20,493 research outputs found

    Why my photos look sideways or upside down? Detecting Canonical Orientation of Images using Convolutional Neural Networks

    Full text link
    Image orientation detection requires high-level scene understanding. Humans use object recognition and contextual scene information to correctly orient images. In literature, the problem of image orientation detection is mostly confronted by using low-level vision features, while some approaches incorporate few easily detectable semantic cues to gain minor improvements. The vast amount of semantic content in images makes orientation detection challenging, and therefore there is a large semantic gap between existing methods and human behavior. Also, existing methods in literature report highly discrepant detection rates, which is mainly due to large differences in datasets and limited variety of test images used for evaluation. In this work, for the first time, we leverage the power of deep learning and adapt pre-trained convolutional neural networks using largest training dataset to-date for the image orientation detection task. An extensive evaluation of our model on different public datasets shows that it remarkably generalizes to correctly orient a large set of unconstrained images; it also significantly outperforms the state-of-the-art and achieves accuracy very close to that of humans

    Why my photos look sideways or upside down? Detecting Canonical Orientation of Images using Convolutional Neural Networks

    Full text link
    Image orientation detection requires high-level scene understanding. Humans use object recognition and contextual scene information to correctly orient images. In literature, the problem of image orientation detection is mostly confronted by using low-level vision features, while some approaches incorporate few easily detectable semantic cues to gain minor improvements. The vast amount of semantic content in images makes orientation detection challenging, and therefore there is a large semantic gap between existing methods and human behavior. Also, existing methods in literature report highly discrepant detection rates, which is mainly due to large differences in datasets and limited variety of test images used for evaluation. In this work, for the first time, we leverage the power of deep learning and adapt pre-trained convolutional neural networks using largest training dataset to-date for the image orientation detection task. An extensive evaluation of our model on different public datasets shows that it remarkably generalizes to correctly orient a large set of unconstrained images; it also significantly outperforms the state-of-the-art and achieves accuracy very close to that of humans

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Geometric results on linear actions of reductive Lie groups for applications to homogeneous dynamics

    Full text link
    Several problems in number theory when reformulated in terms of homogenous dynamics involve study of limiting distributions of translates of algebraically defined measures on orbits of reductive groups. The general non-divergence and linearization techniques, in view of Ratner's measure classification for unipotent flows, reduce such problems to dynamical questions about linear actions of reductive groups on finite dimensional vectors spaces. This article provides general results which resolve these linear dynamical questions in terms of natural group theoretic or geometric conditions

    Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification

    Full text link
    This paper proposes a novel deep learning framework named bidirectional-convolutional long short term memory (Bi-CLSTM) network to automatically learn the spectral-spatial feature from hyperspectral images (HSIs). In the network, the issue of spectral feature extraction is considered as a sequence learning problem, and a recurrent connection operator across the spectral domain is used to address it. Meanwhile, inspired from the widely used convolutional neural network (CNN), a convolution operator across the spatial domain is incorporated into the network to extract the spatial feature. Besides, to sufficiently capture the spectral information, a bidirectional recurrent connection is proposed. In the classification phase, the learned features are concatenated into a vector and fed to a softmax classifier via a fully-connected operator. To validate the effectiveness of the proposed Bi-CLSTM framework, we compare it with several state-of-the-art methods, including the CNN framework, on three widely used HSIs. The obtained results show that Bi-CLSTM can improve the classification performance as compared to other methods
    • 

    corecore