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Abstract

Background: Consumer-grade wearable devices enable detailed recordings of heart rate and step counts in free-living conditions.
Recent studies have shown that summary statistics from these wearable recordings have potential uses for longitudinal monitoring
of health and disease states. However, the relationship between higher resolution physiological dynamics from wearables and
known markers of health and disease remains largely uncharacterized.

Objective: We aimed to derive high-resolution digital phenotypes from observational wearable recordings and to examine their
associations with modifiable and inherent markers of cardiometabolic disease risk.

Methods: We introduced a principled framework to extract interpretable high-resolution phenotypes from wearable data recorded
in free-living conditions. The proposed framework standardizes the handling of data irregularities; encodes contextual information
regarding the underlying physiological state at any given time; and generates a set of 66 minimally redundant features across
active, sedentary, and sleep states. We applied our approach to a multimodal data set, from the SingHEART study (NCT02791152),
which comprises heart rate and step count time series from wearables, clinical screening profiles, and whole genome sequences
from 692 healthy volunteers. We used machine learning to model nonlinear relationships between the high-resolution phenotypes
on the one hand and clinical or genomic risk markers for blood pressure, lipid, weight and sugar abnormalities on the other. For
each risk type, we performed model comparisons based on Brier scores to assess the predictive value of high-resolution features
over and beyond typical baselines. We also qualitatively characterized the wearable phenotypes for participants who had actualized
clinical events.
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Results: We found that the high-resolution features have higher predictive value than typical baselines for clinical markers of
cardiometabolic disease risk: the best models based on high-resolution features had 17.9% and 7.36% improvement in Brier score
over baselines based on age and gender and resting heart rate, respectively (P<.001 in each case). Furthermore, heart rate dynamics
from different activity states contain distinct information (maximum absolute correlation coefficient of 0.15). Heart rate dynamics
in sedentary states are most predictive of lipid abnormalities and obesity, whereas patterns in active states are most predictive of
blood pressure abnormalities (P<.001). Moreover, in comparison with standard measures, higher resolution patterns in wearable
heart rate recordings are better able to represent subtle physiological dynamics related to genomic risk for cardiometabolic disease
(improvement of 11.9%-22.0% in Brier scores; P<.001). Finally, illustrative case studies reveal connections between these
high-resolution phenotypes and actualized clinical events, even for borderline profiles lacking apparent cardiometabolic risk
markers.

Conclusions: High-resolution digital phenotypes recorded by consumer wearables in free-living states have the potential to
enhance the prediction of cardiometabolic disease risk and could enable more proactive and personalized health management.

(J Med Internet Res 2022;24(7):e34669) doi: 10.2196/34669
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Introduction

Background
The adoption of consumer-grade wearable activity trackers into
routine use has been increasing rapidly in recent years, with
approximately 1 in 5 adults in the United States reported to
regularly use wrist-worn smartwatches and fitness trackers in
2019 [1]. This phenomenon has generated an unprecedented
scale of consumer health data and led to many studies on the
wider health uses of such data. These studies are increasingly
generating evidence to reveal relationships between recordings
from wearable activity trackers and the risk for conditions
ranging from mental health and infectious diseases [2,3] to
cardiovascular and metabolic (collectively referred to as
cardiometabolic) diseases [4-7]. Among these, owing to the
apparent links between activity levels and cardiometabolic
health, the evidence for broader health uses of wearables is most
established in the cardiometabolic domain [4,8-11].

Previous studies in the cardiometabolic domain have focused
on the utility of wearable-derived summary statistics, and fall
into 1 of 2 categories. First, electrocardiogram signals from
wearables have been studied in relation to the development of
cardiometabolic conditions, such as atrial fibrillation [12-14],
hyperkalemia [15,16], and heart failure [17-19]. As many of
these conditions are amenable to early intervention via dietary
changes or increased physical activity, there is also an interest
in using wearables to promote self-awareness and regulation
[20] and to enhance screening [11]. Second, wearable-derived
measures, such as circadian measures, sleep patterns and quality
[11,21], step counts [4], wearable-derived resting heart rate
[4,8,10,21,22] and heart rate variability [23-27] have been found
to correlate with outcomes in cardiometabolic disease. As such,
there is increasing recognition in the clinical community to
incorporate wearable-derived measures into practical
cardiometabolic disease management [6,28].

Objectives
Rapid and ongoing developments in consumer wearable
technology are enabling ever-richer measurements with finer

temporal resolution for heart rate, activity, and sleep dynamics
in free-living states [6,29,30]. Principled analyses of such data
streams could generate new insights beyond summary statistical
measures for cardiometabolic health and disease management.
However, the analysis of time series data recorded in free-living
states is challenging, as these data tend to exhibit real-world
noise and fluctuations and typically lack important physical and
physiological contexts. A few recent studies have used black-box
deep neural networks to relate high-resolution heart rate and
step count time series recorded using wearables to the risk of
developing atrial fibrillation, sleep apnea, and hypertension
[31,32]. As their primary goal focused on risk target
classification, the nature of the intermediate predictive time
series features and their connection with known clinical and
biological markers of cardiometabolic disease remains
unresolved.

In this study, we aimed to derive high-resolution digital
phenotypes from consumer wearable heart rate recordings and
to examine their associations with diverse risk markers for
cardiometabolic disease. Specifically, we sought to develop a
time series feature extraction approach, contextualized by
activity state, to meaningfully represent heart rate dynamics
recorded by consumer wearables in free-living conditions. We
then applied our approach to multidimensional data from normal
volunteers in the SingHEART study [33] to assess the extent
to which the derived high-resolution wearable features could
predict expressed clinical risk markers for cardiometabolic
disease. Furthermore, we assessed whether these high-resolution
features also represent more subtle physiological changes
associated with an inherent genetic predisposition to
cardiometabolic disease. Finally, we qualitatively characterized
these wearable phenotypes in volunteers who had actualized
clinical events to assess connections beyond risk markers to
manifest cardiometabolic diseases.
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Methods

Data
We sourced data from the SingHEART study (NCT02791152)

as of October 8, 2019. Enrollment targeted healthy volunteers
who provided written informed consent to use the data
(including electronic health records) for research. Participants
were required to fulfill the inclusion criteria presented in
Textbox 1.

