23,143 research outputs found

    Complexity of matrix problems

    Get PDF
    In representation theory, the problem of classifying pairs of matrices up to simultaneous similarity is used as a measure of complexity; classification problems containing it are called wild problems. We show in an explicit form that this problem contains all classification matrix problems given by quivers or posets. Then we prove that it does not contain (but is contained in) the problem of classifying three-valent tensors. Hence, all wild classification problems given by quivers or posets have the same complexity; moreover, a solution of any one of these problems implies a solution of each of the others. The problem of classifying three-valent tensors is more complicated.Comment: 24 page

    The complexity of classifying separable Banach spaces up to isomorphism

    Full text link
    It is proved that the relation of isomorphism between separable Banach spaces is a complete analytic equivalence relation, i.e., that any analytic equivalence relation Borel reduces to it. Thus, separable Banach spaces up to isomorphism provide complete invariants for a great number of mathematical structures up to their corresponding notion of isomorphism. The same is shown to hold for (1) complete separable metric spaces up to uniform homeomorphism, (2) separable Banach spaces up to Lipschitz isomorphism, and (3) up to (complemented) biembeddability, (4) Polish groups up to topological isomorphism, and (5) Schauder bases up to permutative equivalence. Some of the constructions rely on methods recently developed by S. Argyros and P. Dodos

    Representations of quivers and mixed graphs

    Full text link
    This is a survey article for "Handbook of Linear Algebra", 2nd ed., Chapman & Hall/CRC, 2014. An informal introduction to representations of quivers and finite dimensional algebras from a linear algebraist's point of view is given. The notion of quiver representations is extended to representations of mixed graphs, which permits one to study systems of linear mappings and bilinear or sesquilinear forms. The problem of classifying such systems is reduced to the problem of classifying systems of linear mappings
    corecore