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Abstract
In this paper we present an efficient and highly ac-
curate algorithm to prune noisy or over-ambiguous
knowledge graphs given as input an extensional
definition of a domain of interest, namely as a set
of instances or concepts. Our method climbs the
graph in a bottom-up fashion, iteratively layering
the graph and pruning nodes and edges in each
layer while not compromising the connectivity of
the set of input nodes. Iterative layering and pro-
tection of pre-defined nodes allow to extract se-
mantically coherent DAG structures from noisy or
over-ambiguous cyclic graphs, without loss of in-
formation and without incurring in computational
bottlenecks, which are the main problem of state-
of-the-art methods for cleaning large, i.e., Web-
scale, knowledge graphs. We apply our algorithm
to the tasks of pruning automatically acquired tax-
onomies using benchmarking data from a SemEval
evaluation exercise, as well as the extraction of a
domain-adapted taxonomy from the Wikipedia cat-
egory hierarchy. The results show the superiority of
our approach over state-of-art algorithms in terms
of both output quality and computational efficiency.

1 Introduction
In the age of information, the Web provides a goldmine of
data from which knowledge can be harvested on an unprece-
dented scale. As a matter of fact, efforts in information ex-
traction and knowledge acquisition from the past decade have
been able to produce knowledge resources on a scale that
was arguably hard to imagine a few years ago [Carlson et al.,
2010; Wu et al., 2012; Fader et al., 2011; Gupta et al., 2014;
Dong et al., 2014, inter alia]. Large coverage, however,
comes with new challenges associated with the noise in the
input data, as well as errors in the output knowledge base.

In this paper, we address the problem of pruning large
knowledge graphs, removing “noisy” edges and relations. We
specifically focus on a high-performing, yet efficient algo-
rithm since in this task we are typically faced with complexity

∗Contributions made while he was still at the University of
Mannheim.

issues that arise from the large size of the graph to be pruned.
Examples include open-domain Web mining [Seitner et al.,
2016] or pruning large crowdsourced knowledge bases – e.g.,
those considered in [Faralli et al., 2015a] and [Kapanipathi
et al., 2014]. We present a new algorithm, named CRUMB-
TRAIL, to efficiently and effectively mine a taxonomic struc-
ture “hidden” within a large graph, starting from a number of
constraints (or “crumbs”, as in the fairy tale of Hansel and
Gretel) that a user can select to characterize a domain of in-
terest, which help identifying promising paths.

2 Problem Statement
We start by formally defining the task of pruning a knowledge
graph, along with an intuition and real-case examples to jus-
tify the utility of such a task. We define a knowledge graph
as a typed directed graph KG = (V,E, T ): nodes V identify
a set of concepts or entities and E is a set of relations across
nodes such that (a, b, t) ∈ E, where a, b ∈ V and t ∈ T is
the relation type. Relations types may vary due to the model
specification and the scopes of the representation.

Definition 1 (Strict weak order relation). A relation≺ of type
t is a strict weak order (SWO) if it is irreflexive, antisymmet-
ric, and transitive [Roberts and Tesman, 2009].

The edges of a knowledge graph KG induce a strict weak
order if the edges in the transitive closure of KG satisfy the
three properties of Definition 1. In this paper, we restrict to
the case in which all edges are of a given type t, where t is a
SWO relation. Common types of SWO relations in a knowl-
edge graph are hypernymy, meronymy and topical [Ponzetto
and Strube, 2011] relations.

Given a knowledge graph KG, we identify two undesired
phenomena, which we denote as “noise”:

i) infringements of SWO relations:
if, for some relation, at least one of the three conditions in

Definition 1 does not hold; ii) unessential nodes and edges:
assuming that KG is the graph representation of a specific
knowledge domain (like, for example, health, tourism, or ar-
chitecture), unessential nodes and edges are those which are
either redundant or even harmful to describe the domain se-
mantics, for instance due to their ambiguity and the resulting
potential for semantic shifts. Accordingly, we define a noisy
knowledge graph NKG as a graph where one or both unde-
sired phenomena occur.
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Pruning a noisy knowledge graph NKG is viewed
throughout the paper as the process of searching a subgraph
of NKG such that: 1) its edges induce a strict weak order
and 2) it does not contain unessential nodes and edges. Con-
dition 1 is satisfied if the subgraph does not contain cycles:
in fact, for each pair of nodes u and v in a cycle, both u ≺ v
and v ≺ u hold by transitivity (u ≺ v means that edge (u, v)
exists), since the two nodes can reach each other along cycle
edges, violating the property of being antisymmetric. This
can be formally verified using only topological properties of
the graph. On the contrary, testing condition 2 should in prin-
ciple involve the use of knowledge-based methods, which are
heuristic in nature. Our challenge in this paper is to adopt
a notion of (un)essentiality which can be formally tested on
the graph topology without resorting to methods for assess-
ing loosely defined constraints such as “domain semantics”.
To this end, our approach is to assume the availability of an
initial set of nodes P , defined as follows:

Definition 2 (Primitive essential nodes). Given a noisy
knowledge graph NKG = (V,E), let P ⊆ V be a set of
primitive essential nodes containing:

a) terminological nodes: a subset of nodes of NKG which
belong to a target domain of interest (i.e., domain-specific
instances and terms);

a) categorical nodes (the “crumbs”): some (even few)
domain-pertinent concepts of NKG expected to be lo-
cated in “higher” positions in the strict weak order;

c) root: a concept r that is a common ancestor of all nodes in
P , i.e., a node from which all nodes of P can be reached
(in short, we call this property r-connectivity).

