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Abstract

In representation theory, the classification problem is called wild if it contains the problem
of classifying pairs of matrices up to simultaneous similarity. We show in an explicit form that
the last problem contains all classification matrix problems given by quivers or posets. Then
we prove that this problem does not contain (but is contained in) the problem of classifying
three-valent tensors. Hence, every wild classification problem given by a quiver or poset has
the same complexity; moreover, a solution of one of them implies a solution of each of the
remaining problems. The problem of classifying three-valent tensors is more complicated.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Classification problems of representation theory split into two types: tame (or
classifiable) and wild (containing the problem of classifying pairs of matrices up
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to simultaneous similarity); wild problems are hopeless in a certain sense. These
terms were introduced by Donovan and Freislich [6] in analogy with the partition of
animals into tame and wild ones.

Gelfand and Ponomarev [13] proved that the problem of classifying pairs of
commuting matrices up to simultaneous similarity contains the problem of classi-
fying t-tuples of matrices up to simultaneous similarity for an arbitrary t . (Hence,
the problem of classifying pairs of linear operators is as complicated as the problem
of classifying 1,000,000-tuples of linear operators.) This implies that the problem of
classifying pairs of matrices contains the problem of classifying representations of
an arbitrary finite-dimensional algebra, 3 whence it contains matrix problems given
by arbitrary quivers.

In Section 2, we give the proof of the last statement by methods of linear alge-
bra; it was sketched in [28, Section 3.1]. The notions of a quiver and its representa-
tions were introduced by Gabriel [10] and allow to formulate problems of classifying
systems of linear mappings (without relations).

In Section 3, we prove that the problem of classifying pairs of matrices up to
simultaneous similarity contains matrix problems given by partially ordered sets.
The notion of poset representations was introduced by Nazarova and Roiter [22] and
allows to formulate problems of classifying block matrices [A1|A2| · · · |At ] up to
elementary row-transformations of the whole matrix, elementary column-transfor-
mations within each vertical strip, and additions of a column of Ai to a column of
Aj for a certain set of pairs (i, j).

In Section 4, we prove that the problem of classifying three-valent tensors con-
tains the problem of classifying pairs of matrices up to simultaneous similarity, but
it is not contained in the last problem. Three-valent tensors are given by spatial
matrices, so we first consider the problem of classifying m× n× q spatial matrices
A = [aijk]mi=1

n
j=1

q

k=1 up to equivalence transformations:

[aijk] �→ [a′
ijk], a′

i′j ′k′ =
∑
ijk

aijkrii′sjj ′ tkk′ , (1)

where

R = [rii′ ], S = [sjj ′ ], T = [tkk′ ] (2)

are nonsingular m×m, n× n, and q × q matrices. We classify m× n× 2 spatial
matrices up to equivalence and prove that the problem of classifying m× n× 3 spa-
tial matrices up to equivalence contains (but is not contained in) the problem of
classifying pairs of matrices up to simultaneous similarity.

Every matrix problem A is given by a set A1 of a-tuples of matrices and a set
A2 of admissible transformations with them. We say that a matrix problem A is

3 Each t-dimensional algebra is a factor algebra � = k〈x1, . . . , xt 〉/J of the free algebra of noncom-
mutative polynomials in x1, . . . , xt . Let g1, . . . , gr be generators of J . Then each matrix representa-
tion of � is a t-tuple of n× n matrices (A1, . . . , At ) satisfying gi(A1, . . . , At ) = 0, i = 1, . . . , r; it is
determined up to simultaneous similarity.
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contained in a matrix problem B if there exists a b-tuple T(x) = T(x1, . . . , xa) of
matrices, whose entries are noncommutative polynomials in x1, . . . , xa , such that:

(i) T(A) = T(A1, . . . , Aa) ∈ B1 if A = (A1, . . . , Aa) ∈ A1;
(ii) for every A,A′ ∈ A1, A reduces to A′ by transformations A2 if and only if

T(A) reduces to T(A′) by transformations B2.

In this article (except for Theorem 4.8), the entries of matrices from T(x) are 0,
scalars, or xi , and we replace them by zero matrices, scalar matrices, or Ai . Suppose
A is contained in B and a set of canonical b-tuples for the problem B is known (this
set has to posses the following property: each b-tuple A ∈ B1 reduces to a canonical
Acan ∈ B1, and A reduces to B if and only if Acan = Bcan). We reduce to the form
T(A) those canonical b-tuples, for which this is possible. Then all a-tuples A from
the obtained set of T(A) may be considered as canonical a-tuples for A. Hence, a
solution of the problem B implies a solution of A.

In [28], the entries of matrices in the considered matrix problems satisfied systems
of linear equations, for this reason the entries of matrices from T(x) were linear
polynomials. In the theory of representations of quivers with relations, the entries of
matrices from T(x) are noncommutative polynomials.

A quiver or poset is called tame (wild) if the problem of classifying its represen-
tations is tame (wild). We sum up results of this article in the following theorem:

Theorem 1.1. All problems of classifying representations of wild quivers or po-
sets have the same complexity: any of them contains every other (moreover, a solu-
tion of one implies solutions of the others). The problem of classifying three-valent
tensors is more complicated since it contains each of them but is not contained in
them.

This theorem explains the existence of the “universal” algorithm [3] (see also [4]
or [28]) for reducing the matrices of an arbitrary representation of a quiver or poset
to canonical form. The algorithm [3] was used in [26] in order to receive a canonical
form of 4 × 4 matrices up to simultaneous similarity. The algorithm was also used
in [28] to prove that the set of canonical m× n matrices for a tame matrix problem
forms a finite number of points and straight lines in the affine space of m× n matri-
ces. This statement is a strengthened form of Drozd’s Tame–Wild Theorem [8] and
holds for a large class of matrix problems, which includes representations of quiv-
ers and posets. A full system of invariants for pairs of matrices up to simultaneous
similarity was obtained by Friedland [9].

