5,673 research outputs found

    Click fraud : how to spot it, how to stop it?

    Get PDF
    Online search advertising is currently the greatest source of revenue for many Internet giants such as Google™, Yahoo!™, and Bing™. The increased number of specialized websites and modern profiling techniques have all contributed to an explosion of the income of ad brokers from online advertising. The single biggest threat to this growth is however click fraud. Trained botnets and even individuals are hired by click-fraud specialists in order to maximize the revenue of certain users from the ads they publish on their websites, or to launch an attack between competing businesses. Most academics and consultants who study online advertising estimate that 15% to 35% of ads in pay per click (PPC) online advertising systems are not authentic. In the first two quarters of 2010, US marketers alone spent 5.7billiononPPCads,wherePPCadsarebetween45and50percentofallonlineadspending.Onaverageabout5.7 billion on PPC ads, where PPC ads are between 45 and 50 percent of all online ad spending. On average about 1.5 billion is wasted due to click-fraud. These fraudulent clicks are believed to be initiated by users in poor countries, or botnets, who are trained to click on specific ads. For example, according to a 2010 study from Information Warfare Monitor, the operators of Koobface, a program that installed malicious software to participate in click fraud, made over $2 million in just over a year. The process of making such illegitimate clicks to generate revenue is called click-fraud. Search engines claim they filter out most questionable clicks and either not charge for them or reimburse advertisers that have been wrongly billed. However this is a hard task, despite the claims that brokers\u27 efforts are satisfactory. In the simplest scenario, a publisher continuously clicks on the ads displayed on his own website in order to make revenue. In a more complicated scenario. a travel agent may hire a large, globally distributed, botnet to click on its competitor\u27s ads, hence depleting their daily budget. We analyzed those different types of click fraud methods and proposed new methodologies to detect and prevent them real time. While traditional commercial approaches detect only some specific types of click fraud, Collaborative Click Fraud Detection and Prevention (CCFDP) system, an architecture that we have implemented based on the proposed methodologies, can detect and prevents all major types of click fraud. The proposed solution analyzes the detailed user activities on both, the server side and client side collaboratively to better describe the intention of the click. Data fusion techniques are developed to combine evidences from several data mining models and to obtain a better estimation of the quality of the click traffic. Our ideas are experimented through the development of the Collaborative Click Fraud Detection and Prevention (CCFDP) system. Experimental results show that the CCFDP system is better than the existing commercial click fraud solution in three major aspects: 1) detecting more click fraud especially clicks generated by software; 2) providing prevention ability; 3) proposing the concept of click quality score for click quality estimation. In the CCFDP initial version, we analyzed the performances of the click fraud detection and prediction model by using a rule base algorithm, which is similar to most of the existing systems. We have assigned a quality score for each click instead of classifying the click as fraud or genuine, because it is hard to get solid evidence of click fraud just based on the data collected, and it is difficult to determine the real intention of users who make the clicks. Results from initial version revealed that the diversity of CF attack Results from initial version revealed that the diversity of CF attack types makes it hard for a single counter measure to prevent click fraud. Therefore, it is important to be able to combine multiple measures capable of effective protection from click fraud. Therefore, in the CCFDP improved version, we provide the traffic quality score as a combination of evidence from several data mining algorithms. We have tested the system with a data from an actual ad campaign in 2007 and 2008. We have compared the results with Google Adwords reports for the same campaign. Results show that a higher percentage of click fraud present even with the most popular search engine. The multiple model based CCFDP always estimated less valid traffic compare to Google. Sometimes the difference is as high as 53%. Detection of duplicates, fast and efficient, is one of the most important requirement in any click fraud solution. Usually duplicate detection algorithms run in real time. In order to provide real time results, solution providers should utilize data structures that can be updated in real time. In addition, space requirement to hold data should be minimum. In this dissertation, we also addressed the problem of detecting duplicate clicks in pay-per-click streams. We proposed a simple data structure, Temporal Stateful Bloom Filter (TSBF), an extension to the regular Bloom Filter and Counting Bloom Filter. The bit vector in the Bloom Filter was replaced with a status vector. Duplicate detection results of TSBF method is compared with Buffering, FPBuffering, and CBF methods. False positive rate of TSBF is less than 1% and it does not have false negatives. Space requirement of TSBF is minimal among other solutions. Even though Buffering does not have either false positives or false negatives its space requirement increases exponentially with the size of the stream data size. When the false positive rate of the FPBuffering is set to 1% its false negative rate jumps to around 5%, which will not be tolerated by most of the streaming data applications. We also compared the TSBF results with CBF. TSBF uses only half the space or less than standard CBF with the same false positive probability. One of the biggest successes with CCFDP is the discovery of new mercantile click bot, the Smart ClickBot. We presented a Bayesian approach for detecting the Smart ClickBot type clicks. The system combines evidence extracted from web server sessions to determine the final class of each click. Some of these evidences can be used alone, while some can be used in combination with other features for the click bot detection. During training and testing we also addressed the class imbalance problem. Our best classifier shows recall of 94%. and precision of 89%, with F1 measure calculated as 92%. The high accuracy of our system proves the effectiveness of the proposed methodology. Since the Smart ClickBot is a sophisticated click bot that manipulate every possible parameters to go undetected, the techniques that we discussed here can lead to detection of other types of software bots too. Despite the enormous capabilities of modern machine learning and data mining techniques in modeling complicated problems, most of the available click fraud detection systems are rule-based. Click fraud solution providers keep the rules as a secret weapon and bargain with others to prove their superiority. We proposed validation framework to acquire another model of the clicks data that is not rule dependent, a model that learns the inherent statistical regularities of the data. Then the output of both models is compared. Due to the uniqueness of the CCFDP system architecture, it is better than current commercial solution and search engine/ISP solution. The system protects Pay-Per-Click advertisers from click fraud and improves their Return on Investment (ROI). The system can also provide an arbitration system for advertiser and PPC publisher whenever the click fraud argument arises. Advertisers can gain their confidence on PPC advertisement by having a channel to argue the traffic quality with big search engine publishers. The results of this system will booster the internet economy by eliminating the shortcoming of PPC business model. General consumer will gain their confidence on internet business model by reducing fraudulent activities which are numerous in current virtual internet world