Given P , we characterize essential nodes in terms of con-
nectivity of P with respect to the root r:

Definition 3 (Essential nodes). Essential nodes in a NKG are
those nodes that are strictly needed to preserve set P dur-
ing the pruning process, i.e., those nodes which, if removed,
would compromise r-connectivity.

The identification of (un)essential nodes is at the core of the
CRUMBTRAIL algorithm. The intuition is that, provided that
set P implicitly defines one or even more domains of inter-
est, noisy nodes and edges – either originated by extraction
errors or out-of-domain – should mostly lie outside the rele-
vant paths connecting terminological and crumb nodes to the
root r, i.e., they are not essential.

Further note that the output subgraph is different from the
subgraph of NKG induced by P : in particular, it might
contain nodes that are not in P . Similarly, while resem-
bling the maximal acyclic subgraph [Berger and Shor, 1990]
and the minimum feedback arc set [Demetrescu and Finoc-
chi, 2003] problems, which are often used for untangling
the structure of complex networks [Sugiyama et al., 1981;
Demetrescu and Finocchi, 2001], computing such subgraphs
would not be appropriate for our pruning task, since con-
nectivity properties would not be necessarily preserved. On
the other side directed Steiner tree [Charikar et al., 1999] al-
gorithms, besides computational complexity issues (see Sec-
tions 3 and 5), would maintain connectivity but would prune

NKG very aggressively, removing all multiple paths from
r to any node in P , at the risk of omitting nodes that could
be semantically relevant to describe domain-consistent and
equally valid classifications of a concept.

Examples of noise. InNKG, the presence of noise might be
the result of automatic [Velardi et al., 2013; Mitchell et al.,
2015] or collaborative [Ponzetto and Strube, 2011] knowl-
edge graph construction. In fact, it is acknowledged that the
process of creating large and dynamically updated knowledge
resources [Hoffart et al., 2016] cannot be entrusted to a small
team of domain experts, and is therefore subject to errors.
Some common examples of “noise”, which illustrate the util-
ity of NKG cleaning, include:
• Infringement of SWO relations: cycles, which represent

an infringement of SWO relations, are very common in
the Wikipedia category graph1 (e.g., Persian books →
Iranian books → Persian books) and in dictionaries.
Circularity of definitions is a well-known issue in lexicog-
raphy and is considered to be a problem since the earlier
history of computational linguistics [Richens, 2008].

• Extraction errors: the problem of automated taxonomy
learning is commonly addressed by extracting SWO rela-
tions such as hypernymy relations from glossaries [Navigli
and Velardi, 2010] or definitional patterns [Hearst, 1992]
like: “x are y” (“cats are felines”). Although more or less
sophisticated, all algorithms are prone to extraction errors.
As an example, the sentence “cats are examples of highly
refined adaptation and evolution” may lead to extracting
the following hypernymy relations: cats ← example,
cats ← refined, cats ← adaptation, which are all
wrong according to commonsense knowledge.

• Out-of-domain nodes: in Wikipedia, Freebase, DBpedia
and other large knowledge bases, categorical information
is freely generated by contributors with limited editorial
verification, which leads to an excessive multiple inheri-
tance, a problem that may cancel the advantage of adding
semantics [Matykiewicz and Duch, 2014]. A typical ex-
ample from Wikipedia’s category graph is shown in Table
1: note that two very different entities, a director (David
Lynch) and an education institution (University of Tokyo),
end up almost in the same set of upper Wikipedia cate-
gories (oddly, they both reach the categories Education
and People). The problem however is not so much the
quality of semantic relations, but rather the coexistence of
many different perspectives. For example, the page Uni-
versity of Tokyo is classified (see column 2 of Table 1)
as National universities and Visitor attractions in Tokyo.
These are both reasonable classifications, however the first
would be an appropriate category for an Education tax-
onomy, and the second for a Tourism and places taxon-
omy. Furthermore, these different “semantic threads” do
not remain separated while climbing towards upper cate-
gories, but they interweave over and over again in the cate-
gory graph, making the (useful) task of generating domain
views particularly complex.

1https://en.wikipedia.org/wiki/Wikipedia:
Dump_reports/Category_cycles
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Wikipage: David Lynch
1st level categories 2nd level categories Top categories
American people of
Finnish descent, Amer-
ican male voice actors,
Surrealist filmmakers,
American television
directors, (more. . . )

Filmmakers from Cal-
ifornia, Experimental
filmmakers by national-
ity, Male voice actors by
nationality, (more. . . )

Geography, People, Hu-
mans, World, History,
Information, Educa-
tion, Knowledge, Arts,
Industry, Language,
(more. . . )

Wikipage: University of Tokyo
1st level categories 2nd level categories Top categories
Educational institutions
established in 1877,
1964 Summer Olympic
venues, Universities
and colleges in Tokyo,
(more. . . )

Sport in Japan by sport,
Visitor attractions in
Tokyo, College athletics
conferences in Japan,
National universities,
(more. . . )

Geography, Humans,
Science, History,
Knowledge, People,
Industry, Education,
Technology, Employ-
ment, (more. . . )

Table 1: Example of multiple inheritance in the Wikipedia category
graph: note that top categories are almost completely overlapping.