For each matrix problem, one has an alternative: to solve it or to prove that it is
wild and hence is hopeless in a certain sense. Examples of wild problems:

(a) The problem of classifying pairs of m× n and n× n matrices up to transforma-
tions
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(A,B) �→ (R−1AR, SBR),

where R and S are nonsingular matrices (that is, the replacement of the quiver
with does not simplify the problem of classifying its representa-

tions; see the list (8)).
(b) The problem of classifying pairs of commuting nilpotent matrices (A,B) up

to simultaneous similarity, see [13]; this problem was solved in [23] if AB =
BA = 0.

(c) The problem of classifying quintuples of subspaces in a vector space. A classifi-
cation of quadruples of subspaces

(
they may be given by representations of the

quiver
)

was given in [14].
(d) The problem of classifying triples of quadratic forms; its wildness follows from

the method of classifying pairs of quadratic forms used in [25, Theorem 4]. A
classification of all tame systems of linear mappings, bilinear forms, and qua-
dratic forms (without relations) was obtained in [24, Section 4].

(e) The problem of classifying of metric (or self-adjoint) operators in a space with
symmetric bilinear form; the problem was solved by many authors if this form
is nonsingular, see [25, Theorems 5 and 6].

(f) The problem of classifying normal operators in a space with indefinite scalar
product, see [15] or [24, Theorem 5.5].

In the theory of unitary matrix problems, the role of pairs of matrices up to si-
multaneous similarity is played by the problem of classifying matrices up to unitary
similarity; it contains the problem of classifying unitary representations of an arbi-
trary quiver (its points and arrows correspond to unitary spaces and linear operators),
see [27, Section 2.3] and [19].

The partition into tame and wild problems was first exhibited for representations
of Abelian groups (see [16]): Bashev [1] and Heller and Reiner [17] classified all
representations of the Klein group (i.e., pairs of commuting matrices (A,B) satisfy-
ing A2 = B2 = 0 up to simultaneous similarity) over an algebraically closed field of
characteristic 2. In contrast to this, Krugljak [18] showed that if one could solve the
corresponding problem for groups of type (p, p) with p > 2, then one could classify
the representations of any group over an algebraically closed field of characteristic
p; Heller and Reiner [17] showed this for groups of type (2, 2, 2).

2. Representations of quivers

Classification problems for systems of linear mappings may be formulated in
terms of a quiver and its representations introduced by Gabriel [10] (see also [11]). A
quiver is a directed graph. Its representation A over a field F is given by assigning
to each vertex v a vector space Vv over F and to each arrow α : u → v a linear
mapping Aα : Vu → Vv of the corresponding vector spaces. Two representations A
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and A′ are isomorphic if there exists a system of linear bijections Sv : Vv → V ′
v

transforming A to A′; that is, for which the diagram

Vu
Aα−−−−→ Vv

Su

� �Sv

V ′
u

A′
α−−−−→ V ′

v

(3)

is commutative (SvAα = A′
αSu) for every arrow α : u → v. The direct sum of A

and A′ is the representation A ⊕ A′ formed by Vv ⊕ V ′
v and Aλ ⊕ A′

λ.
For example, the problems of classifying representations of the quivers , ,

and are the problems of classifying linear operators (whose solution is the Jor-
dan or Frobenius normal form), pairs of linear mappings from one space to another
(the matrix pencil problem, solved by Kronecker), and pairs of linear operators in a
vector space (i.e., pairs of matrices up to simultaneous similarity).

Furthermore, a representation of the quiver

(4)

over a field F is a set of linear mappings

(5)

Let n1, n2, n3 be the dimensions of V1, V2, V3; selecting bases in these spaces, we
can give the representation (5) by the sequence

A= (Aα,Aβ,Aγ ,Aδ,Aε,Aζ )

∈ Fn1×n1 × Fn2×n1 × Fn3×n1 × Fn3×n1 × Fn3×n2 × Fn3×n3 (6)

of matrices of linear mappings Aα,Aβ , Aγ ,Aδ,Aε, Aζ . If a sequence of matri-
ces A′ = (A′

α, A
′
β, . . . , A

′
ζ ) gives an isomorphic representation, then

A′ = (
S1AαS

−1
1 , S2AβS

−1
1 , S3Aγ S

−1
1 , S3AδS

−1
1 , S3AεS

−1
2 , S3AζS

−1
3

)
, (7)

where S1, S2, S3 are the matrices of linear bijections S1,S2,S3 (see (3)). Note that
the change of bases in V1, V2, V3 by matrices S−1

1 , S−1
2 , S−1

3 also transformsA toA′;
that is, A and A′ give the same representation (5) but in different bases.

Therefore, the problem of classifying representations of the quiver (4) reduces
to the problem of classifying matrix sequences (6) up to transformations (7) with
nonsingular matrices S1, S2, S3.
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The list of tame quivers and a classification of their representations were obtained
independently by Donovan and Freislich [7] and Nazarova [20] (see also [11, Section
11]). They proved that a connected quiver is tame if and only if it is a subquiver of
(or coincides with) one of the quivers

(8)

with an arbitrary orientation of edges.
As follows from the next theorem, the problem of classifying quiver representa-

tions has the same complexity for all wild quivers.

Theorem 2.1. The problem of classifying pairs of matrices up to simultaneous sim-
ilarity contains the problem of classifying representations of an arbitrary quiver.