Textbox 1. Inclusion criteria.

Inclusion criteria

1. 21-69 years of age

2. No personal medical history of prior cardiovascular disease (myocardial infarction, coronary artery disease, peripheral arterial disease, stroke),
cancer, autoimmune or genetic disease, endocrine disease, diabetes mellitus, psychiatric illness, asthma, chronic lung disease, or chronic infectious
disease

3. No family medical history of cardiomyopathies

At enrollment, each participant was profiled using a range of
health assessment modalities. The resulting data set included
(1) heart rate and step count time series recordings over 3 to 5
days from consumer wearable devices (Fitbit Charge HR),
together with the associated sleep logs generated by Fitbit, (2)
self-reported answers to a lifestyle and quality-of-life
questionnaire [4], (3) genotypic data from whole genome
sequencing using the Illumina HiSeq X platform, and (4)
laboratory measurements for 9 clinically relevant markers
(systolic and diastolic blood pressure; blood levels of
triglycerides, total cholesterol, high-density lipoprotein, and
low-density lipoprotein; fasting blood glucose level; waist

circumference and BMI). As of October 8, 2019, the full study
cohort contained 1101 participants, of whom 692 (62.8%)
participants had wearable recordings. We focused on this subset
of participants for subsequent analysis: a detailed breakdown
of the data is provided in Table 1.

Furthermore, we also tracked each participant for the occurrence
of any actual clinical event. We extracted all clinical codes
(based on the International Classification of Diseases, 10th
Revision) pertaining to any acute care use events in the regional
health system associated with the National Heart Centre
Singapore until January 2021 to characterize the links among
data features, risk markers, and actual clinical events.
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Table 1. Summary of demographic, clinical, and consumer wearable data for participants with wearable recordings (N=692) in the SingHEART study
cohort.

Male (n=322, 46.5%)Female (n=370, 53.5%)

Participants, na (%)Value, mean (SD)Participants, na (%)Value, mean (SD)

0 (0)44.46 (13.29)0 (0)45.47 (11.71)Age (years)

0 (0)24.33 (3.39)0 (0)22.87 (3.94)BMI (kg/m2)

0 (0)86.96 (9.86)0 (0)78.91 (10.98)WCb (cm)

0 (0)132.20 (14.96)0 (0)122.51 (17.74)SBPc (mm Hg)

1 (0.3)82.18 (10.97)0 (0)73.38 (12.80)DBPd (mm Hg)

0 (0)69.37 (6.59)0 (0)70.66 (6.55)Wearable-derived resting heart rate (bpm; Fitbit)

12 (3.7)63.67 (9.87)10 (2.7)64.46 (9.17)ECG_HRe (bpm)

5 (1.6)5.33 (0.97)6 (1.6)5.34 (0.94)Total cholesterol (mmol/L)

6 (1.9)3.40 (0.89)7 (1.9)3.32 (0.81)LDLf (mmol/L)

5 (1.6)1.36 (0.30)6 (1.6)1.59 (0.32)HDLg (mmol/L)

5 (1.6)1.30 (0.76)6 (1.6)0.99 (0.51)TGsh (mmol/L)

5 (1.6)5.36 (0.71)8 (2.2)5.17 (0.49)Glucose (mmol/L)

20 (6.2)10,972.86 (3919.10)30 (8.1)10,349.81 (4180.35)Average daily step counti

88 (27.3)656.49 (95.58)102 (27.6)633.45 (96.48)Average daily sedentary minutes

88 (27.3)374.49 (65.15)102 (27.6)395.92 (61.18)Average daily sleep minutes

aRefers to number of participants with missing or incomplete values for the respective fields.
bWC: waist circumference.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
eECG_HR: electrocardiogram heart rate.
fLDL: low-density lipoprotein.
gHDL: high-density lipoprotein.
hTG: triglyceride.
iThe average daily step count was derived by taking the sum of steps for each day and then averaging over days. Only days with ≥20 hours of valid data
were considered.

Ethics Approval
The SingHEART study (NCT02791152) was established at the
National Heart Centre Singapore, a tertiary specialty hospital
in Singapore, and was approved by the SingHealth Centralized
Institutional Review Board (ref: 2015/2601 and 2018/3081)
[33,34].

A Set of 22 Canonical Time Series Characteristics
Given a time series segment, it is possible to define a set of
high-resolution features using approaches such as the highly
comparative time series analysis [35,36] and time series feature
extraction on the basis of scalable hypothesis [37,38]. However,
such approaches can generate many redundant features, and the
process of selecting a concise but effective representation is
often not straightforward. A recent study [39] introduced a
minimally redundant and interpretable set of 22 features, termed
as Canonical Time-series Characteristics 22 (Catch22) features,
which have high predictive value across 93 diverse time series
classification data sets. As this Catch22 feature set was designed

to reduce interfeature redundancy, it provides a compendious
representation of the different dynamic properties of the time
series.

The Catch22 features fall into seven main categories, namely
(1) distribution, (2) extreme events, (3) symbolic, (4) linear
autocorrelation and periodicity, (5) nonlinear autocorrelation,
(6) successive differences, and (7) fluctuation analysis. The
distribution-based features represent summary statistics of the
distribution of the measured values in the series (while ignoring
the chronological order of these values). The extreme event
features represent intervals between successive outlier events
in the time series. The symbolic features represent statistics
summarizing the outputs of symbolic transformations of the
actual time series values. The linear autocorrelation and
periodicity features comprise summary statistics on inherent
periodicities in the time series. The nonlinear autocorrelation
features involve summary statistics on periodicities based on
nonlinear transformations of the time series. The successive
difference features represent statistics based on the time series
of the incremental differences. Finally, the fluctuation analysis
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features quantify the statistical self-affinity of the time series.
Detailed descriptions of each of the 22 features are provided in
Table S1 in Multimedia Appendix 1.

Extraction of Features From Wearable Time Series
Recordings
We now describe the steps to derive resting heart rate, summary
statistics on activity and sleep patterns, and high-resolution
features from the wearable heart rate and step count time series
recordings. As all these physiological features are derived from
the same recordings, they are internally consistent and can be
meaningfully used for downstream comparative analyses.