Our hunch is that both extraction errors and out-of-domain
nodes are expected to be unessential for preserving the con-
nectivity of the set P . For example, if we aim at building an
animal taxonomy, with crumbs such as mammal and/or ani-
mal, and a text mining algorithm extracts multiple hypernymy
relations (some of which are either wrong or out-of-domain)
such as cats← feline, cats← example, cats← musical,
it is very unlikely that the nodes example andmusical lie on
hypernymy chains connecting cat withmammal or animal,
and even more unlikely that they are essential to preserve the
connectivity between these nodes.

3 Related Work
Approaches to knowledge graphs cleaning in literature differ
both in the method to identify relevant and irrelevant nodes,
and in the higher or lower impact of the pruning policy.

1) Domain-aware “soft” pruning. Most taxonomy pruning
approaches require that the user selects the relevant concepts
by hand [Swartout, 1996] or describes in some way the do-
main of interest [Best and Lebiere, 2010]. These approaches
are rather conservative, and the number of deleted nodes is
actually quite low [Kim et al., 2007]. Furthermore, none of
these methods is able to detect and remove cycles, and com-
plexity may also be an issue, since it is necessary to compute
all the paths top-down from root to leaf nodes.

2) Domain-aware “aggressive” pruning. A number of pa-
pers rely on more “aggressive” pruning policies based on
topological graph pruning methods. [Kozareva and Hovy,
2010] propose an algorithm to induce a taxonomy from a
graph structure. It uses a root term, a set of seed examples
of hypernymy relations (e.g., cats ← feline) and lexico-
syntactic patterns to learn automatically from the Web hy-
ponyms and hypernyms subordinated to the root. It then uses
cycle pruning and “longest path” heuristics to induce a DAG
structure. Similarly, In Ontolearn Reloaded [Velardi et al.,
2013] the algorithm starts from a set of automatically ex-
tracted terms and iteratively extracts hypernym relations thus
building an hypernymy graph. To induce a taxonomy from
the graph, the authors use a variant of Chu-Liu Edmonds’
(CLE) optimal branching algorithm [Edmonds, 1967], in

which the node weighting strategy is based on preserving
both longest paths and the highest coverage of input terms.

3) Domain-unaware “soft” pruning approaches. Studies
like [Kapanipathi et al., 2014] and [Faralli et al., 2015a] look
at the problem of removing cycles in Wikipedia in a user rec-
ommendation task. The first paper uses simulated anneal-
ing to identify relevant upper categories starting from a set
of Wikipages representing users’ interests. The latter uses an
efficient variant of Tarjan’s topological sorting [Tarjan, 1972]
for cycle pruning. To avoid a random selection of edges to
prune, [Sun et al., 2017] combine different heuristics to ap-
proximate an “aggressive” node ranking function and experi-
ment different strategies to select an edge to be removed and
break cycles.

All previous methods, setting aside the precision of the prun-
ing process, present at least one of the following two prob-
lems, if not both: 1) Computational complexity: Some of
the above approaches rely on time or space expensive tech-
niques. For example, the complexity of CLE, and other
Steiner algorithms, is affected by the need to compute the
weight of alternative branches, which in general implies a
depth first search (DFS). Similar problems arise in soft prun-
ing methods, since they need to compute all paths from root
to leaf nodes using DFS. Parallelization techniques such as
MapReduce would not help and would rather be harmful, due
to the parallelization overhead, since DFS is inherently se-
quential [Reif, 1985]; 2) Information loss: Edge or path
pruning based either on topological (nodes outdegree, longest
or shortest paths, transitive closure, etc.) or random selection,
may cause the loss of possibly relevant hierarchical relations
(especially if the shortest path heuristics is adopted, like in
[Kapanipathi et al., 2014]), and even the disconnection of se-
lected seed nodes [Faralli et al., 2015a].

In marked contrast, as shown in this paper, our CRUMB-
TRAIL algorithm does not incur in space and time limits (even
when pruning extremely large and dense graphs such as the
full Wikipedia), and is both domain aware and “aggressive”,
while preserving all the available information on the domain
(the set P ).