Proof. We will prove the theorem for representations of the quiver (4) since the
proof for the other quivers is analogous. For each sequence (6), we construct the pair
of matrices

(M,N) =





In1 0 0 0

0 2In2 0 0

0 0 3In3 0

0 0 0 4In3


 ,



Aα 0 0 0

Aβ 0 0 0

Aγ 0 0 0

Aδ Aε In3 Aζ




 . (9)

Let (M,N ′) be analogously constructed from

A′ = (
A′
α, A

′
β, A

′
γ , A

′
δ, A

′
ε, A

′
ζ

)
,

and let the pairs (M,N) and (M,N ′) be simultaneously similar:

S−1MS = M, S−1NS = N ′. (10)

The equality MS = SM implies

S = S1 ⊕ S2 ⊕ S3 ⊕ S4.

Equating in NS = SN ′ the blocks with indices (4, 3) gives S3 = S4. By the second
equality in (10), the pairs (M,N) and (M,N ′) are simultaneously similar if and only
if A′ is obtained from A by transformations (7). �
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3. Representations of posets

Many matrix problems may be formulated in terms of representations of partially
ordered sets (posets) introduced by Nazarova and Roiter [22]; see also [11, Section
1.3].

Let (T ,�) be a finite poset. Since every partial ordering on a finite set is supple-
mented to a total ordering, we suppose that T = {1, 2, . . . , t} and

i ≺ j �⇒ i < j. (11)

A representation of (T ,�) over a field F is an arbitrary matrix

A = [A1|A2| · · · |At ] (12)

over F divided into t vertical strips. Two representations are isomorphic if one re-
duces to the other by the following transformations:

(a) elementary row-transformations of the whole matrix;
(b) elementary column-transformations within each vertical strip;
(c) additions of a column of Ai to a column of Aj if i ≺ j .

(By a sequence of transformations (b) and (c), we may add an arbitrary linear com-
bination of columns of Ai to a column of Aj if i ≺ j ; indeed, we may multiply the
columns of Ai by scalars, add them to a column of Aj , and then divide them by the
same scalars.) The direct sum of representations A and A′ is the representation

A⊕ A′ =
[
A1 0 A2 0 · · · At 0
0 A′

1 0 A′
2 · · · 0 A′

t

]
.

These notions arose in the theory of representations of finite-dimensional algebras.
The assumption that � is a partial ordering is not a limitation. Suppose that � is an
arbitrary reflective binary relation on T = {1, 2, . . . , t}. We may define representa-
tions of (T ,�) and their isomorphisms as above replacing i ≺ j in (c) by i� j . Let
(12) be a representation of (T ,�). If i� j and j � i, then we may join strips i and
j to a single strip with arbitrary column-transformations within it. If i� j and j � l,
then we may add a column a of Ai to a column c of Al through a column b of Aj :

(a, b, c) �→(a, a + b, c) �→ (a, a + b, a + b + c)

�→(a, b, a + b + c) �→ (a, b, a + c).

And so we may assume that i� l, leaving the set of admissible transformations un-
changed. Then (T ,�) becomes a poset.

For instance, every representation of ({1, 2, 3},�) reduces to the form
I 0 0 0 0 0

0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0


 .
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The following theorem is a well-known corollary of the Krull–Schmidt theorem
[2, Section 1, Theorem 3.6] for additive categories (the categories of representations
of quivers and posets are additive).

Theorem 3.1. Every representation of a quiver or poset decomposes into a direct
sum of indecomposable representations uniquely, up to isomorphism of summands.

Nazarova [21] proved that a poset is wild if and only if it contains a poset from
the following list:

(the points represent the elements of a poset, and a ≺ b if and only if the point a is
under the point b and they are linked by a line).

As follows from the next theorem and from the definition of wildness, the problem
of classifying representations of a poset has the same complexity for all wild posets.

Theorem 3.2. The problem of classifying pairs of matrices up to simultaneous sim-
ilarity contains the problem of classifying representations of an arbitrary poset.

Proof. Step 1. Let us prove that the problem of classifying pairs of matrices up to
simultaneous similarity contains the problem of classifying block matrices

A =


A1
...

Ar


 , Al =


Al11 · · · Al1t

· · · · · · · · ·
Alt1 · · · Altt


 , (13)

up to transformations:

(i) arbitrary elementary transformations within each of rt horizontal strips and
each of t vertical strips;

(ii) additions of columns of strip i to columns of strip j if i < j ;
(iii) within each Al , additions of rows of strip i to rows of strip j if i < j (i, j ∈

{1, . . . , t}).
We first consider the case r = 1, t = 3, and all Alij of size 1 × 1. Then

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


 . (14)
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Basing on A, we construct the pair of matrices

(M,N) =
([
M1 0
0 M2

]
,

[
0 N1
0 0

])
,

where

M1 =




1
1
1 1

1
1 1

1 1


 , M2 =




2
2
1 2

2
1 2

1 2




(we omit zeros), and

N1 =



a11 a12 0 a13 0 0
0 0 0 0 0 0
a21 a22 0 a23 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a31 a32 0 a33 0 0


 . (15)

Let (M,N ′) be analogously constructed based on

A′ =

b11 b12 b13
b21 b22 b23
b31 b32 b33


 , (16)

and let (M,N) be simultaneously similar to (M,N ′):

(S−1MS, S−1NS) = (M,N ′). (17)

Then MS = SM . Since M is a Jordan matrix with two distinct eigenvalues, S =
S1 ⊕ S2, where

S1 =




x11 x12 0 x13 0 0
0 x22 0 x23 0 0
x21 x′

22 x22 x′
23 x23 0

0 0 0 x33 0 0
0 x32 0 x′

33 x33 0

x31 x′
32 x32 x′′

33 x′
33 x33




and

S2 =




y11 y12 0 y13 0 0
0 y22 0 y23 0 0
y21 y′

22 y22 y′
23 y23 0

0 0 0 x33 0 0
0 y32 0 y′

33 y33 0

y31 y′
32 y32 y′′

33 y′
33 y33



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(the form of all matrices commuting with a given Jordan matrix is in [10, Section
VIII, §2]. By (17), NS = SN ′ and hence N1S2 = S1N

′
1, where N ′

1 is of the form
(15) with bij instead of aij . Equating nonzero entries in the matrices N1S2 = S1N

′
1,

we obtain AY = XA′ (see (14) and (16)), where

Y =

y11 y12 y13

0 y22 y23
0 0 y33


 , X =


x11 0 0
x21 x22 0
x31 x32 x33


 . (18)

Therefore, (M,N) is simultaneously similar to (M,N ′) if and only if there exist
nonsingular matrices X and Y of the form (18) such that A′ = X−1AY ; that is, if
and only if A reduces to A′ by transformations (i)–(iii).