Computation of RestingHR
We used wearable heart rate time series recordings to derive
resting heart rate [4]. Specifically, we defined wearable-derived
resting heart rate as the average of heart rate values across all
time points that had a valid heart rate record and a step count
of ≤100. We note that there are similarities between the
wearable-derived resting heart rate and the clinical gold standard
electrocardiogram-derived heart rate [4,40].

Annotation of Wearable Time Series Recordings
We extracted the wearable time series recordings for each
participant and used only days with at least 20 hours of step
count and heart rate data as per Lim et al [4]. Heart rate

recordings were available either at regular 1-minute intervals
or as irregular bursts of recordings over 5-, 10-, or 15-second
intervals. Step count recordings were sampled at either
15-minute or 1-minute intervals. We resampled all heart rate
and step count consumer wearable records to 1-minute intervals
and then annotated the time series to reflect data availability
and physical activity states (Figure 1A). We assigned a null
value for heart rate at time points where it was missing. Then,
we annotated time points with available data for both heart rate
and step count as “sleep,” “active,” or “sedentary.” Specifically,
we applied the sleep annotation to all time points captured by
the Fitbit sleep log, the sedentary annotation to any time points
with 0 step count value, and denoted the remaining time points
as active. On average, the participants in our study had 3.72
days of valid heart rate data, and the average missing heart rate
periods in a day were 94.9 (SD 85.8) minutes. The median
lengths of the longest uninterrupted time series for the active,
sedentary, and sleep periods were 31, 105, and 465 minutes,
respectively.

Subsequently, we processed the heart rate and step count time
series recordings from the consumer wearable devices to yield
a range of summary and high-resolution features, as detailed in
subsections Derivation of Summary Features From Wearable
Time Series Recordings and Derivation of High-Resolution
Features From Wearable Time Series Recordings.
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Figure 1. Wearable data processing pipeline. (A) Construction of low-resolution features based on summary statistics. (B) Construction of high-resolution
features based on the Canonical Time-series Characteristics 22 (Catch22) algorithm. (C) UpSet plot of the 692 participants with features from the various
categories. Only nonempty set intersections are presented. Intersection size indicates the number of participants found within the intersections of given
sets. Of the largest intersection with 328 participants, 321 also had laboratory measurement recordings.

Derivation of Summary Features From Wearable Time
Series Recordings
We used a 3-step procedure to derive a range of wearable
summary statistics (Figure 1A). First, we used our physical
activity annotations to compute mean daily durations for the
different activity states. Second, we used device logs to obtain

statistics relating to sleep-wake patterns. Third, we converted
the wake and sleep times into a 24-hour format and averaged
the resulting values over all days where a given participant had
wearable data recordings. To account for the cyclical nature of
sleep or wake patterns, we transformed the average wake and
sleep times using sinusoidal functions. Overall, this process
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yielded 10 summary features for each participant. All summary
statistics are listed in Table S2 in Multimedia Appendix 1.

Derivation of High-Resolution Features From Wearable
Time Series Recordings
We further developed a data processing pipeline to extract
high-resolution time series features from heart rate recordings
of the wearable device (Figure 1B). As heart rate and step count
patterns under different physical activity states could provide
distinct insights into cardiovascular health, we sought to derive
time series features that encode contextual information about
the physical activity state. Specifically, we processed heart rate
time series recordings for each of the 3 physical activity states
(sleep, sedentary, and active) separately, as follows.

For each participant, we chose the longest uninterrupted period
of the heart rate time series recordings for each physical activity
state. As the data exhibit significant variability in the lengths
of these periods across participants, we defined prespecified
lengths to extract standardized sleep, sedentary, and active
segments. Specifically, we extracted the first 20 minutes for
active segments, the first 1 hour for sedentary segments, and
the first 5 hours for sleep segments. If the recordings available
for a participant did not fulfill the prespecified length criteria,
even with the longest segment for a given activity state, we did
not consider that particular activity state for high-resolution
analyses. This process yielded up to 3 heart rate time series
segments for each participant.

For each available heart rate time series segment, we applied
the Catch22 methodology [39] to obtain 22 high-resolution
features. Collectively, our pipeline resulted in up to 3 sets of
22 high-resolution features per participant, namely Catch22
(Sleep), Catch22 (Active), and Catch22 (Sedentary).

As our study did not prescribe controlled experimental settings
for the wearable recordings, the resulting time series segments
often exhibit significant noise and irregularities. Hence, we
considered the reliability of our feature representation approach
in these real-world settings. In particular, we assessed stability
and sensitivity of the Catch22 features to the length

specifications across activity states (Section SI-1, Multimedia
Appendix 1). The results suggest that the features are relatively
robust within the intervals considered and provide confidence
for the downstream use of these high-resolution features.

Overlap Among Features Derived From Wearable Time
Series Recordings
Figure 1C illustrates the overlaps among participants with the
different wearable-derived features using UpSet plots [41,42].
For example, 41 individuals had features for active and
sedentary segments but did not have sleep segments or summary
statistics (owing to a lack of sufficiently long continuous sleep
recordings). We note that all the different types of wearable
features are available for 328 participants, of which 321 (97.9%)
also had laboratory measurements. We considered this set of
321 participants for ensuing visualization, risk modeling, and
analysis.

Visualization of High-Resolution Heart Rate Features
From Wearables
We examined how high-resolution wearable-derived heart rate
features from sleep, active, and sedentary segments were
distributed across study participants. Figure 2 illustrates the
empirical distributions of exemplar features drawn from
segments corresponding to each of the 3 physical activity states.
To examine the variability across participants, we also visualized
representative time series at the 2.5th, 25th, 50th, 75th, and
97.5th percentile of the density.

The first example comprises a nonlinear autocorrelation feature
(CO_trev1_num, quantifying the time-reversibility statistic

<(xt+1-xt)
3>t) that relates to the degree of spikiness or regularity

in the wearable-based heart rate time series (Figures 2A-2C).
The second example comprises a distribution feature
(DN_HistogramMode_5, corresponding to the mode of the
z-transformed values) that quantifies the degree of nonnormality
of the time series values by representing the difference between
the most probable values (mode) and the mean of the series
(Figures 2D-2F).
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Figure 2. Illustration of wearable-derived high-resolution heart rate features. The distributions of 6 high-resolution features from the 321 participants,
based on 2 Canonical Time-series Characteristics 22 features obtained from time series recordings in each of the 3 activity levels. The selected participants
are at the 2.5th, 25th, 50th, 75th and 97.5th percentiles of each distribution, and the time series for the participant is plotted in the corresponding color.
(A-C) CO_trev1_num is the time-reversibility statistic; higher values tend to correspond to “spikier” or irregular time series. (D-F) DN_HistogramMode_5
takes a time series and groups the z-scored values into 5 linearly spaced bins and reports the mode of the bins.