4 The CrumbTrail Algorithm
In this section we summarize our pruning algorithm, called
CRUMBTRAIL. In line with the problem description pro-
vided in Section 1, given a (directed) noisy knowledge graph
NKG(V,E) (hereafter denoted G for brevity), a set P ⊆ V
of terminological nodes and crumbs to be preserved (referred
to as protected nodes), and a root r ∈ P , CRUMBTRAIL
prunes G to obtain an acyclic subgraph GP that contains all
nodes of P , as well as possibly other nodes to guarantee con-
nectivity properties as explained below. Unessential nodes,
namely redundant nodes that hinder exposing the domain-
focused structure due to the presence of multiple alternative
paths (Section 1), are eliminated by CRUMBTRAIL, resulting
in a more aggressive pruning. The output graph GP is lay-
ered, with top-down edges connecting upper to lower layers.
Nodes of P can appear on any layer, including intermediate
ones: this is in line with the fact that P contains both termi-
nological nodes and crumbs. Moreover, under the assumption
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Algorithm 1: CRUMBTRAIL

Input: preprocessed graph G(V,E), P ⊆ V , root r ∈ P
Output: acyclic and r-connected graph GP

1 Initialize sets Ground, Intermediate, and postponed table
2 ` = 0
3 V0 = Ground
4 repeat
5 let P` = V` ∩ P
6 Ground = Ground ∪ P`

7 Intermediate = Intermediate \ P`

8 ` = `+ 1
9 createNewLayer(G, Ground, Intermediate, r, V`−1,

postponed)
10 postponeNodes(G,V`, postponed)
11 pruneUnessential(G, V`, Ground, Intermediate, r)
12 until r ∈ Ground and postponed is empty

thatG is r-connected with respect to P (i.e., contains directed
paths from the root r to every other node of P ), CRUMB-
TRAIL also preserves the r-connectivity in GP .

Overview. The algorithm is called after the fairy tale of
Hansel and Gretel: intuitively, it finds its path towards home
– the root r – following a trail of “breadcrumbs” – the set P
of protected nodes. Differently from previous approaches,
CRUMBTRAIL climbs G bottom-up, rather than top-down,
traversing crumbs from a bottom layer V0 containing a sub-
set of P up to a layer Vh containing the root r. The number
h of layers of GP is not known a priori. Instead, due to the
presence of cycles and multiple paths between nodes, layers
Vi of GP are unfolded incrementally while climbing G up-
wards, according to the following criteria: a) no path in GP

can connect any pair of nodes in Vi. If such a path is found
during the construction of Vi, its start node is deferred (post-
poned) to an upper layer; b) cycles involving edges incident
to nodes of Vi are broken, taking care of eliminating cycle
edges whose removal does not disconnect any of the nodes
P from the root r; c) for each node in the new layer Vi, in-
coming edges start from unprocessed or postponed nodes and
outgoing edges end in lower layers (i.e., layers Vt such that
t < i); d) nodes in Vi (and their incident edges) are pruned
whenever unessential to preserve the r-connectivity.

Traversing and pruning G bottom-up guarantees that the
number of alternative paths decreases progressively as the
graph is incrementally unfolded, due to criteria b and d. As
demonstrated in Section 5, this results in lower space con-
sumption and faster execution with respect to previous ap-
proaches, even when processing large and highly connected
graphs.

Preprocessing. As a preliminary step, we eliminate from G
all self loops, all edges leading to the root (if any), and all
nodes of V \ P with indegree or outdegree equal to 0. For
each node in P , we also break cycles passing through its out-
going edges. None of these operations harms the connectivity
between r and nodes in P .

Data structures. CRUMBTRAIL maintains a layer counter
` ≥ 0 and a hash table of postponed nodes consisting of
pairs 〈v, i〉, where i is an estimate of the layer at which
node v will be analyzed and is used as key in the dictio-
nary. With a slight abuse of notation, throughout this section

we denote by postponed(i) the subset of nodes temporarily
postponed to layer i. Throughout the execution of CRUMB-
TRAIL, P is partitioned into two sets, called Ground and
Intermediate = P \ Ground. At the beginning, Ground
contains only P nodes with outdegree 0. The remaining P
nodes are added to Intermediate as well as to the postponed
table, using as a tentative layer the length of a shortest path
to a ground node. In subsequent iterations, P nodes not yet
analyzed are transferred from Intermediate to Ground as
they are processed and assigned to layers. The first layer, V0,
coincides with Ground nodes (line 3 of Algorithm 1).

Main iteration. After data structure initialization (lines 1–3
of Algorithm 1), graph pruning is performed by an iterative
procedure (lines 4–12) that repeats the following steps, until
the root has been visited and the postponed table is empty
(termination condition at line 12):

1) createNewLayer: build a new layer V` and re-
move cycles passing through edges outgoing from nodes of
V` (line 9); 2) postponeNodes: postpone nodes of the
current layer V` that reach each other (line 10). Namely, if
two nodes of V` are connected by a path of length k, the start-
ing node of the path is temporarily postponed to layer V`+k;
3) pruneUnessential: remove unessential nodes in V`
(line 11) while preserving the r-connectivity with respect to
nodes in P .

In more details, the three subroutines work as follows.

Algorithm CreateNewLayer. Besides selecting candidate
nodes to be added to the current layer V`, this subroutine also
removes cycles passing through incident edges. Nodes added
to V` can be either starting nodes of edges whose target is in
V`−1 or postponed nodes.

First, every node u with an outgoing edge to V`−1 is added
to V`, provided that there is no directed path from u to any
postponed node p. This check is done to satisfy the node lay-
ering criteria: all edges should flow top-down, but adding u
to V` would create at least a bottom-up edge if u is connected
to a postponed node. It may be the case that after this phase
the current layer V` remains empty. If this is the case, and if
there are no nodes postponed to layer `, the algorithm skips
to the first non-empty layer.

