6,778 research outputs found

    Deep Learning Architectures for Novel Problems

    Get PDF
    With convolutional neural networks revolutionizing the computer vision field it is important to extend the capabilities of neural-based systems to dynamic and unrestricted data like graphs. Doing so not only expands the applications of such systems, but also provide more insight into improvements to neural-based systems. Currently most implementations of graph neural networks are based on vertex filtering on fixed adjacency matrices. Although important for a lot of applications, vertex filtering restricts the applications to vertex focused graphs and cannot be efficiently extended to edge focused graphs like social networks. Applications of current systems are mostly limited to images and document references. Beyond the graph applications, this work also explored the usage of convolutional neural networks for intelligent character recognition in a novel way. Most systems define Intelligent Character Recognition as either a recurrent classification problem or image classification. This achieves great performance in a limited environment but does not generalize well on real world applications. This work defines intelligent Character Recognition as a segmentation problem which we show to provide many benefits. The goal of this work was to explore alternatives to current graph neural networks implementations as well as exploring new applications of such system. This work also focused on improving Intelligent Character Recognition techniques on isolated words using deep learning techniques. Due to the contrast between these to contributions this documents was divided into Part I focusing on the graph work, and Part II focusing on the intelligent character recognition work

    Maximal Independent Vertex Set applied to Graph Pooling

    Full text link
    Convolutional neural networks (CNN) have enabled major advances in image classification through convolution and pooling. In particular, image pooling transforms a connected discrete grid into a reduced grid with the same connectivity and allows reduction functions to take into account all the pixels of an image. However, a pooling satisfying such properties does not exist for graphs. Indeed, some methods are based on a vertex selection step which induces an important loss of information. Other methods learn a fuzzy clustering of vertex sets which induces almost complete reduced graphs. We propose to overcome both problems using a new pooling method, named MIVSPool. This method is based on a selection of vertices called surviving vertices using a Maximal Independent Vertex Set (MIVS) and an assignment of the remaining vertices to the survivors. Consequently, our method does not discard any vertex information nor artificially increase the density of the graph. Experimental results show an increase in accuracy for graph classification on various standard datasets

    Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

    Full text link
    Many interesting problems in machine learning are being revisited with new deep learning tools. For graph-based semisupervised learning, a recent important development is graph convolutional networks (GCNs), which nicely integrate local vertex features and graph topology in the convolutional layers. Although the GCN model compares favorably with other state-of-the-art methods, its mechanisms are not clear and it still requires a considerable amount of labeled data for validation and model selection. In this paper, we develop deeper insights into the GCN model and address its fundamental limits. First, we show that the graph convolution of the GCN model is actually a special form of Laplacian smoothing, which is the key reason why GCNs work, but it also brings potential concerns of over-smoothing with many convolutional layers. Second, to overcome the limits of the GCN model with shallow architectures, we propose both co-training and self-training approaches to train GCNs. Our approaches significantly improve GCNs in learning with very few labels, and exempt them from requiring additional labels for validation. Extensive experiments on benchmarks have verified our theory and proposals.Comment: AAAI-2018 Oral Presentatio
    corecore