1,944 research outputs found

    Offline signature verification using classifier combination of HOG and LBP features

    Get PDF
    We present an offline signature verification system based on a signature’s local histogram features. The signature is divided into zones using both the Cartesian and polar coordinate systems and two different histogram features are calculated for each zone: histogram of oriented gradients (HOG) and histogram of local binary patterns (LBP). The classification is performed using Support Vector Machines (SVMs), where two different approaches for training are investigated, namely global and user-dependent SVMs. User-dependent SVMs, trained separately for each user, learn to differentiate a user’s signature from others, whereas a single global SVM trained with difference vectors of query and reference signatures’ features of all users, learns how to weight dissimilarities. The global SVM classifier is trained using genuine and forgery signatures of subjects that are excluded from the test set, while userdependent SVMs are separately trained for each subject using genuine and random forgeries. The fusion of all classifiers (global and user-dependent classifiers trained with each feature type), achieves a 15.41% equal error rate in skilled forgery test, in the GPDS-160 signature database without using any skilled forgeries in training

    Offline Handwritten Signature Verification - Literature Review

    Full text link
    The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory, Tools and Applications (IPTA 2017

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio

    Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks

    Full text link
    Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties

    Sparse Radial Sampling LBP for Writer Identification

    Full text link
    In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.Comment: Submitted to the 13th International Conference on Document Analysis and Recognition (ICDAR 2015

    Offline handwritten signature identification using adaptive window positioning techniques

    Full text link
    The paper presents to address this challenge, we have proposed the use of Adaptive Window Positioning technique which focuses on not just the meaning of the handwritten signature but also on the individuality of the writer. This innovative technique divides the handwritten signature into 13 small windows of size nxn(13x13).This size should be large enough to contain ample information about the style of the author and small enough to ensure a good identification performance.The process was tested with a GPDS data set containing 4870 signature samples from 90 different writers by comparing the robust features of the test signature with that of the user signature using an appropriate classifier. Experimental results reveal that adaptive window positioning technique proved to be the efficient and reliable method for accurate signature feature extraction for the identification of offline handwritten signatures.The contribution of this technique can be used to detect signatures signed under emotional duress.Comment: 13 pages, 9 figures, 2 tables, Offline Handwritten Signature, GPDS dataset, Verification, Identification, Adaptive window positionin

    Classification of Arabic Autograph as Genuine ‎And Forged through a Combination of New ‎Attribute Extraction Techniques

    Get PDF
    تقترح هذه الدراسة إطارا جديدا لتقنية التحقق من التوقيع العربي. وهو يستخلص بعض السمات الديناميكية للتمييز بين التوقيعات المزورة والحقيقية. لهذا الغرض، يستخدم هذا الإطار التكيف وضعية النافذة لاستخراج تفرد من الموقعين في التوقيع بخط اليد والخصائص المحددة من الموقعين. وبناء على هذا الإطار، تقسم التوقيعات العربية أولا إلى نوافذ 14 × 14؛ كل جزء واسع بما فيه الكفاية لإدخال معلومات وافية عن أنماط الموقعين وصغيرة بما فيه الكفاية للسماح بالمعالجة السريعة. ثم، تم اقتراح نوعين من الميزات على أساس تحويل جيب التمام المنفصل، تحويل المويجة المنفصلة لاستخلاص الميزات من المنطقة ذات الاهتمام. وأخيرا، يتم اختيار شجرة القرار لتصنيف التوقيعات باستخدام الميزات المذكورة كمدخلات لها. وتجرى التقييمات على التوقيعات العربية. وكانت النتائج مشجعة جدا مع معدل تحقق 99.75٪ لاختيار سلسلة من للتوقيعات المزورة والحقيقية للتوقيعات العربية التي تفوقت بشكل ملحوظ على أحدث الأعمال في هذا المجالThis study proposes a new framework for an Arabic autograph verification technique. It extracts certain dynamic attributes to distinguish between forged and genuine signatures. For this aim, this framework uses Adaptive Window Positioning to extract the uniqueness of signers in handwritten signatures and the specific characteristics of signers. Based on this framework, Arabic autograph are first divided into 14X14 windows; each fragment is wide enough to include sufficient information about signers’ styles and small enough to allow fast processing. Then, two types of fused attributes based on Discrete Cosine Transform and Discrete Wavelet Transform of region of interest have been proposed for attributes extraction. Finally, the Decision Tree is chosen to classify the autographs using the previous attributes as its input. The evaluations are carried out on the Arabic autograph. The results are very encouraging with verification rate 99.75% for sequential selection of forged and genuine autographs for Arabic autograph that significantly outperformed the most recent work in this fiel
    corecore