Next, createNewLayer removes cycles passing
through edges outgoing from nodes in V`. The cycle break-
ing procedure iterates over these edges and detects a cycle
across an edge (x, y) whenever it finds a path π = y ; x
starting at node y and ending in x. To implement this
check, the algorithm first computes a BFS tree Tr rooted at
r. Notice that, if an edge f does not belong to Tr, it can
be safely removed from the cycle involving (x, y) without
compromising r-connectivity. Moreover, since Tr is acyclic,
such an edge must necessarily exist in cycle 〈x, y ; x〉
identified by the cycle breaking procedure. Hence, every
cycle can be safely broken while maintaining r-connectivity.

We remark that, after the execution of this subroutine, it
may be possible that there are still edges between nodes in
V`: if such an edge (x, y) exists, we are guaranteed that it is
not part of a cycle, and x will be postponed to an upper layer
immediately later by subroutine postponeNodes. It may
be also the case that there are edges outgoing from V` and
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reaching nodes that are not yet assigned to a layer: if such an
edge (x, y) exists, with x ∈ V` and y unlayered, it can happen
neither that y is postponed nor that there is a path from y to
a postponed node. In that case, x would have not been added
to V`. Since postponed nodes include intermediate nodes (see
the data structure description), if upward edges exist starting
from V`, they must lead to nodes that are unessential to pre-
serve r-connectivity and can be later removed by subroutine
pruneUnessential.

Algorithm PostponeNodes. This subroutine is invoked by
CRUMBTRAIL immediately after building a new layer and
identifies nodes of V` to be postponed to subsequent lay-
ers, updating the postponed table. As previously observed,
CRUMBTRAIL aims at creating layers so that edges flow top-
down. Hence, nodes of the current layer V` who are the start-
ing points of paths ending in V` itself must be shifted to higher
layers. In more details, given two nodes u and v in V` con-
nected by a path π = u; v, u is postponed |π| levels higher
than v, where |π| denotes the path length. Since there could
be multiple paths connecting u and v, we do not attempt at
establishing a priori the exact layer distance among the two
nodes. Instead, π is chosen arbitrarily and the layer at which u
is postponed might be later increased due to the discovery of
additional (longer) paths originating from u. The postponed
table is updated accordingly and all the rescheduled nodes are
removed from V`.

Algorithm PruneUnessential. Nodes that are not es-
sential to preserve the connectivity between intermedi-
ate and ground nodes can be removed by the procedure
pruneUnessential. This algorithm finds nodes of
the current layer either reachable from intermediate nodes
or reaching ground nodes. Nodes of V` that cannot be
removed unless compromising the connectivity between
Intermediate and Ground are called essential. For any
v ∈ V`, let G(v) be the set of ground nodes reachable from v
and let I(v) be the set of intermediate nodes from which v is
reachable. A node v ∈ V` is essential if there is at least one
pair of nodes, x ∈ I(v) and y ∈ G(v), that can be connected
only through v: i.e., x and y would be disconnected by delet-
ing v. It follows that, if G(v) = ∅ or I(v) = ∅, then v does
not connect any intermediate-ground pair and can be safely
removed. Unessential nodes are then ranked based on |G(v)|
and |I(v)| and the highest ranked node is removed (ties are
broken arbitrarily). Since the removal of any node changes
the rank of the others, the procedure is iterated until no more
nodes can be deleted. Hence, only essential nodes survive in
V`. As a last step, the algorithm deletes nodes with indegree
or outdegree equal to 0 that might have been created during
the previous steps.

Example. Figure 1 presents a step-by-step execution of an
iteration of CRUMBTRAIL on a 21-node noisy graph. As
shown in Figure 1.i, P = {r, a, b, c, d, e}. During prepro-
cessing (Figure 1.ii), self-loops on nodes 3 and 9, as well as
nodes 10, 11, and 12, whose in/out-degree is 0, are removed.
Edge (6, r) points to the root and is thus deleted. Edges (2, e)
and (d, 1) are eliminated in order to break cycles 〈e, 4, 2, e〉
and 〈d, 1, d〉, respectively. The protected nodes e and r are

marked as intermediate and postponed to upper layers, based
on the length of a shortest path to ground nodes {a, b, c, d}.
In Figure 1.iii, createNewLayer builds a new layer V1
containing all nodes with an outgoing edge to V0. The al-
gorithm then breaks three cycles 〈7, 6, 8, 7〉, 〈6, 8, 6〉, and
〈14, 4, 14〉 by removing edges (7, 6), (6, 8), and (14, 4), re-
spectively. Notice that after edge deletion the connectivity
between intermediate and ground nodes is still maintained. In
Figure 1.iv, postponeNodes moves node 4 out of V1, de-
ferring its processing to layer V2 due to the existence of paths
〈4, 5, b〉 and 〈4, 2, c〉. Nodes 7, 6, 5, 2, and 14 are unessential
to preserve the connectivity of r and ewith ground nodes, and
are thus eliminated by pruneUnessential in Figure 1.v.
After the first iteration, only nodes 1 and 15 remain in V1, as
shown in Figure 1.vi.

