services Architecture (OGSA) mechanisms to service-centric and resource-centric lifecycles

    Get PDF
    Service Oriented Architectures (SOAs) support service lifecycle tasks, including Development, Deployment, Discovery and Use. We observe that there are two disparate ways to use Grid SOAs such as the Open Grid Services Architecture (OGSA) as exemplified in the Globus Toolkit (GT3/4). One is a traditional enterprise SOA use where end-user services are developed, deployed and resourced behind firewalls, for use by external consumers: a service-centric (or ‘first-order’) approach. The other supports end-user development, deployment, and resourcing of applications across organizations via the use of execution and resource management services: A Resource-centric (or ‘second-order’) approach. We analyze and compare the two approaches using a combination of empirical experiments and an architectural evaluation methodology (scenario, mechanism, and quality attributes) to reveal common and distinct strengths and weaknesses. The impact of potential improvements (which are likely to be manifested by GT4) is estimated, and opportunities for alternative architectures and technologies explored. We conclude by investigating if the two approaches can be converged or combined, and if they are compatible on shared resources

    S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel SGX

    Full text link
    Function-as-a-Service (FaaS) is a recent and already very popular paradigm in cloud computing. The function provider need only specify the function to be run, usually in a high-level language like JavaScript, and the service provider orchestrates all the necessary infrastructure and software stacks. The function provider is only billed for the actual computational resources used by the function invocation. Compared to previous cloud paradigms, FaaS requires significantly more fine-grained resource measurement mechanisms, e.g. to measure compute time and memory usage of a single function invocation with sub-second accuracy. Thanks to the short duration and stateless nature of functions, and the availability of multiple open-source frameworks, FaaS enables non-traditional service providers e.g. individuals or data centers with spare capacity. However, this exacerbates the challenge of ensuring that resource consumption is measured accurately and reported reliably. It also raises the issues of ensuring computation is done correctly and minimizing the amount of information leaked to service providers. To address these challenges, we introduce S-FaaS, the first architecture and implementation of FaaS to provide strong security and accountability guarantees backed by Intel SGX. To match the dynamic event-driven nature of FaaS, our design introduces a new key distribution enclave and a novel transitive attestation protocol. A core contribution of S-FaaS is our set of resource measurement mechanisms that securely measure compute time inside an enclave, and actual memory allocations. We have integrated S-FaaS into the popular OpenWhisk FaaS framework. We evaluate the security of our architecture, the accuracy of our resource measurement mechanisms, and the performance of our implementation, showing that our resource measurement mechanisms add less than 6.3% latency on standardized benchmarks

    IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks

    Get PDF
    Wavelength Switched Optical Networks (WSON) were designed with the premise that all channels in a network have the same spectrum needs, based on the ITU-T DWDM grid. However, this rigid grid-based approach is not adapted to the spectrum requirements of the signals that are best candidates for long-reach transmission and high-speed data rates of 400Gbps and beyond. An innovative approach is to evolve the fixed DWDM grid to a flexible grid, in which the optical spectrum is partitioned into fixed-sized spectrum slices. This allows facilitating the required amount of optical bandwidth and spectrum for an elastic optical connection to be dynamically and adaptively allocated by assigning the necessary number of slices of spectrum. The ICT IDEALIST project will provide the architectural design, protocol specification, implementation, evaluation and standardization of a control plane and a network and service management system. This architecture and tools are necessary to introduce dynamicity, elasticity and adaptation in flexi-grid DWDM networks. This paper provides an overview of the objectives, framework, functional requirements and use cases of the elastic control plane and the adaptive network and service management system targeted in the ICT IDEALIST project

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    HiTrust: building cross-organizational trust relationship based on a hybrid negotiation tree

    Get PDF
    Small-world phenomena have been observed in existing peer-to-peer (P2P) networks which has proved useful in the design of P2P file-sharing systems. Most studies of constructing small world behaviours on P2P are based on the concept of clustering peer nodes into groups, communities, or clusters. However, managing additional multilayer topology increases maintenance overhead, especially in highly dynamic environments. In this paper, we present Social-like P2P systems (Social-P2Ps) for object discovery by self-managing P2P topology with human tactics in social networks. In Social-P2Ps, queries are routed intelligently even with limited cached knowledge and node connections. Unlike community-based P2P file-sharing systems, we do not intend to create and maintain peer groups or communities consciously. In contrast, each node connects to other peer nodes with the same interests spontaneously by the result of daily searches
    • 

    corecore