Characterization of Predictive Value of
Wearable-Derived Features for Clinical Targets

Overview
The overall approach used to characterize the predictive value
of different wearable-derived features with respect to a variety
of clinical risk markers is as follows. Specifically, we considered
model types based on 6 different feature sets (Table 2). We then
defined 4 target clinical risk markers based on whether the 9
laboratory measurements exceeded the thresholds in Table 3:
(1) abnormal blood pressure readings (bp_abnormal); (2)
abnormal lipid levels (lipids_abnormal) for at least one of III
to VI; (3) obese (obesity) for either VIII or IX; and (4) an

omnibus category for lipid, blood sugar, obesity and sugar
abnormalities (anyRISKoutof9) for any of I to IX.

All 321 participants who had a complete set of wearable-derived
features also had complete data for the 9 laboratory
measurements. We considered this set of 321 participants as
our training set to model the clinical risk targets. Of these 321
participants, 149 (46.4%) were not positive for any of the 4 risk
markers, whereas 172 (53.5%) were positive for at least one
risk marker (Section SI-2, Multimedia Appendix 1). We noted
that a given participant can be positive for >1 of the 4 labels,
but most participants exhibiting positive risk markers were
exclusively labeled by a single risk marker. Of the 172 positive
participants, 119 (69.2%) were positive for 1 clinical risk
marker, 40 (23.3%) were positive for 2 risk markers, and only
14 (8.1%) were positive for 3 or more risk markers.
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Table 2. Description of the different model types.

Features, nFeatures includedModel name

2Age+genderBaseline [4]

3Baseline features+wearable-derived resting heart rateRestingHR

12Baseline features+wearable summary statsSummaryStats

24Baseline features+Catch22a (active)HighRes.ActiveSeg

24Baseline features+Catch22 (sedentary)HighRes.SedenSeg

24Baseline features+Catch22 (sleep)HighRes.SleepSeg

aCatch22: Canonical Time-series Characteristics 22.

Table 3. Laboratory measurements and corresponding thresholds.

Threshold to be considered at riskLaboratory measurement

>140I. Systolic blood pressure (mm Hg)

>90II. Diastolic blood pressure (mm Hg)

>2.3III. Triglycerides (mmol/L)

>6.2IV. Total cholesterol (mmol/L)

<1V. HDLa (mmol/L)

>4.1VI. LDLb (mmol/L)

>6VII. Fasting blood glucose level (mmol/L)

VIII. Waist circumference (cm)

>100Male

>90Female

>27.5IX. BMI (kg/m2)

aHDL: high-density lipoprotein.
bLDL: low-density lipoprotein.

We used machine learning to model the complex nonlinear
relationships between a given feature set and the target pairing
using 2 separate approaches. First, for any given target, we
analyzed the predictive value of different feature sets (Table 1)
using a model comparison approach. Specifically, we consider
the degree to which the wearable-derived features (resting heart
rate, wearable summary statistics, and different high-resolution
wearable features) augment the predictive value of the baseline
demographic feature set and also compared the performance of
the high-resolution wearable features with that of the
lower-resolution features. For an appropriate comparison of
value addition over the baseline features, all feature sets based
on wearable data also included the corresponding baseline
features. Second, for each prediction target, we also compared
the importance of the individual feature variables. To have a
common basis for these variable importance calculations, we
developed a unified model with all features included, and used
this model to compare variable importance for the different
features.

Prediction Model and Variable Importance
We trained machine learning models to estimate the probability
that a participant exhibits clinical risk markers for common
cardiometabolic disease abnormalities. Specifically, we used

random forest classifiers [43] to model the 4 targets of interest,
as they are general purpose, nonlinear classifiers that perform
well in diverse settings. We trained the random forest models
in R using the randomForest package [44]. To handle the
imbalanced nature of the prediction tasks at hand, we set the
number of minority class samples chosen for each tree at 80%
of the total minority class size. We then down-sampled the
majority class to match the number of minority class samples
used [45]. This was implemented using the strata and sampsize
parameters. For each of the 4 prediction targets, we constructed
200 such random forests with different starting random seeds,
and for each random forest trained, we recorded the out-of-bag
(OOB) prediction errors.

For random forests, variable importance can be quantified using
the mean decrease in accuracy (MDA) over all OOB
cross-validated predictions. To obtain statistically robust
estimates of variable importance, for a given prediction target,
we averaged the MDA for each feature across the 200 random
forests and then ranked the features by their average MDA to
obtain the top 10 important features. To visualize the variable
importance results, we considered the union of the top 10
ranking features for the 4 cardiometabolic disease risk targets.

J Med Internet Res 2022 | vol. 24 | iss. 7 | e34669 | p. 9https://www.jmir.org/2022/7/e34669
(page number not for citation purposes)

Zhou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Model Performance Metric and Assessment
As the risk prediction task is inherently probabilistic, a suitable
metric for model performance assessment would emphasize the
calibration of the model predictions (ie, the prediction
probabilities of true positives and true negatives are close to 1
and 0, respectively). Therefore, we evaluated the accuracy of
probabilistic predictions using the Brier score [46]:

BrierScore(M) = [∑i=1
N (pi - oi)

2] / N (1)

where M is the wearable-based model under consideration, pi

is the prediction probability of observing target i using the model
under evaluation, oi is the actual observed target or label
(binary:0/1), and N is the total number of participants included
in the modeling. The Brier score ranges from 0 to 1 and is lower
for models with better calibrated predictions.

We used OOB estimates [43,47] to evaluate the scores, as there
were insufficient data for an independent held-out test set. In
total, the above process yielded 200 Brier scores for each pairing
of the prediction target and wearable-derived feature set (model)
type.