5 Evaluation
In order to benchmark CRUMBTRAIL (hereafter, CRU), we
consider the following competing approaches:

1) the algorithm from [Faralli et al., 2015a] (TAR), which
is based on Tarjan’s topological sorting [Tarjan, 1972]; 2) the
algorithm from [Velardi et al., 2013] (CLE), which is based
on Chu-Liu/Edmond’s optimal branching [Edmonds, 1967]
and an ad-hoc node weighting policy; 3) the Wikipedia hier-
archical edge pruning algorithm proposed in [Kapanipathi et
al., 2014] (HPA).

To the best of our knowledge, these three algorithms are
the only ones that tackle the problem of fully automated prun-
ing of large Web-size knowledge graphs. As summarized in
Section 3: TAR and HPA are “soft” methods only aimed at
eliminating cycles, while CLE and CRU belong to the cate-
gory of “aggressive” pruning algorithms. Furthermore, both
TAR and CLE are lossy, i.e., they are not guaranteed to pre-
serve the connectivity of nodes in P . HPA is not lossy with
respect to leaf nodes, but given the simple pruning strategy, it
may end up eliminating relevant edges.

Experimental setting. We evaluate the performance of the
aforementioned methods for two different tasks, namely on-
tology pruning and ontology domain adaptation. We are
given a noisy knowledge graph NKG(V,E) (G for brevity)
a gold-standard graph GS(V ′, E′) and a reference graph
R(V ′′, E′′) = G(V,E) ∩ GS(V ′, E′). In ontology learning
G(V,E) is an automatically learned structure that may have
noisy and missing elements with respect to the gold standard.
Instead, in ontology adaptation G(V,E) is a possibly very
dense knowledge graph, and the aim is to extract a domain
taxonomy which is fully embedded in G.

Performance metrics. We apply our four pruning algorithms
to G(V,E) and obtain a pruned graph Gp(Vp, Ep). Impor-
tantly, for the sake of comparison with CRU (see line 3 of Al-
gorithm 1), we remove from the pruned graphs obtained from
each of the compared algorithms the “pending” leaf and root
nodes. We recall that pending leaf nodes in a noisy graph are
those leaf nodes not in P and pending roots are those differ-
ent from r. As a consequence, even though HPA is not lossy
– since its simple edge pruning strategy guarantees that all
nodes v ∈ V are preserved – in our implementation a number
of peripheral nodes are eventually pruned.
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Figure 1: A complete walkthrough example of the application of CRUMBTRAIL to a noisy graph.

Ideally, we would like to have the pruned graph to per-
fectly match the reference graph, namely Gp(Vp, Ep) =
R(V ′′, E′′) or to be able to quantify different degrees of sim-
ilarity between the two graphs when no perfect match is at-
tained. To this end, we use the Jaccard distance over the two
node sets as evaluation measure:

JV =
|V ′′ ∪ Vp| − |V ′′ ∩ Vp|

|V ′′ ∪ Vp|
(1)

Since in both tasks of ontology pruning and domain adap-
tation, the algorithms are provided with a number of initial
nodes P , a second objective is that the ontology pruning
task is not lossy, i.e. that all nodes in P are preserved in
Gp. Accordingly, we compute the coverage of P nodes as:
CP =

|P∩Vp|
|P | . Next, in order to provide a measure of the

difficulty of the pruning task, we define the following indexes
to compute the amount of noise of G(V,E) with respect to
the reference graph R(V ′′, E′′): NoiseV = (1 − |V ′′|

|V | ),

NoiseE = (1− |E
′′|
|E| ). Finally, we compute the familiar met-

rics of precision, recall and balanced F-measure of the node
PV , RV and F1V and edge PE , RE and F1E pruning tasks.

Experiment 1: Cleaning automatically learned taxon-
omies. In our first experiment, we use the gold-standard tax-
onomies and the taxonomy learning systems from Task 17 of
the SemEval 2015 challenge2. In this shared task, competing

2http://alt.qcri.org/semeval2015/task17/

Taxonomy type Avg. # nodes Avg. # edges
Gold (GS) 557 634
Reference (R) 558 225
SemEval submitted runs (NKGs) 754 1385
average NoiseV 0.26%
average NoiseE 0.84%
Pruning algorithm Avg. # nodes Avg. # edges
HPA 289 739
TAR?? 288 764
CLE? 263 500
CRU 299 823

Table 2: Structural analysis of the dataset used for ontology pruning.

systems were required to learn a taxonomic structure given
an input terminology T and a root node r (P = T ∪ r). Four
domains were considered, namely Chemical, Food, Equip-
ment and Science. For each domain, the participants were
asked to automatically induce their own taxonomies, using
the terminology P as the leaf nodes of the taxonomy. The
participating systems thus output automatically built hyper-
nymy graphs, with some amount of noisy and missing nodes
and edges with respect to the four gold-standard taxonomies.

