4,073 research outputs found

    Teaching HDFS/MapReduce Systems Concepts to Undergraduates

    Get PDF
    This paper presents the development of a Hadoop MapReduce module that has been taught in a course in distributed computing to upper undergraduate computer science students at Clemson University. The paper describes our teaching experiences and the feedback from the students over several semesters that have helped to shape the course. We provide suggested best practices for lecture materials, the computing platform, and the teaching methods. In addition, the computing platform and teaching methods can be extended to accommodate emerging technologies and modules for related courses

    Teaching HDFS/MapReduce Systems Concepts to Undergraduates

    Get PDF
    This paper presents the development of a Hadoop MapReduce module that has been taught in a course in distributed computing to upper undergraduate computer science students at Clemson University. The paper describes our teaching experiences and the feedback from the students over several semesters that have helped to shape the course. We provide suggested best practices for lecture materials, the computing platform, and the teaching methods. In addition, the computing platform and teaching methods can be extended to accommodate emerging technologies and modules for related courses

    Clemson University Libraries 2014 Annual Report

    Get PDF
    This report details the 2013-2014 fiscal year for the Clemson University Libraries. Although the Libraries were met with great changes during the year, there were many important achievements and highlights as well, such as the establishment of TigerPrints, Clemson’s institutional repository, the construction of the Cooper Digital Studio, and the reorganization of the Libraries’ units and naming of new unit heads

    Virtual Reality Based Simulation Testbed for Evaluation of Autonomous Vehicle Behavior Algorithms

    Get PDF
    Validation of Autonomous Vehicle behavior algorithms requires thorough testing against a wide range of test scenarios. It is not financially and practically feasible to conduct these tests entirely in a real world setting. We discuss the design and implementation of a VR based simulation testbed that allows such testing to be conducted virtually, linking a computer-generated environment to the system running the autonomous vehicle\u27s decision making algorithms and operating in real-time. We illustrate the system by further discussing the design and implementation of an application that builds upon the VR simulation testbed to visually evaluate the performance of an Advance Driver Assist System (ADAS), namely Cooperative Adaptive Cruise Control (CACC) controller against an actor using vehicular navigation data from real traffic within a virtual 3D environment of Clemson University\u27s campus. With this application, our goal is to enable the user to achieve spatial awareness and immersion of physically being inside a test car within a realistic traffic scenario in a safe, inexpensive and repeatable manner in Virtual Reality. Finally, we evaluate the performance of our simulator application and conduct a user study to assess its usability

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development. During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences. This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed

    Clemson Libraries - Carnegie Research 1 Task Force Report

    Get PDF
    The Becoming a R1 Library Task Force was charged with exploring what it would mean for Clemson Libraries to become a “Research 1 Library.” Specifically, our purpose was to conduct research and collect data with the following aims in mind: 1. To evaluate Clemson’s current operations 2. To discern the differences between operations of spaces, services, collections, and resources at Clemson Libraries and 12 specific aspirational peer R1 Libraries 3. To offer recommendations to help Clemson Libraries bridge the gap This report contains two sections: Section I outlines benchmarking against aspirational peer libraries and Section II contains recommendations based on our findings

    Evaluating Grasping Visualizations and Control Modes in a VR Game

    Get PDF
    A primary goal of the Virtual Reality(VR) community is to build fully immersive and presence-inducing environments with seamless and natural interactions. To reach this goal, researchers are investigating how to best directly use our hands to interact with a virtual environment using hand tracking. Most studies in this field require participants to perform repetitive tasks. In this article, we investigate if results of such studies translate into a real application and game-like experience. We designed a virtual escape room in which participants interact with various objects to gather clues and complete puzzles. In a between-subjects study, we examine the effects of two input modalities (controllers vs. hand tracking) and two grasping visualizations (continuously tracked hands vs. virtual hands that disappear when grasping) on ownership, realism, efficiency, enjoyment, and presence. Our results show that ownership, realism, enjoyment, and presence increased when using hand tracking compared to controllers. Visualizing the tracked hands during grasps leads to higher ratings in one of our ownership questions and one of our enjoyment questions compared to having the virtual hands disappear during grasps as is common in many applications. We also confirm some of the main results of two studies that have a repetitive design in a more realistic gaming scenario that might be closer to a typical user experience
    • …
    corecore