For each target, we also compared the performance of the
various model types in relation to each other. Specifically, for
each pair of model types, we performed a 2-tailed Welch t test
on the null hypothesis that the true difference in Brier scores
was 0. For each target, we corrected for multiple hypothesis
testing by controlling the false discovery rate [48].

Characterization of Associations Between
Wearable-Derived Features and Genomic Risk
Markers
To better understand the nature of wearable-derived time series
features, we investigated their associations with genomic risk
markers for cardiometabolic disease. As probing these
associations requires handling diverse multidimensional data
types with potentially complex nonlinear relationships, we used
a machine learning framework (similar to the one described
earlier) to model these relationships. We then used model
performance measures to infer the degree of information overlap
between wearable features and genomic risk targets. As genomic
risk is independent of age, we did not include age in any of the
models considered.

We categorized the genetic susceptibility to cardiometabolic
diseases using polygenic scores (PGSs). To define the genomic
risk for lipid abnormalities, blood pressure abnormalities, and
obesity, we used the PGS Catalog [49] to identify relevant
polygenic risk scores corresponding to the 3 targets. Specifically,
we identified 14 PGS for lipid abnormalities (PGS000060,
PGS000061, PGS000062, PGS000063, PGS000065,
PGS000115, PGS000192, PGS000309, PGS000310,
PGS000311, PGS000340, PGS000677, PGS000688, and
PGS000699), 2 for blood pressure abnormalities (PGS000301
and PGS000302), and 1 for obesity (PGS000298). Additional
details of the selection process are provided in Section SI-3
(Multimedia Appendix 1).

For each of the 3 targets, we labeled a participant as having high
genomic risk if their scores for any of the relevant PGS were

in the top or bottom decile (refer to Section SI-3, Multimedia
Appendix 1 for how the direction of a PGS is determined),
which we term as the 90/10 cut-off. For instance, the high
genomic risk group for lipid abnormalities would include
members with high-risk scores for at least 1 of the 14
lipid-related PGS. The modeling of these targets and statistical
comparison of the performance of different model types were
identical to the earlier process described for the clinical risk
targets.

To evaluate the sensitivity of the chosen percentile cut-offs for
genomic risk scores, we repeated the above analyses for 2
additional sets of cut-offs, namely the 80/20 and 85/15 cut-offs.

Illustrative Profiling Based on Clinical Events
Finally, we examined the connections between high-resolution
wearable-derived features and actualized cardiometabolic
disease events for participants not in our training set of 321.
Among these participants, we considered those who actualized
cardiometabolic disease events indicated by a primary diagnosis
of cardiovascular disease, dyslipidemia, and hypertension (as

per International Classification of Diseases, 10th Revision codes
listed in Table S3 in Multimedia Appendix 1). As this set of
events spans a broad range of cardiometabolic conditions,
anyRISKoutof9 is the closest surrogate marker. Hence, we chose
to focus our profiling on the wearable-derived feature set that
was most strongly associated with anyRISKoutof9.

For participants selected per the abovementioned criteria, we
examined demographic information, physical measurements,
genomic risk of disease, and clinical risk markers alongside the
wearable-derived features. To interpret how the different
wearable-derived features contribute to the model predictions
at the individual participant level, we computed the Shapley
values (Φ) [50] of each feature using the iml package [51] in R
and selected the 5 features with the highest absolute magnitude
of Φ for each participant. We illustrate the profiles of the
participants, the predictions made by the best-performing model
for anyRISKoutof9, and the features that contribute most to
these predictions for each selected participant.

Software and Code Availability
All statistical analyses and modeling were performed using R
Statistical Software (version 4.0.3; R Core Team 2020).
Computation of resting heart rate was performed using R, but
all other feature engineering efforts such as annotation of
wearable time series recordings and derivation of summary
features, as well as the generation of high-resolution features,
were performed using Python (version 3.8.6).

All Python and R codes used in feature generation are available
in Multimedia Appendix 2.

Results

Characteristics of High-Resolution Heart Rate
Features From Wearables
Unlike summary statistics such as resting heart rate, which
averages heart rate measurements across multiple days, our
high-resolution feature sets provide more granularity on the
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heart rate time series dynamics during different physical activity
states (sleep, active, and sedentary). Figure 3A illustrates the
distributions of the high-resolution wearable feature values
across the 321 participants (colored according to their respective

activity states). Although the Catch22 algorithm was identically
applied to each of the 3 activity segments, we observed that
each feature exhibited distinct distributions across the 3 different
activity states.

Figure 3. High-resolution (Canonical Time-series Characteristics 22 [Catch22]) wearable features from 3 different activity states. (A) Frequency
polygons of the feature values based on the training set. The colors indicate activity states. (B) Pearson correlation coefficients between pairs of Catch22
features from different physical activity states (sleep, active, and sedentary). Two features from the active period
(SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 and SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1) are uniformly 0; hence, correlation coefficients
involving these 2 features are undefined (white squares).
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To study whether this difference holds at the participant level,
we characterized the correlations among the high-resolution
feature sets obtained during the 3 different activity states. For
any given feature (eg, CO_trev1_num), we considered vectors
of feature values for each physical activity state across the
populat ion (eg,  CO_trev1_num.active,
CO_trev1_num.sedentary, and CO_trev1_num.sleep). We then
calculated the Pearson correlation between these feature vectors
for each pair of the activity states. This analysis revealed that
the feature values from the different activity states were poorly
correlated (Figure 3B). In fact, the largest absolute correlation
coefficient among any of the pairs was 0.15. Taken together,
these findings indicate that heart rate dynamics from different
activity states contain distinct information.

Predictive Value of Wearable-Derived Features for
Clinical Targets
Having gained some intuition about the information contained
within the wearable-derived feature sets, we considered their
predictive value for the clinical markers of cardiometabolic
disease risk. Specifically, we trained random forest models to
use the different wearable-derived feature sets to classify each
of the 4 cardiometabolic disease risk targets. We performed
comparative analyses to evaluate the predictive value of the
different wearable-derived feature sets for classification of the
4 cardiometabolic disease risk targets.