In the general case, A has the form (13). Basing on A, we construct (M,N) as
follows:

M = M1 ⊕ · · · ⊕Mr+1, Ml = lI ⊕ J2(lI )⊕ · · · ⊕ Jt (lI ),

where

Ji(lI ) =



lI

I lI
. . .

. . .
I lI




is obtained from the i × i Jordan block Ji(l). The matrix N consists of the blocks
Alij (see (13)) and zeros: each block Alij is located at the place of those block of M
that is the intersection of the last horizontal strip of Ji(lI ) and the first vertical strip
of Jj ((r + 1)I ).

Let (M,N ′) be analogously constructed based on A′ of the form (13), and let
(M,N) be simultaneously similar to (M,N ′). By (17), the transforming matrix S

commutes with M , and hence

S = S1 ⊕ · · · ⊕ Sr+1, Sl = [Slij ]ti,j=1,

where each Slij is of the form

X1
X2 X1
...

. . .
. . .

Xp · · · X2 X1


 or



X1
X2 X1
...

. . .
. . .

Xp · · · X2 X1




(see [10, Section VIII, §2]). The form of S implies that (M,N) is simultaneously
similar to (M,N ′) if and only if A reduces to A′ by transformations (i)–(iii).

Step 2. We prove that the problem of classifying matrices (13) up to transforma-
tions (i)–(iii) contains the problem of classifying representations of each poset

P = (T ,�), T = {1, . . . , t},
satisfying (11).
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Namely, we show that there exists a block matrix A(r) = [Al]rl=1 of the form
(13) such that the set of admissible transformations (i)–(iii) that preserve A2, . . . , Ar
produces on its first strip[

A111|A112| · · · |A11t
]

(19)

the matrix problem given by P; we say in this situation that A(r) simulates the poset
P. Of course, this property does not depend on the entries of A1.

We will suppose that � is not a total ordering; that is, it does not coincide with �
(otherwise, P is simulated by A(1) = [A1]). We construct A2, . . . , Ar sequentially.
Assume that A(m) = [Al]ml=1, m � 1, has been constructed, and it simulates a poset
(T ,�) with

G(�)�G(�) ⊆ G(�),

where G(�),G(�), and G(�) are the sets of pairs (i, j) ∈ T × T such that i �
j, i� j, and i � j .

Let us construct Am+1 so that A(m+1) = [Al]m+1
l=1 simulates a poset (T ,�), for

which

G(�) ⊆ G(�)�G(�). (20)

If we take

Am+1 =




0 · · · 0 I

0 · · · I 0
· · · · · · · · · · · ·
I · · · 0 0


 , (21)

then the matrix A(m+1) simulates the same poset (T ,�) as A(m) since every admis-
sible (with respect to �) transformation (ii) with columns of A(m+1) spoils (21), but
it is restored by transformations (iii).

Thus we patch up (21) as follows. Choose (a, b) ∈ G(�)\G(�). In the set of
horizontal strips of (21) intersecting at I with vertical strips a, a + 1, . . . , b we make
the transposition that gathers at the top the strips intersecting at I with vertical strips
a, a2, . . . , al , where

A = {a, a2, . . . , al} = {i | a � i < b}. (22)

For instance, if t = 8, (a, b) = (3, 7), and A = {3, 5, 6}, then we obtain

Am+1 =




0 0 0 0 0 0 0 I

0 0 0 0 0 I 0 0
0 0 0 0 I 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0
0 0 0 I 0 0 0 0
0 I 0 0 0 0 0 0
I 0 0 0 0 0 0 0



.
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Each addition of a column of strip i to a column of strip j, i < j , spoilsAm+1, but
it is restored by transformations (iii) for all (i, j) except when (i, j) ∈ A × B, where
B = {a, a + 1, . . . , b}\A. Hence, the obtained block matrix A(m+1) simulates the
poset (T ,�) with

G(�) = G(�)\A × B.

Then (a, b) ∈ G(�)\G(�). By (22), i� j for all (i, j) ∈ A × B. Therefore, the
relation � satisfies (20).

We constructA2, A3, . . . until obtain a block matrixA(r) = [Al]rl=1 that simulates
the poset P = (T ,�). �

4. Spatial matrices and tensors

Let V be a finite-dimensional vector space over a field F, and let V ∗ be its dual
space. A tensor of type

(
q
q

)
(in other words, a tensor of covariant order p and contra-

variant order q) on V is a multilinear map

A : V × · · · × V︸ ︷︷ ︸
p copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
q copies

→ F, (23)

see [5, Chapter 11]. A tensor of type
(0

2

)
is a bilinear form on V . A tensor of type(1

1

)
determines a linear map V → V as follows: v �→ A(v, ?) ∈ V ∗∗ = V . A finite-

dimensional algebra is given by a tensor of type
(1

2

)
.

