8 research outputs found

    Integrating Adam Optimizer to Enhance Efficiency of Transfer Learning Model for Diagnosing Cancers

    Get PDF
    Despite huge advancements in medical fields, diseases like cancer continue to plague people since we are still prone to them. The main purpose is to design a critical analysis of cancers, including breast, pancreatic, colon, skin, lung, and other cancers from the year 1990 to 2019, to identify some of the rising factors of both lung and colon cancers that cause unnecessary deaths. Thus, early detection on the other hand greatly improves the chances of survival rates in humans. At that place, Transfer Learning (TL) techniques have made significant improvements these days. Material and Methods: We herein implemented the exploratory data analysis (EDA) technique to analyze 29 types of cancer deaths worldwide since 1990th century. Between them, we have emphasized lung cancer (LC) and colon cancers (CC) for our study and taken 25,000 histopathology image data from the publicly available Kaggle repository. Further, we proposed a novel methodology using the EfficientNetB7 model defining each step to classify five types of lung and colon tissues (two benign and three malignant) from the histopathological images. Although, an algorithm has been designed that clearly describes the workflow of our proposed method. This experiment has been done through input_shape=(X, Y, 3) on the ‘ImageNet’ dataset, Adam optimizer, and accuracy metrics using Python 3.8.8 software on Jupyter 6.4.3 environment. Results: We evaluated the model progress using 50 epochs during the training phase, which resulted in more than 98% accuracy and less than 2% loss in both the training/ validation phases. Besides that, we designed a classification report that describes the performance of our model, where we achieved more than 98.07% accuracy score, 98% precision score, 98% of recall score, and 98% of f1-score. These results signify that implementing an optimization technique on the EfficientNetB7 model improves the overall performance as compared to 93.19% for LC 1 and 93.91% for CC 2 for the RestNet50 model. Conclusion: A novelty of this research specifies the methodology to predict LC and CC by applying the EfficientNetB7 model to the cancer dataset which might be beneficial for both doctors as well as healthcare firms.  &nbsp

    Machine learning approaches for lung cancer diagnosis.

