31,647 research outputs found

    Leveraging Users' Social Network Embeddings for Fake News Detection on Twitter

    Full text link
    Social networks (SNs) are increasingly important sources of news for many people. The online connections made by users allows information to spread more easily than traditional news media (e.g., newspaper, television). However, they also make the spread of fake news easier than in traditional media, especially through the users' social network connections. In this paper, we focus on investigating if the SNs' users connection structure can aid fake news detection on Twitter. In particular, we propose to embed users based on their follower or friendship networks on the Twitter platform, so as to identify the groups that users form. Indeed, by applying unsupervised graph embedding methods on the graphs from the Twitter users' social network connections, we observe that users engaged with fake news are more tightly clustered together than users only engaged in factual news. Thus, we hypothesise that the embedded user's network can help detect fake news effectively. Through extensive experiments using a publicly available Twitter dataset, our results show that applying graph embedding methods on SNs, using the user connections as network information, can indeed classify fake news more effectively than most language-based approaches. Specifically, we observe a significant improvement over using only the textual information (i.e., TF.IDF or a BERT language model), as well as over models that deploy both advanced textual features (i.e., stance detection) and complex network features (e.g., users network, publishers cross citations). We conclude that the Twitter users' friendship and followers network information can significantly outperform language-based approaches, as well as the existing state-of-the-art fake news detection models that use a more sophisticated network structure, in classifying fake news on Twitter.Comment: 15 pages, 5 figure

    Topology comparison of Twitter diffusion networks effectively reveals misleading information

    Full text link
    In recent years, malicious information had an explosive growth in social media, with serious social and political backlashes. Recent important studies, featuring large-scale analyses, have produced deeper knowledge about this phenomenon, showing that misleading information spreads faster, deeper and more broadly than factual information on social media, where echo chambers, algorithmic and human biases play an important role in diffusion networks. Following these directions, we explore the possibility of classifying news articles circulating on social media based exclusively on a topological analysis of their diffusion networks. To this aim we collected a large dataset of diffusion networks on Twitter pertaining to news articles published on two distinct classes of sources, namely outlets that convey mainstream, reliable and objective information and those that fabricate and disseminate various kinds of misleading articles, including false news intended to harm, satire intended to make people laugh, click-bait news that may be entirely factual or rumors that are unproven. We carried out an extensive comparison of these networks using several alignment-free approaches including basic network properties, centrality measures distributions, and network distances. We accordingly evaluated to what extent these techniques allow to discriminate between the networks associated to the aforementioned news domains. Our results highlight that the communities of users spreading mainstream news, compared to those sharing misleading news, tend to shape diffusion networks with subtle yet systematic differences which might be effectively employed to identify misleading and harmful information.Comment: A revised new version is available on Scientific Report

    A Network Topology Approach to Bot Classification

    Full text link
    Automated social agents, or bots, are increasingly becoming a problem on social media platforms. There is a growing body of literature and multiple tools to aid in the detection of such agents on online social networking platforms. We propose that the social network topology of a user would be sufficient to determine whether the user is a automated agent or a human. To test this, we use a publicly available dataset containing users on Twitter labelled as either automated social agent or human. Using an unsupervised machine learning approach, we obtain a detection accuracy rate of 70%

    Toward automatic censorship detection in microblogs

    Full text link
    Social media is an area where users often experience censorship through a variety of means such as the restriction of search terms or active and retroactive deletion of messages. In this paper we examine the feasibility of automatically detecting censorship of microblogs. We use a network growing model to simulate discussion over a microblog follow network and compare two censorship strategies to simulate varying levels of message deletion. Using topological features extracted from the resulting graphs, a classifier is trained to detect whether or not a given communication graph has been censored. The results show that censorship detection is feasible under empirically measured levels of message deletion. The proposed framework can enable automated censorship measurement and tracking, which, when combined with aggregated citizen reports of censorship, can allow users to make informed decisions about online communication habits.Comment: 13 pages. Updated with example cascades figure and typo fixes. To appear at the International Workshop on Data Mining in Social Networks (PAKDD-SocNet) 201

    Detecting and Monitoring Hate Speech in Twitter

    Get PDF
    Social Media are sensors in the real world that can be used to measure the pulse of societies. However, the massive and unfiltered feed of messages posted in social media is a phenomenon that nowadays raises social alarms, especially when these messages contain hate speech targeted to a specific individual or group. In this context, governments and non-governmental organizations (NGOs) are concerned about the possible negative impact that these messages can have on individuals or on the society. In this paper, we present HaterNet, an intelligent system currently being used by the Spanish National Office Against Hate Crimes of the Spanish State Secretariat for Security that identifies and monitors the evolution of hate speech in Twitter. The contributions of this research are many-fold: (1) It introduces the first intelligent system that monitors and visualizes, using social network analysis techniques, hate speech in Social Media. (2) It introduces a novel public dataset on hate speech in Spanish consisting of 6000 expert-labeled tweets. (3) It compares several classification approaches based on different document representation strategies and text classification models. (4) The best approach consists of a combination of a LTSM+MLP neural network that takes as input the tweet’s word, emoji, and expression tokens’ embeddings enriched by the tf-idf, and obtains an area under the curve (AUC) of 0.828 on our dataset, outperforming previous methods presented in the literatureThe work by Quijano-Sanchez was supported by the Spanish Ministry of Science and Innovation grant FJCI-2016-28855. The research of Liberatore was supported by the Government of Spain, grant MTM2015-65803-R, and by the European Union’s Horizon 2020 Research and Innovation Programme, under the Marie Sklodowska-Curie grant agreement No. 691161 (GEOSAFE). All the financial support is gratefully acknowledge
    • …
    corecore