First, we compared the OOB performance of the models trained
using different feature sets for each clinical risk marker target
(Table 4). For each target, the best-performing model was based
on one of the high-resolution wearable feature sets
(HighRes.ActiveSeg, HighRes.SedenSeg, or HighRes.SleepSeg).
Specifically, for anyRISKoutof9, the HighRes.SedenSeg model
was the best-performing model, with 17.9% and 7.36% lower
Brier scores than baselines based on age and gender and resting
heart rate, respectively (P<.001 in each case). This finding
highlights the predictive value of high-resolution information
within wearable heart rate time series recordings.

Second, we observed that heart rate dynamics extracted from
different activity level segments have differential predictive
potential for the various targets, as evidenced by the statistically
significant differences between Brier scores (P<.001) of the
HighRes.ActiveSeg, HighRes.SedenSeg, and HighRes.SleepSeg
models (Table 4). Of the 3 model types, HighRes.SedenSeg
performs best for lipid abnormalities, obesity, and
anyRISKoutof9, whereas HighRes.ActiveSeg performs best for
blood pressure abnormalities.

Third, to comparatively evaluate contributions from individual
wearable-derived features, we trained models that used all
features available to predict each cardiometabolic disease risk
target and ranked the variable importance in each case. Figure
4 shows the variable importance plots. It is clear that different
features affect the performance of the models for each of the 4
targets. For instance, age and gender are the top 2 drivers of
model performance for the anyRISKoutof9 target but are not
among the top 10 features for both lipids_abnormal and obesity
targets. Furthermore, we found that heart rate dynamics from
different activity states contained distinct information on
cardiometabolic disease risk. For example, the
DN_HistogramMode_5 feature from the sedentary and active
segments was important for predicting cardiometabolic disease
risk markers but the DN_HistogramMode_5 feature from the
sleep segment was not (Figure 4).

Fourth, we observed that the top 10 features for each of the 4
targets included features from all 6 feature types (age and
gender, wearable-derived resting heart rate, wearable summary
statistics, and the 3 sets of high-resolution features from Table
1). This suggests that risk prediction models using
wearable-derived features may not exclusively rely on only one
of the different feature sets or any one feature drawn from these
feature sets. Rather, a collection of different wearable-derived
high-resolution heart rate features from distinct activity states
is essential for accurately predicting the multiplicity of
cardiometabolic disease risk targets.

Table 4. Model performance on cardiometabolic risk targets. Out-of-bag model performance for each of the 5 model types computed for the 4 targets.
A smaller Brier score indicates a better performing model for a given target.

SummaryStats,
mean (SD)

HighRes.SleepSegc,
mean (SD)

HighRes.SedenSegc,
mean (SD)

HighRes.Ac-

tiveSegc, mean (SD)
RestingHRb, mean
(SD)

Baselinea, mean
(SD)

0.247 (7.66×10−4)0.245 (8.43×10−4)0.239 (−9×10−4)0.253 (8.52×10−4)0.258 (7.7×10−4)0.291 (−5.87×10−4)anyRISKoutof9

0.225 (7.9×10−4)0.225 (8.32×10−4)0.222 (8.14×10−4)0.217 (7.88×10−4)0.223 (5.61×10−4)0.227 (4.79×10−4)bp_abnormal

0.227 (8.54×10−4)0.226 (8.64×10−4)0.214 (9.34×10−4)0.221 (8.92×10−4)0.227 (7.91×10−4)0.246 (6.64×10−4)obesity

0.236 (7.3×10−4)0.241 (8.27×10−4)0.225 (7.58×10−4)0.238 (8.08×10−4)0.261 (6.64×10−4)0.271 (5.84×10−4)lipids_abnormal

aFor each risk target, the Brier scores of the baseline model were significantly different from those of all other models (P<.001).
bFor each risk target, Brier scores of the resting heart rate model (RestingHR) were significantly different from all other models (P<.001).
cFor each risk target, Brier scores of the 3 HighRes models were significantly different from each other (P<.001).

J Med Internet Res 2022 | vol. 24 | iss. 7 | e34669 | p. 12https://www.jmir.org/2022/7/e34669
(page number not for citation purposes)

Zhou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Random forest variable importance. The variable importance of each feature for prediction of the 4 cardiometabolic disease risk targets. We
averaged each importance value across 200 simulations and used the results to rank the top 10 features to retain for each cardiometabolic disease risk
target. This resulted in a total of 26 features across all 4 targets, as shown in the figure. Catch22: Canonical Time-series Characteristics 22.

Associations Between Wearable-Derived Features and
Genomic Risk Markers
To further interpret the information contained within the
wearable-derived features, we sought to understand how they
relate to the genetic predispositions for cardiometabolic diseases.
Specifically, we examined the degree of information overlap
between the different wearable-derived features (Table 1) and
the genomic risk of cardiometabolic conditions. For each pairing
between the different wearable-derived feature sets and the 3
genomic risk targets, we trained random forest models and used
their Brier scores as indirect measures of the strength of the
associations.

The results are presented in Table 5. For each of the 3
abnormality types, we observed that the high-resolution
wearable features were more strongly associated with genomic
risk levels than sex and resting heart rate (improvement of
11.9%-22.0% in Brier scores; P<.001). We highlight that the
trends against baseline and resting heart rate were relatively
insensitive to the polygenic risk score threshold used to define
high versus low genomic risk (Section SI-4, Multimedia
Appendix 1). These results suggest that, in comparison with
standard measures, high-resolution features from wearables are
better able to represent subtle physiological dynamics related
to the genomic risk for cardiometabolic disease.
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Table 5. Degree of association with genomic risk targets. Out-of-bag performance for each of the 5 model types computed for the 3 targets. A smaller
Brier score indicates better performing model for a given target.

SummaryStats,
mean (SD)

HighRes.SleepSeg,
mean (SD)

HighRes.SedenSeg,
mean (SD)

HighRes.ActiveSeg,
mean (SD)

RestingHRb, mean
(SD)

Baselinea, mean
(SD)

0.212 (9.64×10−4)0.215 (9.93×10−4)0.214 (1.09×10−3)0.215 (1.08×10−3)0.245 (8.55×10−4)0.248 (2.0×10−3)Blood pressure

0.203 (1.06×10−3)0.199 (1.21×10−3)0.192 (1.06×10−3)0.205 (1.15×10−3)0.246 (9.03×10−4)0.245 (2.31×10−3)Obesity

0.268 (8.86×10−4)0.259 (8.92×10−4)0.254 (8.82×10−4)0.254 (9.07×10−4)0.308 (6.36×10−4)0.294 (3.02×10−3)Lipids

aFor each risk target, the Brier scores of the baseline model were significantly different from all other models (P<.001).
bFor each risk target, Brier scores of the resting heart rate model (RestingHR) were significantly different from those of the 3 HighRes and SummaryStats
models (P<.001).