    Get PDF
    The enormity of changes and development in the field of medical imaging technology is hard to fathom, as it does not just represent the technique and process of constructing visual representations of the body from inside for medical analysis and to reveal the internal structure of different organs under the skin, but also it provides a noninvasive way for diagnosis of various disease and suggest an efficient ways to treat them. While data surrounding all of our lives are stored and collected to be ready for analysis by data scientists, medical images are considered a rich source that could provide us with a huge amount of data, that could not be read easily by physicians and radiologists, with valuable information that could be used in smart ways to discover new knowledge from these vast quantities of data. Therefore, the design of computer-aided diagnostic (CAD) system, that can be approved for use in clinical practice that aid radiologists in diagnosis and detecting potential abnormalities, is of a great importance. This dissertation deals with the development of a CAD system for lung cancer diagnosis, which is the second most common cancer in men after prostate cancer and in women after breast cancer. Moreover, lung cancer is considered the leading cause of cancer death among both genders in USA. Recently, the number of lung cancer patients has increased dramatically worldwide and its early detection doubles a patient’s chance of survival. Histological examination through biopsies is considered the gold standard for final diagnosis of pulmonary nodules. Even though resection of pulmonary nodules is the ideal and most reliable way for diagnosis, there is still a lot of different methods often used just to eliminate the risks associated with the surgical procedure. Lung nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. A pulmonary nodule is the first indication to start diagnosing lung cancer. Lung nodules can be benign (normal subjects) or malignant (cancerous subjects). Large (generally defined as greater than 2 cm in diameter) malignant nodules can be easily detected with traditional CT scanning techniques. However, the diagnostic options for small indeterminate nodules are limited due to problems associated with accessing small tumors. Therefore, additional diagnostic and imaging techniques which depends on the nodules’ shape and appearance are needed. The ultimate goal of this dissertation is to develop a fast noninvasive diagnostic system that can enhance the accuracy measures of early lung cancer diagnosis based on the well-known hypotheses that malignant nodules have different shape and appearance than benign nodules, because of the high growth rate of the malignant nodules. The proposed methodologies introduces new shape and appearance features which can distinguish between benign and malignant nodules. To achieve this goal a CAD system is implemented and validated using different datasets. This CAD system uses two different types of features integrated together to be able to give a full description to the pulmonary nodule. These two types are appearance features and shape features. For the appearance features different texture appearance descriptors are developed, namely the 3D histogram of oriented gradient, 3D spherical sector isosurface histogram of oriented gradient, 3D adjusted local binary pattern, 3D resolved ambiguity local binary pattern, multi-view analytical local binary pattern, and Markov Gibbs random field. Each one of these descriptors gives a good description for the nodule texture and the level of its signal homogeneity which is a distinguishable feature between benign and malignant nodules. For the shape features multi-view peripheral sum curvature scale space, spherical harmonics expansions, and different group of fundamental geometric features are utilized to describe the nodule shape complexity. Finally, the fusion of different combinations of these features, which is based on two stages is introduced. The first stage generates a primary estimation for every descriptor. Followed by the second stage that consists of an autoencoder with a single layer augmented with a softmax classifier to provide us with the ultimate classification of the nodule. These different combinations of descriptors are combined into different frameworks that are evaluated using different datasets. The first dataset is the Lung Image Database Consortium which is a benchmark publicly available dataset for lung nodule detection and diagnosis. The second dataset is our local acquired computed tomography imaging data that has been collected from the University of Louisville hospital and the research protocol was approved by the Institutional Review Board at the University of Louisville (IRB number 10.0642). These frameworks accuracy was about 94%, which make the proposed frameworks demonstrate promise to be valuable tool for the detection of lung cancer

    A review and comparative study of cancer detection using machine learning : SBERT and SimCSE application

    Get PDF
    AVAILABILITY OF DATA AND MATERIALS : The data can be accessed at the host database (The European Genome-phenome Archive at the European Bioinformatics Institute, accession number: EGAD00001004582 Data access).BACKGROUND : Using visual, biological, and electronic health records data as the sole input source, pretrained convolutional neural networks and conventional machine learning methods have been heavily employed for the identification of various malignancies. Initially, a series of preprocessing steps and image segmentation steps are performed to extract region of interest features from noisy features. Then, the extracted features are applied to several machine learning and deep learning methods for the detection of cancer. METHODS : In this work, a review of all the methods that have been applied to develop machine learning algorithms that detect cancer is provided. With more than 100 types of cancer, this study only examines research on the four most common and prevalent cancers worldwide: lung, breast, prostate, and colorectal cancer. Next, by using state-of-the-art sentence transformers namely: SBERT (2019) and the unsupervised SimCSE (2021), this study proposes a new methodology for detecting cancer. This method requires raw DNA sequences of matched tumor/normal pair as the only input. The learnt DNA representations retrieved from SBERT and SimCSE will then be sent to machine learning algorithms (XGBoost, Random Forest, LightGBM, and CNNs) for classification. As far as we are aware, SBERT and SimCSE transformers have not been applied to represent DNA sequences in cancer detection settings. RESULTS : The XGBoost model, which had the highest overall accuracy of 73 ± 0.13 % using SBERT embeddings and 75 ± 0.12 % using SimCSE embeddings, was the best performing classifier. In light of these findings, it can be concluded that incorporating sentence representations from SimCSE’s sentence transformer only marginally improved the performance of machine learning models.The South African Medical Research Council (SAMRC) through its Division of Research Capacity Development under the Internship Scholarship Program from funding received from the South African National Treasury.https://bmcbioinformatics.biomedcentral.comam2024Computer ScienceSchool of Health Systems and Public Health (SHSPH)Non

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio
    corecore