256 research outputs found

    Evolution and Detection of Polymorphic and Metamorphic Malwares: A Survey

    Full text link
    Malwares are big threat to digital world and evolving with high complexity. It can penetrate networks, steal confidential information from computers, bring down servers and can cripple infrastructures etc. To combat the threat/attacks from the malwares, anti- malwares have been developed. The existing anti-malwares are mostly based on the assumption that the malware structure does not changes appreciably. But the recent advancement in second generation malwares can create variants and hence posed a challenge to anti-malwares developers. To combat the threat/attacks from the second generation malwares with low false alarm we present our survey on malwares and its detection techniques.Comment: 5 Page

    Malware Resistant Data Protection in Hyper-connected Networks: A survey

    Full text link
    Data protection is the process of securing sensitive information from being corrupted, compromised, or lost. A hyperconnected network, on the other hand, is a computer networking trend in which communication occurs over a network. However, what about malware. Malware is malicious software meant to penetrate private data, threaten a computer system, or gain unauthorised network access without the users consent. Due to the increasing applications of computers and dependency on electronically saved private data, malware attacks on sensitive information have become a dangerous issue for individuals and organizations across the world. Hence, malware defense is critical for keeping our computer systems and data protected. Many recent survey articles have focused on either malware detection systems or single attacking strategies variously. To the best of our knowledge, no survey paper demonstrates malware attack patterns and defense strategies combinedly. Through this survey, this paper aims to address this issue by merging diverse malicious attack patterns and machine learning (ML) based detection models for modern and sophisticated malware. In doing so, we focus on the taxonomy of malware attack patterns based on four fundamental dimensions the primary goal of the attack, method of attack, targeted exposure and execution process, and types of malware that perform each attack. Detailed information on malware analysis approaches is also investigated. In addition, existing malware detection techniques employing feature extraction and ML algorithms are discussed extensively. Finally, it discusses research difficulties and unsolved problems, including future research directions.Comment: 30 pages, 9 figures, 7 tables, no where submitted ye

    Improved Detection for Advanced Polymorphic Malware

    Get PDF
    Malicious Software (malware) attacks across the internet are increasing at an alarming rate. Cyber-attacks have become increasingly more sophisticated and targeted. These targeted attacks are aimed at compromising networks, stealing personal financial information and removing sensitive data or disrupting operations. Current malware detection approaches work well for previously known signatures. However, malware developers utilize techniques to mutate and change software properties (signatures) to avoid and evade detection. Polymorphic malware is practically undetectable with signature-based defensive technologies. Today’s effective detection rate for polymorphic malware detection ranges from 68.75% to 81.25%. New techniques are needed to improve malware detection rates. Improved detection of polymorphic malware can only be accomplished by extracting features beyond the signature realm. Targeted detection for polymorphic malware must rely upon extracting key features and characteristics for advanced analysis. Traditionally, malware researchers have relied on limited dimensional features such as behavior (dynamic) or source/execution code analysis (static). This study’s focus was to extract and evaluate a limited set of multidimensional topological data in order to improve detection for polymorphic malware. This study used multidimensional analysis (file properties, static and dynamic analysis) with machine learning algorithms to improve malware detection. This research demonstrated improved polymorphic malware detection can be achieved with machine learning. This study conducted a number of experiments using a standard experimental testing protocol. This study utilized three advanced algorithms (Metabagging (MB), Instance Based k-Means (IBk) and Deep Learning Multi-Layer Perceptron) with a limited set of multidimensional data. Experimental results delivered detection results above 99.43%. In addition, the experiments delivered near zero false positives. The study’s approach was based on single case experimental design, a well-accepted protocol for progressive testing. The study constructed a prototype to automate feature extraction, assemble files for analysis, and analyze results through multiple clustering algorithms. The study performed an evaluation of large malware sample datasets to understand effectiveness across a wide range of malware. The study developed an integrated framework which automated feature extraction for multidimensional analysis. The feature extraction framework consisted of four modules: 1) a pre-process module that extracts and generates topological features based on static analysis of machine code and file characteristics, 2) a behavioral analysis module that extracts behavioral characteristics based on file execution (dynamic analysis), 3) an input file construction and submission module, and 4) a machine learning module that employs various advanced algorithms. As with most studies, careful attention was paid to false positive and false negative rates which reduce their overall detection accuracy and effectiveness. This study provided a novel approach to expand the malware body of knowledge and improve the detection for polymorphic malware targeting Microsoft operating systems

    Classification of Polymorphic Virus Based on Integrated Features

    Get PDF
    Standard virus classification relies on the use of virus function, which is a small number of bytes written in assembly language. The addressable problem with current malware intrusion detection and prevention system is having difficulties in detecting unknown and multipath polymorphic computer virus solely based on either static or dynamic features. Thus, this paper presents an effective and efficient polymorphic classification technique based on integrated features. The integrated feature is selected based on Information Gain (IG) rank value between static and dynamic features. Then, all datasets are tested on Naïve Bayes and Random Forest classifiers. We extracted 49 features from 700 polymorphic computer virus samples from Netherland Net Lab and VXHeaven, which includes benign and polymorphic virus function. We spilt the dataset based on 60:40 split ratio sizes for training and testing respectively. Our proposed integrated features manage to achieve 98.9% of accuracy value

    Data Augmentation Based Malware Detection using Convolutional Neural Networks

    Get PDF
    Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCry and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the paper's model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.Comment: 18 page

    Assessing Code Obfuscation of Metamorphic JavaScript

    Get PDF
    Metamorphic malware is one of the biggest and most ubiquitous threats in the digital world. It can be used to morph the structure of the target code without changing the underlying functionality of the code, thus making it very difficult to detect using signature-based detection and heuristic analysis. The focus of this project is to analyze Metamorphic JavaScript malware and techniques that can be used to mutate the code in JavaScript. To assess the capabilities of the metamorphic engine, we performed experiments to visualize the degree of code morphing. Further, this project discusses potential methods that have been used to detect metamorphic malware and their potential limitations. Based on the experiments performed, SVM has shown promise when it comes to detecting and classifying metamorphic code with a high accuracy. An accuracy of 86% is observed when classifying benign, malware and metamorphic files
    • …
    corecore