586 research outputs found

    Speedes: A Case Study Of Space Operations

    Get PDF
    This thesis describes the application of parallel simulation techniques to represent the structured functional parallelism present within the Space Shuttle Operations Flow using the Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES), an object-oriented multi-computing architecture. SPEEDES is a unified parallel simulation environment, which allocates events over multiple processors to get simulation speed up. Its optimistic processing capability minimizes simulation lag time behind wall clock time, or multiples of real-time. SPEEDES accommodates an increase in process complexity with additional parallel computing nodes to allow sharing of processing loads. This thesis focuses on the process of translating a model of Space Shuttle Operations from a procedural oriented and single processor approach to one represented in a process-driven, object-oriented, and distributed processor approach. The processes are depicted by several classes created to represent the operations at the space center. The reference model used is the existing Space Shuttle Model created in ARENA by NASA and UCF in the year 2001. A systematic approach was used for this translation. A reduced version of the ARENA model was created, and then used as the SPEEDES prototype using C++. The prototype was systematically augmented to reflect the entire Space Shuttle Operations Flow. It was then verified, validated, and implemented

    The 1990 Johnson Space Center bibliography of scientific and technical papers

    Get PDF
    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals

    Residual acceleration data on IML-1: Development of a data reduction and dissemination plan

    Get PDF
    The research performed consisted of three stages: (1) identification of sensitive IML-1 experiments and sensitivity ranges by order of magnitude estimates, numerical modeling, and investigator input; (2) research and development towards reduction, supplementation, and dissemination of residual acceleration data; and (3) implementation of the plan on existing acceleration databases

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Classifying simplicial dissections of convex polyhedra with symmetry

    Get PDF
    2021 Fall.Includes bibliographical references.A convex polyhedron is the convex hull of a finite set ofpoints in R3. A triangulation of a convex polyhedron is a decomposition into a finite number of 3-simplices such that any two intersect in a common face or are disjoint. A simplicial dissection is a decomposition into a finite number of 3-simplices such that no two share an interior point. We present an algorithm to classify the simplicial dissections of a regular polyhedron under the symmetry group of the polyhedron

    Cloud cover determination in polar regions from satellite imagery

    Get PDF
    A definition is undertaken of the spectral and spatial characteristics of clouds and surface conditions in the polar regions, and to the creation of calibrated, geometrically correct data sets suitable for quantitative analysis. Ways are explored in which this information can be applied to cloud classifications as new methods or as extensions to existing classification schemes. A methodology is developed that uses automated techniques to merge Advanced Very High Resolution Radiometer (AVHRR) and Scanning Multichannel Microwave Radiometer (SMMR) data, and to apply first-order calibration and zenith angle corrections to the AVHRR imagery. Cloud cover and surface types are manually interpreted, and manual methods are used to define relatively pure training areas to describe the textural and multispectral characteristics of clouds over several surface conditions. The effects of viewing angle and bidirectional reflectance differences are studied for several classes, and the effectiveness of some key components of existing classification schemes is tested

    Study of quantitative methods for LEM LANDING-SITE selection Final report

    Get PDF
    Mathematical, statistical, and optical-Fourier methods for lunar excursion module landing site selectio
    • …
    corecore