Relatively to a basis e1, . . . , em of V , the tensor (23) is given by the m× · · · ×m

spatial matrix

A = [
ai1···ip+q

]m
i1,...,ip+q=1,

ai1···ip+q = A
(
ei1 , . . . , eip , e

∗
ip+1

, . . . , e∗ip+q
)
,

(24)

where e∗1, . . . , e∗m is the dual basis of V ∗. Then

A

(∑
j

β1j ej , . . . ,
∑
j

βp+q,j e∗j

)
=

∑
j1,...,jp+q

β1,j1 · · ·βp+q,jp+q ai1···ip+q .

Let B = [bi1···ip+q ] be the spatial matrix of this tensor relatively to another basis
f1, . . . , fm of V , and let C = [cij ] be the transition matrix. Then

bj1···jp+q =
m∑

i1,...,ip+q=1

ai1···ip+q ci1j1 · · · cipjpdip+1jp+1 · · · dip+qjp+q , (25)

where [dij ] = C∨ = (CT)−1.
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Therefore, the problem of classifying tensors of type
(
q
p

)
over a field F is the

problem of classifying m× · · · ×m spatial matrices [ai1···ip+q ] over F up to trans-
formations [ai1···ip+q ] �→ [bj1···jp+q ] of the form (25), where [cij ] = C is an arbitrary
nonsingular m×m matrix and [dij ] = C∨.

In this section, we study the problem of classifying three-valent tensors (p + q =
3). For every p ∈ {0, 1, 2, 3}, we prove that the problem of classifying tensors of
type

(3−p
p

)
contains the problem of classifying pairs of matrices up to simultaneous

similarity, but is not contained in it.
We start with an investigation of spatial matrices up to equivalence since each ten-

sor of type
(3−p
p

)
is an m×m×m spatial matrix A, and admissible transformations

with it are equivalence transformations (1) given by matrices (2) of the form

(R, S, T ) = (C, . . . , C︸ ︷︷ ︸
p copies

, C∨, . . . , C∨︸ ︷︷ ︸
3−p copies

). (26)

Lemma 4.1. For every m× n× q, the following three classification problems are
equivalent:

(i) The problem of classifying m× n× q spatial matrices up to equivalence.
(ii) The problem of classifying q-tuples of m× n matrices (A1, . . . , Aq) up to

(a) simultaneous elementary transformations with A1, . . . , Aq, and
(b) the replacement of (A1, . . . , Aq) with

(A1, . . . , Aq)T = (A1t11 + · · · + Aqtq1, . . . , A1t1q + · · · + Aqtqq), (27)

where T = [tij ] is a nonsingular q × q matrix.
(iii) The problem of classifying spaces of m× n matrices of dimension at most q up

to multiplication by a nonsingular matrix from the left and by a nonsingular
matrix from the right.

Proof. An m× n× q spatial matrix A = [aijk]mi=1
n
j=1

q

k=1 may be given by the q-
tuple m× n matrices

A = (A1, . . . , Aq), Ak = [aijk]ij . (28)

If A is determined up to equivalence, then A is determined up to transformations (a)
and (b); furthermore, the vector space of m× n matrices generated by A1, . . . , Aq
is determined up to simultaneous multiplications of its matrices by a nonsingular
m×m matrix from the left and a nonsingular n× n matrix from the right. �

Remark 4.2. The matrix T from (27) is a product of elementary matrices. Hence,
every transformation (b) is a sequence of elementary transformations: the transposi-
tion of Ai and Aj , the multiplication of Ai by a nonzero scalar, and the replacement
of Ai by Ai + bAj , i /= j .
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Remark 4.3. It follows from the equivalence of classification problems (i) and (ii)
that a q-tuple of m× n matrices (A1, . . . , Aq) reduces to a q-tuple (B1, . . . , Bq) by
transformations (a) and (b) if and only if there exists a nonsingular q × q matrix T
such that (A1, . . . , Aq)T (see (27)) is simultaneously equivalent to (B1, . . . , Bq).

4.1. Classification of m× n× 2 spatial matrices

For every natural number r, we define two (r − 1)× r matrices

Fr =



1 0 0
. . .

. . .
0 1 0


 , Gr =




0 1 0
. . .

. . .
0 0 1


 .

Theorem 4.4. Over an algebraically closed field, every pair of m× n matrices re-
duces by transformations (a) and (b) to a direct sum of the form

⊕
i

(Fri ,Gri )⊕
⊕
j

(
F T
sj
, GT

sj

)⊕
q⊕
k=1

(Ilk , Jlk (λk)). (29)

This sum is determined uniquely, up to permutation of summands and up to linear-
fractional transformations of the sequence of eigenvalues:

(λ1, . . . , λq) �→
(
a + bλ1

c + dλ1
, . . . ,

a + bλq

c + dλq

)
, (30)

where c + dλ1 /= 0, . . . , c + dλq /= 0, and ad − bc /= 0.

Proof. Let A = (A1, A2) be a pair of m× n matrices. Using transformations (a)
from Lemma 4.1, we reduce it to the form

⊕
i

(Fri ,Gri )⊕
⊕
j

(
F T
sj
, GT

sj

)⊕
q1⊕
k=1

(Ilk , Jlk (λk))⊕
q⊕

k=q1+1

(Jlk (0), Ilk )

(31)

(the classification of pencils of matrices, see [12, Section XII]). This sum is deter-
mined uniquely up to permutation of summands.

We will say that a pair of matrices is pencil-decomposable if it reduces by trans-
formations (a) to a direct sum of pairs. Each transformation (b) with

T =
[
c a

d b

]
, ad − bc /= 0

replaces each summand (P,Q) of (31) with

(P ′,Q′) = (cP + dQ, aP + bQ). (32)
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This pair is pencil-indecomposable (otherwise, T −1 transforms its direct decom-
position to the direct decomposition of (P,Q), but each summand of (31) is pen-
cil-indecomposable). All indecomposable pairs of (r − 1)× r matrices reduce to
(Fr ,Gr) by transformations (a). Hence, if (P,Q) = (Fr ,Gr), then (P ′,Q′) reduces
to (Fr ,Gr) too. This proves that every transformation (b) with the pair A = (A1, A2)

does not change the summand
⊕

i (Fri ,Gri ) in the decomposition (31). The same
holds for the summand

⊕
j (F

T
sj
, GT

sj
) too.