Illustrative Profiles of Participants With
Cardiometabolic Events
Finally, we examined the relationship between the
wearable-derived feature set most predictive for anyRISKoutof9
and actualized cardiometabolic events. We focused on
participants not in our training set and filtered participants with
data for the feature set most predictive for anyRISKoutof9 (ie,
Catch22 [Sedentary] feature set, based on the abovementioned
results). This yielded 197 candidate participants for illustrative
profiling. Among these participants, only 5 participants
actualized events with primary diagnoses for cardiometabolic
conditions (as specified in Table S3 in Multimedia Appendix
1).

Table 6 provides demographic, genetic, and clinical risk profiles
along with physical measurements and important wearable
features for these 5 participants (A-E). All the participants were
aged 54 to 61 years. Of the 5 participants, 4 (80%) were male.
Only 1 (20%) participant was obese. We now present the
findings on the predictive value of high-resolution
wearable-derived features for these participants.

First, we describe participants with abnormalities in both genetic
and clinical risk markers, namely participants A and B.
Participant A had high genomic risk for all 3 conditions,
presented abnormal values for most of the 9 clinical risk
markers, and was also diagnosed with all 3 types of
cardiometabolic conditions considered (cardiovascular disease,
dyslipidemia, and hypertension). Participant B had a genomic
risk for lipid and blood pressure abnormalities, abnormal lipid
panel values, and a clinical diagnosis of dyslipidemia. While
participant A had a wearable-derived resting heart rate slightly
above the population average, participant B had a
wearable-derived resting heart rate lower than the population
average. However, in both cases, our HighRes.SedenSeg model
predicted a positive anyRISKoutof9 outcome.

Second, we considered participants with no genomic risk but
who presented with abnormal clinical risk markers, namely
participant C. This participant had high blood pressure, abnormal
cholesterol and blood glucose levels, a clinical diagnosis of
dyslipidemia, and wearable-derived resting heart rate slightly
above the population average value. However, we noted that
our HighRes.SedenSeg model predicted a negative
anyRISKoutof9 outcome. This could be due to modeling error
or possibly be attributed to the absence of severe changes in

heart rate dynamics given the normal genetic background and
moderate wearable-derived resting heart rate value.

Third, we highlighted participants who did not exhibit any
abnormalities in clinical risk markers and were borderline for
cardiometabolic disease risk, namely participants D and E.
Participant D only had a genomic risk for blood pressure.
Participant E, on the other hand, appeared to have the most
benign profile with low genomic risk for all 3 target conditions
and normal values for all 9 clinical risk markers (with only the
BMI being borderline high). Both participants had
wearable-derived resting heart rate values that were lower than
the population average. Although participants D and E had a
seemingly low-risk profile by standard measures, they had
clinical diagnoses of dyslipidemia and cardiovascular disease,
respectively. Indeed, our HighRes.SedenSeg model predicted
a positive anyRISKoutof9 outcome in each case.

Finally, inspecting the most important features (top 5 Shapley
values) contributing to model predictions for anyRISKoutof9
in Table 6 reveals interesting patterns. While age and gender
were (expectedly) consistent contributors to prediction scores
for most participants, many Catch22 (Sedentary) features also
contributed at comparable levels. For instance,
DN_Histogram_Mode_5 was important for all 5 participants,
whereas CO_Embed2_Dist_tau_d_expfit_meandiff and
DN_OutlierInclude_p_001_mdrmd were important for 3 and 2
participants, respectively. In particular, DN_Histogram_Mode_5
was an important feature for most participants in this study.
This feature takes on large values when the participant’s heart
rate time series exhibits substantial deviations from the mean,
which could occur when there are sustained or frequent
oscillations with high amplitude. Although such deviations may
be common in active states, their presence in sedentary states
could forebode cardiovascular abnormalities, as was the case
for these 5 participants. Beyond the consistent features noted
above, there are other diverse high-resolution features among
the top 5 most important contributors for different participants.
This suggests that our high-resolution feature extraction
approach offers a compact but sufficiently diverse set of
predictive heart rate patterns, including those that are consistent
across individual participants and those that can cater to
participant-to-participant variability. Detailed Shapley Additive
Explanations (SHAP) feature importance plots for each
participant are provided in Section SI-5 in Multimedia Appendix
1.

J Med Internet Res 2022 | vol. 24 | iss. 7 | e34669 | p. 14https://www.jmir.org/2022/7/e34669
(page number not for citation purposes)

Zhou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Illustrative profiles of 5 participants with actualized cardiometabolic events. Participant profiles include demographic information, type of
cardiometabolic disease, key physical measurements, clinical and genomic risk markers, and the top 5 important wearable-derived heart rate features
(as per Shapley values).

ParticipantParticipant profiles

EDCBA

Demographics

6155565754Age (years)

MaleFemaleMaleMaleMaleGender

55.769.073.058.272.8Wearable-derived resting heart rate

Clinical risk markers

25.9522.9521.2718.7928.05BMI (kg/m2)

133/89112/48164/105108/65166/109Blood pressure: SBPa/DBPb (mm Hg)

5.35.37.44.86.8Glucose (mmol/L)

4.455.056.606.635.27Total cholesterol (mmol/L)

