5 research outputs found

    Evaluation of neural network pattern classifiers for a remote sensing application

    Full text link
    This paper evaluates the classification accuracy of three neural network classifiers on a satellite image-based pattern classification problem. The neural network classifiers used include two types of the Multi-Layer-Perceptron (MLP) and the Radial Basis Function Network. A normal (conventional) classifier is used as a benchmark to evaluate the performance of neural network classifiers. The satellite image consists of 2,460 pixels selected from a section (270 x 360) of a Landsat-5 TM scene from the city of Vienna and its northern surroundings. In addition to evaluation of classification accuracy, the neural classifiers are analysed for generalization capability and stability of results. Best overall results (in terms of accuracy and convergence time) are provided by the MLP-1 classifier with weight elimination. It has a small number of parameters and requires no problem-specific system of initial weight values. Its in-sample classification error is 7.87% and its out-of-sample classification error is 10.24% for the problem at hand. Four classes of simulations serve to illustrate the properties of the classifier in general and the stability of the result with respect to control parameters, and on the training time, the gradient descent control term, initial parameter conditions, and different training and testing setshttps://ssrn.com/abstract=1523788%20or%20http://dx.doi.org/10.2139/ssrn.1523788Published versio

    Evaluation of Neural Pattern Classifiers for a Remote Sensing Application

    Get PDF
    This paper evaluates the classification accuracy of three neural network classifiers on a satellite image-based pattern classification problem. The neural network classifiers used include two types of the Multi-Layer-Perceptron (MLP) and the Radial Basis Function Network. A normal (conventional) classifier is used as a benchmark to evaluate the performance of neural network classifiers. The satellite image consists of 2,460 pixels selected from a section (270 x 360) of a Landsat-5 TM scene from the city of Vienna and its northern surroundings. In addition to evaluation of classification accuracy, the neural classifiers are analysed for generalization capability and stability of results. Best overall results (in terms of accuracy and convergence time) are provided by the MLP-1 classifier with weight elimination. It has a small number of parameters and requires no problem-specific system of initial weight values. Its in-sample classification error is 7.87% and its out-of-sample classification error is 10.24% for the problem at hand. Four classes of simulations serve to illustrate the properties of the classifier in general and the stability of the result with respect to control parameters, and on the training time, the gradient descent control term, initial parameter conditions, and different training and testing sets. (authors' abstract)Series: Discussion Papers of the Institute for Economic Geography and GIScienc

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657

    Land/Water Interface Delineation Using Neural Networks.

    Get PDF
    The rapid decline in acreage of land areas in wetlands caused by frequent inundations and flooding has brought about an increased awareness and emphasis on the identification and inventory of land and water areas. This dissertation evaluates three classification methods--Normalized Difference Vegetation Index technique, Artificial Neural Networks, and Maximum-Likelihood classifier for the delineation of land/water interface conditions using Landsat-TM imagery. The effects of three scaling algorithms, including resampling by aggregation, Gaussian smoothing, and local variance analysis, on the classification accuracy are analyzed to determine how the delineation, quantification and analysis of land/water boundaries relate to problems of mixed pixels, scale and resolution. Bands 3, 4, and 5 of a Landsat TM image from Huntsville, Alabama were used as a multispectral data set, and ancillary data included USGS 7.5 minute Digital Line Graphs for classification accuracy assessment. The 30 m resolution multispectral imagery was used as baseline data and the images were degraded to a series of resolution levels and Gaussian smoothed through various scaling constants to simulate images of coarser resolution. Local variance was applied at each aggregation and scaling level to analyze the textural pattern. Classifications were then performed to delineate land/water interface conditions. To study effects of scale and resolution on the land/water boundaries delineated, overall percent classification accuracies, fractal analysis (area-perimeter relationships), and lacunarity analysis were applied to identify the range of spatial resolutions within which land/water boundaries were scale dependent. Results from maximum-likelihood classifier indicate that the method marginally produced higher overall accuracies than either NDVI or neural network methods. Effects from applying the three scaling algorithms indicate that overall classification accuracies decrease with coarser resolution, increase marginally with scaling constant, and vary non-linearly with local variance mask sizes. It was discovered that the application of Gaussian smoothing to neural network classifier produces very encouraging results in classifying the transition zone between land and water (mixed pixels) areas. Fractal analysis on the classified images indicates that coarser resolutions, higher scaling constants and higher degrees of complexity, wiggliness or contortion of the perimeter of water polygons span higher ranges of fractal dimension. As the water polygons become more complex, the perimeter becomes increasingly plane filling. From the changes in fractal dimension, lacunarity analysis and local variance analysis, it is observed that at 150 m, a peak value of measured index is obtained, before dropping off. This suggests that at 150 m, the aggregated water bodies shift to a different \u27characteristic\u27 scale and the water features formed are smooth, compact, have more regular boundaries and form connected regions. This scale dependence phenomenon can help to optimize efficient data resampling methodologies
    corecore