If q1 < q, then we reduce the pair (31) to the pair (29) (with other λ1, . . . , λq1) as
follows. We convert all summands (Ilk , Jlk (λk)) and (Jlk (0), Ilk ) to pencil-indecom-
posable pairs with nonsingular first matrices by transformation (32) with c = b = 1,
a = 0, and a nonzero d such that dλ1 /= −1, . . . , dλq1 /= −1. Then we reduce these
summands to the form (I, J (λ)) by transformations (a).

Each transformation (32) converts all summands (Ilk , Jlk (λk)) of (29) to the
pairs of matrices (cIlk + dJlk (λk), aIlk + bJlk (λk)), which are simultaneously equiv-
alent to(

Ilk , (aIlk + bJlk (λk)) · (cIlk + dJlk (λk))
−1). (33)

The matrices aIlk + bJlk (λk) and cIlk + dJlk (λk) are triangular; their diagonal en-
tries are a + bλk and c + dλk . Hence, the pair of matrices (33) is simultaneously
equivalent to(

Ilk , Jlk

(
a + bλk

c + dλk

))
,

this gives the transformation (30). �

4.2. Wildness of tensors and m× n× 3 spatial matrices

Theorem 4.5. The problem of classifying m× n× 3 spatial matrices up to equiva-
lence is wild.

Proof. For every pair (X, Y ) of r × r matrices, we construct the triple of matrices

(A1, A2, A3(X, Y )) = (B1, B2, B3)⊕ (Ir , Ir , Ir )⊕ (C1, C2, C3(X, Y )),

where

(B1, B2, B3) =



I4r

0
0


 ,


0

I2r
0


 ,


0

0
I2r






and

(C1, C2, C3(X, Y )) =


I4r ,




0
Ir 0
0 Ir 0
0 0 Ir 0


 ,




0
0 0
X 0 0
0 Y 0 0




 .
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We will prove that (A1, A2, A3(X, Y )) reduces to (A1, A2, A3(X
′, Y ′)) by transfor-

mations (a) and (b) from Lemma 4.1 if and only if the pairs of matrices (X, Y ) and
(X′, Y ′) are simultaneously similar.

We write (M1,M2,M3) ∼ (N1, N2, N3) if these triples of matrices are simulta-
neously equivalent.

Suppose that (A1, A2, A3(X, Y )) reduces to (A1, A2, A3(X
′, Y ′)) by transforma-

tions (a) and (b). By Remark 4.3, there exists a nonsingular 3 × 3 matrix T = [tij ]
such that (A1, A2, A3(X, Y ))T ∼ (A1, A2, A3(X

′, Y ′)). Hence,

rank(A1t1j + A2t2j + A3(X, Y )t3j ) =
{

rankAj if j = 1 or j = 2,
rankA3(X

′, Y ′) if j = 3.

This implies tij = 0 if i /= j since

rank(A1 + A2α + A3(X, Y )β) > 9r = rankA1 > rank(A2 + A3(X, Y )γ )

> 6r = rankA2 > rankA3(X
′, Y ′)

for all α, β, γ such that (α, β) /= (0, 0) and γ /= 0.
Therefore, t11, t22, and t33 are nonzero, and

(A1t11, A2t22, A3(X, Y )t33) = (B1t11, B2t22, B3t33)⊕ (Ir t11, Ir t22, Ir t33)

⊕(C1t11, C2t22, C3(X, Y )t33)

is simultaneously equivalent to

(A1, A2, A3(X
′, Y ′)) = (B1, B2, B3)⊕ (Ir , Ir , Ir )⊕ (C1, C2, C3(X

′, Y ′)).
They can be considered as isomorphic representations of the quiver 1−→−→−→2. By Theo-
rem 3.1,

(Ir t11, Ir t22, Ir t33) ∼ (Ir , Ir , Ir ), (34)

(C1t11, C2t22, C3(X, Y )t33) ∼ (C1, C2, C3(X
′, Y ′)) (35)

since (B1t11, B2t22, B3t33) ∼ (B1, B2, B3), the triples (34) are direct sums of triples
of 1 × 1 matrices, and each of the triples (35) cannot be simultaneously equiv-
alent to a direct sum containing a triple of 1 × 1 matrices. By (34), t11 = t22 =
t33. Then (C1t11, C2t22, C3(X, Y )t33) ∼ (C1, C2, C3(X, Y )), and by (35) (C1, C2,

C3(X, Y )) ∼ (C1, C2, C3(X
′, Y ′)). Since C1 = I , (C2, C3(X, Y )) is simultaneously

similar to (C2, C3(X
′, Y ′)).

Therefore, there is a nonsingular matrix R such that

C2R = RC2, C3(X, Y )R = RC3(X
′, Y ′).

By the first equality,

R =



R1
R2 R1
R3 R2 R1
R4 R3 R2 R1


 .

By the second equality, XR1 = R1X
′ and YR1 = R1Y

′. �
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In the remaining part of Section 4.2, we prove the following theorem.

Theorem 4.6. For each p ∈ {0, 1, 2, 3}, the problem of classifying tensors of type(3−p
p

)
is wild since it contains the problem of classifying spatial matrices up to equiv-

alence.

