3 research outputs found

    High-resolution digital phenotypes from consumer wearables and their applications in machine learning of cardiometabolic risk markers: cohort study

    Get PDF
    Background: Consumer-grade wearable devices enable detailed recordings of heart rate and step counts in free-living conditions. Recent studies have shown that summary statistics from these wearable recordings have potential uses for longitudinal monitoring of health and disease states. However, the relationship between higher resolution physiological dynamics from wearables and known markers of health and disease remains largely uncharacterized. Objective: We aimed to derive high-resolution digital phenotypes from observational wearable recordings and to examine their associations with modifiable and inherent markers of cardiometabolic disease risk. Methods: We introduced a principled framework to extract interpretable high-resolution phenotypes from wearable data recorded in free-living conditions. The proposed framework standardizes the handling of data irregularities; encodes contextual information regarding the underlying physiological state at any given time; and generates a set of 66 minimally redundant features across active, sedentary, and sleep states. We applied our approach to a multimodal data set, from the SingHEART study (NCT02791152), which comprises heart rate and step count time series from wearables, clinical screening profiles, and whole genome sequences from 692 healthy volunteers. We used machine learning to model nonlinear relationships between the high-resolution phenotypes on the one hand and clinical or genomic risk markers for blood pressure, lipid, weight and sugar abnormalities on the other. For each risk type, we performed model comparisons based on Brier scores to assess the predictive value of high-resolution features over and beyond typical baselines. We also qualitatively characterized the wearable phenotypes for participants who had actualized clinical events. Results: We found that the high-resolution features have higher predictive value than typical baselines for clinical markers of cardiometabolic disease risk: the best models based on high-resolution features had 17.9% and 7.36% improvement in Brier score over baselines based on age and gender and resting heart rate, respectively (P<.001 in each case). Furthermore, heart rate dynamics from different activity states contain distinct information (maximum absolute correlation coefficient of 0.15). Heart rate dynamics in sedentary states are most predictive of lipid abnormalities and obesity, whereas patterns in active states are most predictive of blood pressure abnormalities (P<.001). Moreover, in comparison with standard measures, higher resolution patterns in wearable heart rate recordings are better able to represent subtle physiological dynamics related to genomic risk for cardiometabolic disease (improvement of 11.9%-22.0% in Brier scores; P<.001). Finally, illustrative case studies reveal connections between these high-resolution phenotypes and actualized clinical events, even for borderline profiles lacking apparent cardiometabolic risk markers. Conclusions: High-resolution digital phenotypes recorded by consumer wearables in free-living states have the potential to enhance the prediction of cardiometabolic disease risk and could enable more proactive and personalized health management

    An Ultra-Fast Time Series Distance Measure to allow Data Mining in more Complex Real-World Deployments

    Get PDF
    At their core, many time series data mining algorithms reduce to reasoning about the shapes of time series subsequences. This requires an effective distance measure, and for last two decades most algorithms use Euclidean Distance or DTW as their core subroutine. We argue that these distance measures are not as robust as the community seems to believe. The undue faith in these measures perhaps derives from an overreliance on the benchmark datasets and self-selection bias. The community is simply reluctant to address more difficult domains, for which current distance measures are ill-suited. In this work, we introduce a novel distance measure MPdist. We show that our proposed distance measure is much more robust than current distance measures. For example, it can handle data with missing values or spurious regions. Furthermore, it allows us to successfully mine datasets that would defeat any Euclidean or DTW distance-based algorithm. Additionally, we show that our distance measure can be computed so efficiently as to allow analytics on very fast arriving streams
    corecore