    Clicking away the Competition: The Legal Ramifications of Click Fraud for Companies That Offer Pay Per Click Advertising Services

    Get PDF
    Two businesses that advertise online, Lane\u27s Gifts and Collectibles and Advanced Internet Technologies, recently filed lawsuits against Google, and other intermediaries that offer sponsored advertising services. The companies allege that these intermediaries failed to adequately protect them against click fraud. Click fraud refers to the practice whereby competitors and other persons may click to view an online ad with no intention of buying, learning about the advertiser\u27s services, or engaging in any other action that the ad aims to achieve. Plaintiffs allege that the intermediaries breached their contractual duties by charging the companies whose ads they hosted for fraudulent clicks, and by failing to take adequate detection and prevention measures. This Article examines the basic contract law claims underlying these cases and concludes that while contracts may grant the search engines discretion to define chargeable clicks, such discretion might be constrained by the terms of extrinsic writings

    Fighting Online Click-Fraud Using Bluff Ads

    Get PDF
    Online advertising is currently the greatest source of revenue for many Internet giants. The increased number of specialized websites and modern profiling techniques, have all contributed to an explosion of the income of ad brokers from online advertising. The single biggest threat to this growth, is however, click-fraud. Trained botnets and even individuals are hired by click-fraud specialists in order to maximize the revenue of certain users from the ads they publish on their websites, or to launch an attack between competing businesses. In this note we wish to raise the awareness of the networking research community on potential research areas within this emerging field. As an example strategy, we present Bluff ads; a class of ads that join forces in order to increase the effort level for click-fraud spammers. Bluff ads are either targeted ads, with irrelevant display text, or highly relevant display text, with irrelevant targeting information. They act as a litmus test for the legitimacy of the individual clicking on the ads. Together with standard threshold-based methods, fake ads help to decrease click-fraud levels.Comment: Draf

    Understanding the Detection of View Fraud in Video Content Portals

    Full text link
    While substantial effort has been devoted to understand fraudulent activity in traditional online advertising (search and banner), more recent forms such as video ads have received little attention. The understanding and identification of fraudulent activity (i.e., fake views) in video ads for advertisers, is complicated as they rely exclusively on the detection mechanisms deployed by video hosting portals. In this context, the development of independent tools able to monitor and audit the fidelity of these systems are missing today and needed by both industry and regulators. In this paper we present a first set of tools to serve this purpose. Using our tools, we evaluate the performance of the audit systems of five major online video portals. Our results reveal that YouTube's detection system significantly outperforms all the others. Despite this, a systematic evaluation indicates that it may still be susceptible to simple attacks. Furthermore, we find that YouTube penalizes its videos' public and monetized view counters differently, the former being more aggressive. This means that views identified as fake and discounted from the public view counter are still monetized. We speculate that even though YouTube's policy puts in lots of effort to compensate users after an attack is discovered, this practice places the burden of the risk on the advertisers, who pay to get their ads displayed.Comment: To appear in WWW 2016, Montr\'eal, Qu\'ebec, Canada. Please cite the conference version of this pape

    Inefficiencies in Digital Advertising Markets

    Get PDF
    Digital advertising markets are growing and attracting increased scrutiny. This article explores four market inefficiencies that remain poorly understood: ad effect measurement, frictions between and within advertising channel members, ad blocking, and ad fraud. Although these topics are not unique to digital advertising, each manifests in unique ways in markets for digital ads. The authors identify relevant findings in the academic literature, recent developments in practice, and promising topics for future research

    FraudDroid: Automated Ad Fraud Detection for Android Apps

    Get PDF
    Although mobile ad frauds have been widespread, state-of-the-art approaches in the literature have mainly focused on detecting the so-called static placement frauds, where only a single UI state is involved and can be identified based on static information such as the size or location of ad views. Other types of fraud exist that involve multiple UI states and are performed dynamically while users interact with the app. Such dynamic interaction frauds, although now widely spread in apps, have not yet been explored nor addressed in the literature. In this work, we investigate a wide range of mobile ad frauds to provide a comprehensive taxonomy to the research community. We then propose, FraudDroid, a novel hybrid approach to detect ad frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI state transition graphs and collects their associated runtime network traffics, which are then leveraged to check against a set of heuristic-based rules for identifying ad fraudulent behaviours. We show empirically that FraudDroid detects ad frauds with a high precision (93%) and recall (92%). Experimental results further show that FraudDroid is capable of detecting ad frauds across the spectrum of fraud types. By analysing 12,000 ad-supported Android apps, FraudDroid identified 335 cases of fraud associated with 20 ad networks that are further confirmed to be true positive results and are shared with our fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure
    • …
    corecore