We apply the four previously listed pruning algorithms
(HPA, TAR, CLE and CRU) to the output of each of the on-
tology learning systems participating in the SemEval 2015
challenge, giving a total of 31 runs (note that not all systems
submitted an NKG for each of the 4 domains). Table 2 pro-
vides an overview of the characteristics of the data used in our
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nodes edges
CP JV PV RV F1V PE RE F1E

HPA 1.0 .24 .90 .98 .93 .23 .94 .34
TAR .81 .35 .76 .81 .77 .18 .80 .28
CLE .72 .42 .75 .73 .73 .22 .63 .29
CRU 1.0 .21 .97 .94 .95 .24 .93 .35

Table 3: Performance in the ontology pruning task (best results for
each evaluation metric are bolded).

first experiment, covering structural properties of the gold-
standard, reference noisy (i.e., SemEval submitted runs) and
pruned taxonomies. All the data shown in the table have been
averaged over each type of taxonomy, considering for each
submitted NKG only the main connected component (the
one which contains the root node). Note that, as mentioned
in the table, in some cases TAR and CLE could not guarantee
the connectivity of any of the nodes in P . Also note that, as
shown by the average size of the reference graph, in the aver-
age, NKGs submitted to the SemEval challenge include the
majority of nodes in the gold taxonomy (V ′′ ≈ V ′) but they
are unable to capture many hypenymy relations (E′′ � E′).
Table 3 shows the performance of the different pruning algo-
rithms. In the SemEval challenge, the submitted noisy hyper-
nymy graphs are not very large (cf. Table 2): consequently
none of the algorithms incurs in complexity problems. How-
ever, both TAR and CLE are lossy – i.e., some of the nodes
in P are disconnected from the resulting taxonomy (cf. the
coverage of P nodes CP in column 2). In particular, TAR
and CLE are lossy in 11 and 19 out of 31 runs, respectively.
Concerning the quality of the resulting pruned taxonomies,
the best performance figures are obtained by CRU and HPA.
HPA shows a higher recall, primarily due to the fact that it
performs only cycle pruning. CRU instead achieves the best
overall results when using precision, F1 measure and the Jac-
card distance as evaluation metric – in the case of Jaccard,
the smaller the value, the better the taxonomy, since we mea-
sure here the distance of the pruned taxonomy from the gold-
standard one.

We note that all approaches perform worst on edge pruning
than on node pruning. This is because reference taxonomies
R do not cover many of the edges of the gold-standard tax-
onomies in the first place, as shown in Table 2. That is, since
pruning algorithms cannot, and are not meant to be able to re-
trieve missing nodes and edges inGS\R, limited coverage of
the edges of the gold-standard taxonomy GS in the reference
taxonomy R heavily impacts overall performance on edge
structuring. Missing edges are also the main cause for prun-
ing preserved nodes in lossy algorithms (i.e., TAR and CLE).
In Table 3, for the sake of fair comparison, we do not test
the unique feature of CRUMBTRAIL, which is able to iden-
tify promising paths in the noisy graph, when given a num-
ber of intermediate nodes as additional hints (the “crumbs”).
However, we found that, when adding to the set P an increas-
ing but small number of “crumbs” randomly selected from
the intermediate nodes of the reference taxonomies R, per-
formance indicators that were already high achieve only very
small improvements, whereas performance on edge pruning,
which was lower, increases of about 30% before saturating.

Experiment 2: Domain adaptation of the Wikipedia cate-
gory hierarchy. In our second experiment, we apply the four
pruning algorithms to the entire Wikipedia category graph,
thus testing the full power of the CRUMBTRAIL algorithm.
For this, we use different subgraphs of the Wikipedia cate-
gory graph as silver-standard datasets, namely the category
hierarchies rooted in the categories Singers, Entertainers and
Companies. The silver-standard category hierarchies are ob-
tained as follows: 1) starting from the full Wikipedia cate-
gory graph, we remove all incoming edges in the selected root
node (e.g., for Singers, we remove edges starting in Singing,
Vocal Ensembles and Musicians); 2) we compute the transi-
tive closure of the root node r, e.g., Closure(Singers); 3) we
add to the gold-standard all the nodes in Closure(r) and all
edges (vi, vj) such that vi, vj ∈ Closure(r).

Note that this approach is not guaranteed to produce an
error-free, gold-standard category hierarchy. For example,
back to Table 1, selecting the root node Geography, we would
oddly reach both David Lynch and University of Tokyo. How-
ever, for very focused intermediate concepts such as those
selected in this experiment, we manually verified on large
samples of the datasets that nodes are indeed mostly ‘golden’
(e.g., they can be considered as specializations of the three
roots according to commonsense). The four compared algo-
rithms are provided with: i) the setP = T∪r, where T are the
Wikipages at the leaf nodes of Closure(r) (e.g., Diamanda
Galás under category Singers), and ii) the full Wikipedia cat-
egory graph rooted in Main topic classifications. The task for
each algorithm is then to induce from the “noisy” Wikipedia
category graph a domain-focused hierarchy, i.e., a directed
acyclic graph “embedded” in it, with root r and leaf nodes T .
The result of each algorithm is then compared with the sil-
ver standard, which, in contrast to the previous experiment, is
completely included in the Wikipedia category graph.