An m× n× q spatial matrix A = [aijk] may be given by any of the following
sequences of matrices:

A(1) = (
A
(1)
1 , . . . , A(1)m

)
, A

(1)
i = [aijk]jk, (36)

A(2) = (
A
(2)
1 , . . . , A(2)n

)
, A

(2)
j = [aijk]ik, (37)

A(3) = (
A
(3)
1 , . . . , A(3)q

)
, A

(3)
k = [aijk]ij . (38)

The last sequence coincides with (28). They play the same role in the theory of spatial
matrices as the sequences of rows and columns in the theory of matrices. If A is
determined up to equivalence, we may produce arbitrary elementary transformations
within each of the sequences (36)–(38) by analogy with transformations (b) from
Lemma 4.1 for (28). Moreover, two spatial matrices are equivalent if and only if one
reduces to the other by elementary transformations within (36)–(38).

It follows that the triple

rank A = (r1, r2, r3), ri = rankA(i) (39)

(ri is the rank of the system of matricesA(i) in the vector space of matrices of the cor-
responding size), is invariant with respect to equivalence transformations with A. We
will say that A is regular if rank A = (m, n, q), where m× n× q is the size of A.

Let us make the first r1 matrices in A(1) linearly independent and the others
zero by elementary transformations with A. Then we reduce the “new” A(2) and
A(3) in the same way. The obtained spatial matrix is equivalent to A and has the
form A′ ⊕ O, where A′ is a regular r1 × r2 × r3 spatial matrix and O is the zero
(m− r1)× (n− r2)× (q − r3) spatial matrix. We will call A′ a regular part of A.

Lemma 4.7. Two spatial matrices of the same size are equivalent if and only if their
regular parts are equivalent.

Proof. Let A and B be m× n× q spatial matrices. Without loss of generality, we
will assume that

A = A′ ⊕ O, B = B′ ⊕ O, (40)

where A′ and B′ are their regular parts.
Necessity. Suppose that A and B are equivalent, and their equivalence is given

by matrices R, S, and T (see (2)). Then A′ and B′ have the same size r1 × r2 × r3,
where (r1, r2, r3) = rank A. Following (28), we will give A and B by the sequences
A = (A1, . . . , Aq) and B = (

B1, . . . , Bq
)
. Put
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(C1, . . . , Cq) = (A1, . . . , Aq)T , (41)

then

(RTC1S, . . . , R
TCqS) = (

B1, . . . , Bq
)

(42)

by analogy with transformations (a) and (b) from Lemma 4.1.
Let us partition R, S, and T into blocks R = [Rij ]2

i,j=1, S = [Sij ]2
i,j=1, and T =

[Tij ]2
i,j=1 in accordance with the decompositions (40), where R11, S11, and T11 have

sizes r1 × r1, r2 × r2, and r3 × r3. If T21 /= 0, then Cl /= 0 for a certain l > r3 since
A1, . . . , Ar3 are linearly independent (see (41) and (40)). By (42), Bl /= 0; a con-
tradiction.

Hence, T21 = 0; analogously R21 = 0 and S21 = 0. It follows that R11, S11, and
T11 are nonsingular and produce an equivalence of A′ to B′.

Sufficiency. Suppose that A′ and B′ are equivalent and their equivalence is given
by matrices R, S, and T . Then the matrices R ⊕ Im−r1 , S ⊕ In−r2 , and T ⊕ Iq−r3
produce an equivalence of A to B. �

Proof of Theorem 4.6. For an m× n× q spatial matrix A, we construct the spatial
block matrix

H(A) = [Hijk]3
i,j,k=1, Hijk =

{
A if (i, j, k) = (1, 2, 3),
O otherwise,

(43)

where the diagonal blocks H111,H222, and H333 have sizes m×m×m, n× n× n

and q × q × q.
Let B be another m× n× q spatial matrix. Then A is equivalent to B if and

only if H(A) and H(B) determine the same tensor of type
(3−p
p

)
. Indeed, if ma-

trices Q1,Q2,Q3 give an equivalence of A to B, then H(A) reduces to H(B) by
equivalence transformations (1) satisfying (26), where C is

Q∨
1 ⊕Q∨

2 ⊕Q∨
3 , Q1 ⊕Q∨

2 ⊕Q∨
3 , Q1 ⊕Q2 ⊕Q∨

3 , or Q1 ⊕Q2 ⊕Q3

if, respectively, p is 0, 1, 2, or 3. Conversely, if H(A) is reduced to H(B) by trans-
formations (1), then they are equivalent. Since their regular parts are regular parts of
A and B too, A and B are equivalent by Lemma 4.7.

We have proved that the problem of classifying tensors of type
(3−p
p

)
contains the

problem of classifying spatial matrices up to equivalence. By Theorems 4.5, the first
problem is wild. �

4.3. Spatial matrices and tensors are “very wild”

Theorem 4.8. The problem of classifying pairs of matrices up to simultaneous sim-
ilarity does not contain both

(i) the problem of classifying m× n× 2 spatial matrices up to equivalence, and
(ii) the problem of classifying tensors of type

(3−p
p

)
for each p ∈ {0, 1, 2, 3}.
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Proof. (i) To the contrary, suppose there exists a pair T(x1, x2) of matrices, whose
entries are noncommutative polynomials in x1, x2, such that a pair A = (A1, A2)

of m× n matrices reduces to A′ = (A′
1, A

′
2) by transformations (a) and (b) from

Lemma 4.1 if and only if T(A) is simultaneously similar to T(A′).
Put

A =



1

0
1


 ,


0

1
0




, A′ =




1

0
1


 ,


0

1
1




.

