13,884 research outputs found

    Efficient pruning of large knowledge graphs

    Get PDF
    In this paper we present an efficient and highly accurate algorithm to prune noisy or over-ambiguous knowledge graphs given as input an extensional definition of a domain of interest, namely as a set of instances or concepts. Our method climbs the graph in a bottom-up fashion, iteratively layering the graph and pruning nodes and edges in each layer while not compromising the connectivity of the set of input nodes. Iterative layering and protection of pre-defined nodes allow to extract semantically coherent DAG structures from noisy or over-ambiguous cyclic graphs, without loss of information and without incurring in computational bottlenecks, which are the main problem of stateof- the-art methods for cleaning large, i.e., Webscale, knowledge graphs. We apply our algorithm to the tasks of pruning automatically acquired taxonomies using benchmarking data from a SemEval evaluation exercise, as well as the extraction of a domain-adapted taxonomy from theWikipedia category hierarchy. The results show the superiority of our approach over state-of-art algorithms in terms of both output quality and computational efficiency

    Measuring Accuracy of Triples in Knowledge Graphs

    Get PDF
    An increasing amount of large-scale knowledge graphs have been constructed in recent years. Those graphs are often created from text-based extraction, which could be very noisy. So far, cleaning knowledge graphs are often carried out by human experts and thus very inefficient. It is necessary to explore automatic methods for identifying and eliminating erroneous information. In order to achieve this, previous approaches primarily rely on internal information i.e. the knowledge graph itself. In this paper, we introduce an automatic approach, Triples Accuracy Assessment (TAA), for validating RDF triples (source triples) in a knowledge graph by finding consensus of matched triples (among target triples) from other knowledge graphs. TAA uses knowledge graph interlinks to find identical resources and apply different matching methods between the predicates of source triples and target triples. Then based on the matched triples, TAA calculates a confidence score to indicate the correctness of a source triple. In addition, we present an evaluation of our approach using the FactBench dataset for fact validation. Our findings show promising results for distinguishing between correct and wrong triples

    Efficient pruning of large knowledge graphs

    Get PDF
    In this paper we present an efficient and highly accurate algorithm to prune noisy or over-ambiguous knowledge graphs given as input an extensional definition of a domain of interest, namely as a set of instances or concepts. Our method climbs the graph in a bottom-up fashion, iteratively layering the graph and pruning nodes and edges in each layer while not compromising the connectivity of the set of input nodes. Iterative layering and protection of pre-defined nodes allow to extract semantically coherent DAG structures from noisy or over-ambiguous cyclic graphs, without loss of information and without incurring in computational bottlenecks, which are the main problem of stateof- the-art methods for cleaning large, i.e., Webscale, knowledge graphs. We apply our algorithm to the tasks of pruning automatically acquired taxonomies using benchmarking data from a SemEval evaluation exercise, as well as the extraction of a domain-adapted taxonomy from theWikipedia category hierarchy. The results show the superiority of our approach over state-of-art algorithms in terms of both output quality and computational efficiency

    TiFi: Taxonomy Induction for Fictional Domains [Extended version]

    No full text
    Taxonomies are important building blocks of structured knowledge bases, and their construction from text sources and Wikipedia has received much attention. In this paper we focus on the construction of taxonomies for fictional domains, using noisy category systems from fan wikis or text extraction as input. Such fictional domains are archetypes of entity universes that are poorly covered by Wikipedia, such as also enterprise-specific knowledge bases or highly specialized verticals. Our fiction-targeted approach, called TiFi, consists of three phases: (i) category cleaning, by identifying candidate categories that truly represent classes in the domain of interest, (ii) edge cleaning, by selecting subcategory relationships that correspond to class subsumption, and (iii) top-level construction, by mapping classes onto a subset of high-level WordNet categories. A comprehensive evaluation shows that TiFi is able to construct taxonomies for a diverse range of fictional domains such as Lord of the Rings, The Simpsons or Greek Mythology with very high precision and that it outperforms state-of-the-art baselines for taxonomy induction by a substantial margin
    corecore