FalseFalsedTrueTrueTruecanyRISKoutof9

High genomic risk

FalseFalseFalseTrueTrueLipids abnormalities

FalseTrueFalseTrueTrueBlood pressure abnormalities

FalseFalseFalseFalseTrueObesity

Actualized cardiometabolic events

TrueFalseFalseTrueTrueCardiovascular disease

FalseTrueTrueFalseTrueDyslipidemia

FalseFalseFalseFalseTrueHypertension

Important features for prediction

FalseTrueFalseFalseFalseCO_f1ecac.sedentary

FalseFalseFalseFalseTrueFC_LocalSimple_mean3_stderr.sedentary

FalseFalseFalseFalseTrueSB_MotifThree_quantile_hh.sedentary

FalseTrueFalseFalseFalseSB_TransitionMatrix_3ac_sumdiagcov.sedentary

TrueFalseFalseFalseFalseCO_trev_1_num.sedentary

FalseFalseTrueFalseFalseCO_HistogramAMI_even_2_5.sedentary

FalseFalseFalseTrueTrueDN_OutlierInclude_p_001_mdrmd.sedentary

TrueTrueFalseTrueFalseCO_Embed2_Dist_tau_d_expfit_meandiff.sedentary

FalseFalseTrueFalseFalseDN_HistogramMode_10.sedentary

TrueTrueTrueTrueTrueDN_HistogramMode_5.sedentary

TrueFalseTrueTrueTrueGender

TrueTrueTrueTrueFalseAge (years)

aSBP: systolic blood pressure.
bDBP: diastolic blood pressure.
cTrue indicates true or that there is a presence of categorical variables.
dFalse indicates false or absence of categorical variables.

Discussion

Principal Findings
Consumer wearables enable the recording of rich high-resolution
physiological dynamics in free-living conditions, but how these

data relate to health and disease is not fully understood. We
introduced a principled framework to derive high-resolution
heart rate features from consumer wearable recordings, and
applied our approach to a data set containing multidimensional
cardiometabolic health parameters from healthy volunteers. Our
results show that, in comparison with typical summary statistics,
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high-resolution features resolving temporal dynamics and
activity-dependent patterns in heart rate have stronger
associations with modifiable risk markers and inherent genetic
predispositions for cardiometabolic disease alike. Our findings
imply that these high-resolution digital phenotypes from
consumer wearables can provide a more granular picture of
cardiometabolic health and disease states, which could have
potential use in cardiometabolic health screening and disease
management.

Our framework addresses key challenges in mining wearable
data recorded in free-living conditions. Unlike clean data from
controlled experimental settings, real-world wearable recordings
tend to be irregular, contain missing stretches [29], lack clean
context annotations, and have variable lengths. As such, analyses
based on the naive application of general purpose time series
feature extraction methods [36,39,52] may not have ecological
validity [53]. To address this gap and derive meaningful
physiological dynamics from wearable time series recordings,
our feature extraction framework standardizes handling of data
irregularities and encodes contextual information about the
underlying activity level and physiological state (Figures 1-3).
This conceptual framework, although demonstrated here with
the Catch22 method [39], is agnostic to the choice of the feature
representation method for time series data [36,37]. Furthermore,
in contrast to black-box feature learning methods based on large
labeled data sets [31], our approach yields more interpretable
time series features with smaller unlabeled data sets.

Our framework provides many possibilities for gaining new
insights from wearable recordings. Our analyses, using
multimodal wearable, genomic, and clinical data from healthy
volunteers, highlight 2 possibilities.

First, our results revealed new relationships between
high-resolution heart rate dynamics from wearables and the risk
of cardiometabolic disease. Most previous studies correlated
clinically obtained measures of heart rate dynamics, such as
heart rate variability, exercise capacity, and heart rate recovery,
with disease risk or outcomes [54-56]. In contrast, our results
revealed that heart rate dynamics recorded by consumer
wearables, when processed appropriately, are also predictive
of cardiometabolic disease risk (Tables 4-6; Figure 4).
Furthermore, we found that heart rate dynamics from different
activity states contain distinct information about specific
cardiometabolic conditions (Table 4; Figures 3 and 4). For
example, heart rate patterns in sedentary states are more related
to abnormalities in lipid levels and obesity, whereas those in
active states may be more related to abnormalities in blood
pressure readings (Table 4). These findings highlight the value
addition of assessing physiology in free-living activity states
(beyond controlled clinical settings) for disease risk monitoring
and management [57].

Second, our study provides new perspectives on the
interrelations between wearable recordings and genetic

predispositions in cardiometabolic diseases. Although there has
been a longstanding interest in probing gene-lifestyle
interactions and their additive effects on cardiovascular disease
[58-60], such studies have had limited visibility on physiology
in free-living conditions. We found surprising connections
(Table 5) between high-resolution wearable-derived feature sets
and genetic predispositions for cardiometabolic disease. As
these associations did not appear to depend on the presence or
absence of manifest clinical risk markers, we posit that
high-resolution phenotypes from wearables may capture subtle
subclinical physiological changes stemming from latent
predispositions to disease.

Limitations
Although the uniquely multimodal nature of our data enables
us to uncover many novel insights on high-resolution wearable
phenotypes, limitations of data set size and cohort design present
some challenges. First, it was infeasible to conduct full-scale
gene-environment interaction studies [61-63]; or train
state-of-the-art machine learning models with large feature sets.
Second, as the risk of cardiometabolic disease is highly
multifactorial, the limited visibility on relevant physical and
lifestyle factors constrains the absolute predictive accuracy of
all models presented. For instance, we had limited input on
regular exercise habits as the observation span was less than a
week, as well as limited overlap between key lifestyle indicators
and wearable recordings (eg, only 9 participants who smoked
had valid wearable records). Finally, as our study included only
a small number of participants with actualized cardiometabolic
events, we could not perform quantitative analyses to relate
wearable phenotypes with clinical events. Future work based
on larger cohorts [64] with more targeted study designs could
address some of these limitations and enable cross-cohort
validation of our current findings.

Conclusions
In conclusion, we demonstrated that high-resolution digital
phenotypes based on heart rate patterns in wearable recordings
provide important insights into physiology in free-living
conditions. Our results revealed that these measures are
associated with both genetic and clinical risk markers of
cardiometabolic disease and have additional predictive value
beyond wearable-derived summary statistics and clinical
measures of cardiometabolic health. Hence, our work expands
possibilities to use digital phenotypes from consumer wearables
as readily accessible indicators of cardiometabolic health and
disease and motivates new approaches for quantitative scoring
of cardiometabolic disease risk. Future studies could expand
our findings to even higher resolution digital phenotypes that
can be extracted from recordings with newer generations of
wearable devices [65,66] and target evaluations for precision
screening, health monitoring, and disease management
applications.
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