Since the pair of 1 × 1 matrices ([1], [0]) reduces to ([1], [1]) by transformations
(b), the pair T([1], [0]) is simultaneously similar to T([1], [1]). Therefore, T(A) =
T([1], [0])⊕ T([0], [1])⊕ T([1], [0]) is simultaneously similar to T(A′) =
T([1], [0])⊕ T([0], [1])⊕ T([1], [1]), and hence A reduces to A′ by transforma-
tions (a) and (b). By definition of transformations (a) and (b), there exist α, β, γ, δ
such that αδ − βγ /= 0 and

A′′ =



α β

α


 ,


γ δ

γ






is simultaneously equivalent toA′. Equating the ranks of matrices in A′′ and A′ gives
β = δ = 0, contrary to αδ − βγ /= 0.

(ii) Suppose the problem of classifying pairs of matrices up to simultaneous sim-
ilarity contains the problem of classifying tensors of type

(3−p
p

)
. Then, by Theo-

rem 4.6, the first problem contains the problem of classifying spatial matrices up to
equivalence, contrary to (i). �

Acknowledgments

The authors wish to thank Professors Yuriı̆ Drozd and Leiba Rodman for stimu-
lating discussions. The authors also thank the referees for valuable suggestions and
comments.

References

[1] V.A. Bashev, Representations of the group Z2 × Z2 into a field of characteristic 2, Soviet Math.
Dokl. 2 (1961) 1589–1593.

[2] H. Bass, Algebraic K-theory, Benjamin, New York, 1968.
[3] G.R. Belitskiı̆, Normal forms in a space of matrices, in: V.A. Marchenko (Ed.), Analysis in Infi-

nite-Dimensional Spaces and Operator Theory, Naukova Dumka, Kiev, 1983, pp. 3–15 (in Russian).
[4] G. Belitskii, Normal forms in matrix spaces, Integral Equations Operator Theory 38 (3) (2000)

251–283.
[5] J.G. Broida, S.G. Williamson, A Comprehensive Introduction to Linear Algebra, Addison-Wesley,

Reading, MA, 1989.



222 G.R. Belitskii, V.V. Sergeichuk / Linear Algebra and its Applications 361 (2003) 203–222

[6] P. Donovan, M.R. Freislich, Some evidence for an extension of the Brauer–Thrall conjecture, Son-
derforschungsbereich Theor. Math. 40 (1972) 24–26.

[7] P. Donovan, M.R. Freislich, The representation theory of finite graphs and associated algebras,
Carleton Lecture Notes 5, Ottawa, 1973.

[8] Yu.A. Drozd, Tame and wild matrix problems, Lecture Notes in Math. 832 (1980) 242–258.
[9] S. Friedland, Simultaneous similarity of matrices, Adv. Math. 50 (1983) 189–265.

[10] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972) 71–103.
[11] P. Gabriel, A.V. Roiter, in: Representations of Finite-Dimensional Algebras, Encyclopaedia Math.

Sci. (Algebra VIII), vol. 73, 1992, Springer-Verlag, Berlin.
[12] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1977 (2 volumes).
[13] I.M. Gelfand, V.A. Ponomarev, Remarks on the classification of a pair of commuting linear trans-

formations in a finite dimensional vector space, Functional Anal. Appl. 3 (1969) 325–326.
[14] I.M. Gelfand, V.A. Ponomarev, Problems of linear algebra and classification of quadruples in a

finite-dimensional vector space, Coll. Math. Soc. Bolyai 5, Tihany (1970) 163–237.
[15] I. Gohberg, B. Reichstein, On classification of normal matrices in an indefinite scalar product, Inte-

gral Equations and Operator Theory 13 (1990) 364–394.
[16] W.H. Gustafson, The history of algebras and their representations, Lecture Notes in Math. 944

(1982) 1–28.
[17] A. Heller, I. Reiner, Indecomposable representations, Illinois J. Math. 5 (1961) 314–323.
[18] S.A. Krugljak, Representations of the (p, p) group over a field of characteristic p, Soviet Math.

Dokl. 4 (1963) 1809–1813.
[19] S.A. Kruglyak, Yu.S. Samoı̆lenko, Unitary equivalence of sets of selfajoint operators, Functional

Anal. Appl. 14 (1) (1980) 54–55.
[20] L.A. Nazarova, Representations of quivers of infinite type, Math. USSR-Izv. 7 (1973) 749–792.
[21] L.A. Nazarova, Partially ordered sets of infinite type, Math. USSR-Izv. 9 (1975) 911–938.
[22] L.A. Nazarova, A.V. Roiter, Representations of partially ordered sets, J. Soviet Math. 3 (1975)

585–606.
[23] L.A. Nazarova, A.V. Roiter, V.V. Sergeichuk, V.M. Bondarenko, Application of modules over a

dyad for the classification of finite p-groups possessing an abelian subgroup of index p and of pairs
of mutually annihilating operators, J. Soviet Math. 3 (5) (1975) 636–654.

[24] V.V. Sergeichuk, Classification problems for systems of linear mappings and sesquilinear forms,
Preprint, Kiev University, 1983, 60 p. (in Russian, Manuscript No.1.96 Uk-D84, deposited at the
Ukrainian NIINTI, 1984; R. Zh. Mat. 1984, 7A331).

[25] V.V. Sergeichuk, Classification problems for systems of forms and linear mappings, Math.
USSR-Izv. 31 (3) (1988) 481–501.

[26] V.V. Sergeichuk, D.V. Galinski˘ı, Classification of pairs of linear operators in a four-dimensional
vector space, in: Infinite Groups and Related Algebraic Structures, Inst. Mat. Ukrain. Akad. Nauk,
Kiev, 1993, pp. 413–430 (in Russian).

[27] V.V. Sergeichuk, Unitary and Euclidean representations of a quiver, Linear Algebra Appl. 278
(1998) 37–62.

[28] V.V. Sergeichuk, Canonical matrices for linear matrix problems, Linear Algebra Appl. 317 (2000)
53–102.