Table 5 compares the four algorithms and shows a strik-
ing superiority of CRU over the other methods, both in terms
of Jaccard distance and F-measure, for all domains. Though
the Jaccard distance is always remarkably low, the relative
rankings (not shown for sake of space) reflect the order of
generality of the domain, and thus, the impact of multiple in-
heritance: from the most focused domain Singers, to the most
generic Entertainers. Table 4 shows that the amount of noise
in this second experiment is much higher than in the previous
experiment using SemEval, and that the dimensions of both
noisy and silver taxonomies are order of magnitude higher.
The Table also shows that CRU and CLE (the latter, when-
ever it does not run out of memory) are much more aggres-
sive in pruning nodes and edges, as expected, given that HPA
and TAR are “soft” algorithms. In terms of efficiency CRU is
always faster, followed by the naive HPA pruning strategy. In-
stead, for CLE it was necessary to limit the maximum depth h
of depth-first search to 5 (denoted asCLE(5) in Table 4), and
even with this limit, a solution was actually produced only
for the first domain, namely Singers. In the other two cases,
CLE runs out of memory on a multi-core machine. CRU is
beaten in terms of recall by some of the other methods, since,
as we repeatedly remarked, TAR and HPA only remove cy-
cles. Note that, in terms of Jaccard distance, CRU almost per-
fectly retrieves the silver category hierarchies from the noisy
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Wikipedia category graph (G) # nodes # edges
root:Main topic classifications 5,398,723 18,006,438

Silver category hierarchy (GS = R) # nodes # edges
root: Singers 49,076 93,243
NoiseV 99.09%
NoiseE 99.48%
algorithms # nodes # edges run time
HPA 167,268 588,681 0.5 h
TAR 167,279 589,564 6 h
CLE(5) 48,317 84,945 5 h
CRU 48,632 91,686 0.1 h

Silver category hierarchy (GS = R) # nodes # edges
root: Entertainers 338,853 844,708
NoiseV 93.72%
NoiseE 95.30%
algorithms # nodes # edges run time
HPA 529,839 1,859,316 1 h
TAR 538,682 2,099,215 1.5 days
CLE(5) n.a n.a 2 days (fail)
CRU 324,576 774,508 0.2 h

Silver category hierarchy (GS = R) # nodes # edges
root: Companies by stock exchange 7,953 9,436
NoiseV 99.85%
NoiseE 99.94%
algorithms # nodes # edges run time
HPA 58,543 177,279 1 h
TAR 54,312 159,432 1.5 days
CLE(5) n.a n.a 2 days (fail)
CRU 7,934 9,395 0.14 h

Table 4: Structural analysis of the Wikipedia category graphs.

nodes edges
CP JV PV RV F1V PE RE F1E

HPA 1.0 .65 .35 .99 .48 .19 .90 .28
TAR .99 .53 .35 .99 .40 .61 .99 .31
CLE5 .33 .67 .33 .33 .33 .33 .30 .32
CRU 1.0 .02 1.0 .98 .99 1.0 .98 .96

Table 5: Performance in the task of domain adaptation of the
Wikipedia category graph. Measures are averaged on the 3 domains.

graphs. The only competitive system in terms of quality of
the pruned graph is CLE: however, computational complex-
ity prevents from obtaining a solution as the dimension of the
taxonomy increases, a problem that cannot be mitigated with
parallelization algorithms. The higher performance obtained
by CRU in the Wikipedia experiment is also due to the fact
that, in contrast to the SemEval experiment, the silver cate-
gory graph is fully embedded in the NKG: therefore, all the
necessary information is available to the pruning algorithm.
Further note that in this second experiment we did not test
the additional feature of CRUMBTRAIL of expanding the set
P with intermediate categories: however, the performances
are already extremely good and there is quite a limited space
for improvements.

To summarize, our results indicate that, as the dimension
and connectivity of the NKG and the amount of noise in-
crease, so does the superiority of CRUMBTRAIL over the
other graph pruning methods, both in terms of quality of the
results and speed of execution.

6 Conclusion and Future Work
To the best of our knowledge, CRUMBTRAIL is the first al-
gorithm that has been shown to perform well in the task of
removing multiple inheritance in the Wikipedia graph. This
problem has prevented so far from fully exploiting Wikipedia
hierarchical relations in many relevant applications – includ-
ing user recommendation [Kapanipathi et al., 2014; Faralli et
al., 2015b; Elgohary et al., 2011], document categorization
[Gabrilovich and Markovitch, 2006] or query understanding
[Schuhmacher et al., 2015], to name a few.

We also acknowledge some limits, which we aim to ad-
dress in the future. First, the pruning strategy is limited to
knowledge graphs with a single relation type that satisfies the
SWO constraint. Although SWO relations have a predomi-
nant role, this does not fit to more general cases that might
occur in the Web of Data, in which more relation types are
available. Moreover, CRUMBTRAIL relies on a number ter-
minological and categorical nodes (the“crumbs”) that a user
can select to characterize a domain of interest. Since the
availability of categorical nodes is a tighter constraint, a bet-
ter solution could be to automatically infer seed categories
from terminological nodes.
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