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Abstract

A forest site is an area of land considered to be representative of the topography, 

vegetation, soils and other biotic and abiotic features associated with tree growth. Forest 

site quality refers to the timber-growing capacity of a forest site for a given tree species 

over a period of time. It is traditionally measured by site index defined by the height-age 

relations of a specific tree species. In this study, the capability of satellite data for 

estimating forest site quality was investigated. The study was concerned with the 

methodology and precision of integrating satellite imagery from different growing seasons 

and remote sensors with ground-collected and computer-generated biogeographical data 

for a localised site and forest study. The study area, centred at 35° 15' S and 149°22' E, was 

located in the northeast corner of the Australian Capital Territory, covering an area of 

about 3000 hectare of radiata pine (Pinus radiata D. Don) plantation stands. The ancillary 

biogeographical variables were nine stand variables (stand age, top height, mean diameter, 

volume, basal area, density, canopy depth, understory coverage, and canopy cover), six 

site quality indices (site index, the mean annual increments in height, basal area, diameter, 

volume, and canopy depth), four topographic variables (elevation, aspect, slope, 

topographic positions), and two edaphic variables (soil depth of horizons A and B and 

gravel content). Satellite data comprised Landsat Thematic Mapper (TM) and SPOT 

images recorded in two growing seasons. Statistical tests, correlation, principal component 

analysis, canonical correlation analysis, regression modelling and classification techniques 

were used for data analysis.

The sensitivity and the relationships of satellite data to stand ages and growth processes 

were tested. An important implication is that the changes in spectral reflectance patterns 

were, in timing, close to the changes in stand growth processes. The age range found to be 

most spectrally sensitive and related to the variations of stands is between 5 to 25 years in 

the visible, middle-infrared (MIR) and thermal-infrared (TIR) bands. For the near-infrared 

(NIR) band, it can be extended to about 30 to 35 years.

The study examined the relationships between spectral data and stand variables. In general, 

except for the understory variable, all stand variables were statistically significantly 

correlated with spectral variables, but the degree of significance of correlation coefficients



was band dependent. NIR bands showed higher correlations with stand age, top height and 

canopy closure, while MIR bands were more highly correlated with basal area and volume 

than other bands. These correlations may be used to accurately estimate the mean or median 

of the given forest stand (type), but a high degree of predicability on small, site-specific 

areas probably can not be expected on a single pixel basis.

The relationships between spectral data and several site quality indices were tested. All site 

quality indices (except for the mean annual increment in volume) were found strongly 

correlated with the NIR bands. The best correlations were obtained from the mean annual 

increment in height and site index based on the “height-age” relationship. The mean 

annual increment in volume showed poor correlations with the NIR bands, but was 

significantly correlated with all other bands, the MIR bands in particular. The correlations 

were significantly improved with principal component transformation and/or band 

combinations (such as vegetation indices).

Various spectral bands and their combinations were regressed against site quality (site 

index and mean annual increment in height) to develop prediction models. All regression 

models derived were strongly significant (p < 0.001). Using the NIR bands alone, the 

simple linear regression models could explain about 65-70% of the total variances. The 

stepwise regression analysis showed that the best band combinations were the green and 

the NIR bands for SPOT data and the NIR and the two MIR bands for TM data (r2 = 0.78). 

With topographic variables (elevation, aspect, slope and topographic positions), the best 

model could explain about 89% of the total variance of site quality, an increase of about 

10% over the models without site variables. The estimated site quality showed an 

agreement of 89% (r2) with the observed site quality.

Several site quality class maps based on site index and mean annual increment in height 

were produced using the model-derived site quality values. The overall plot-based 

mapping accuracy for the four site quality classes considered was 68%. The study results 

suggest that the site quality for radiata pine plantations may be predicted with reasonable 

accuracy at compartment-based level. This can be done by means of geographic 

information systems using satellite and biogeographical data.
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Chapter 1

General Introduction

1.1 NEED TO ESTIMATE SITE QUALITY

Future forest growth depends on maintaining forest site productivity. There must be 

increasing intensity of forest management on the shrinking land base available for 

forestry. Together with effects of world-wide environmental pollution, this will alter the 

nature of the environments in which future forest crops are grown. More critically, 

demand for wood will continue to increase because of the shrinking land base, increasing 

world population and greater use of wood for energy and fuel. This is particularly true in 

most developing countries. Forest scientists and managers all over the world will face 

increasing difficulties in planning and managing forest resources for future use on 

decreasing and degrading forest land to meet the challenge of growing wood demand. To 

decide how best to balance the many demands on the resources for best utilisation for 

future generations, forest managers must know where the forest resources occur, and 

what the quantity and quality of forest sites and their productivity potential are. As the 

foundation of modern silviculture and management planning, accurate and rapid 

prediction and evaluation of the quantity and quality of forest sites and their productivity 

become more critical for economic planning and decision-making, since the quantity and 

quality of forest resources not only decide the forest products and economic 

development, but also affect the balance of environmental ecology.
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Reliable information about site quality is required principally for operational 

management, forest planning, silvicultural design, research and industry planning. It is a 

prerequisite for the most efficient utilisation of a forest site. There have been many cases 

where planted trees have failed due to lack of consideration of site quality. In Australia, 

for instance, introduced pine has failed on eucalypt forest sites with low phosphorus 

status soils (Florence 1981). Therefore, in countries where forestry is highly developed, 

modem silviculture is characterised by the strong emphasis placed on the site conditions. 

In Germany, for example, the forester speaks of the “Iron Law of the Site” (Wittich 

1960). This means that, notwithstanding the fact that improper measures can ruin the best 

forest sites, there are certain factors deriving from the very nature of the site that 

determine development of the forest and reactions to forestry treatments. As stated by 

Daniel et al (1979): “No silvicultural decision can be made without reference to site 

quality and other site conditions.” To most forest managers, an accurate and timely 

knowledge of the quality, value, or suitability of forest sites becomes essential for 

deciding their usage and management planning.

The wide recognition of importance of site assessment leads to intensive and extensive 

studies on forest sites. Various different methods and modelling techniques for site 

classification and evaluation have been developed according to particular geographic and 

economic conditions and the historical background in different countries (see Chapter 2). 

Many site factors and indicators have been suggested for use as measures of site quality 

(Jones 1969; Lewis et al. 1976; Hägglund 1981; and Clutter et al. 1983), but no 

consistently applicable index of quality has been standardised. Forest managers and 

researchers have generally used total (or dominant) height at a designated age (called site 

index) as a measure of forest site quality (or productivity). Such indices, however, are 

applicable only to single species for a limited geographical area. Most of the established 

methods for site information collection involve very time-consuming and very expensive 

direct field measurements of a large number of temporary or permanent sample plots and 

trees. To date, forest scientists have been seeking ways of accurately estimating site 

quality using modern technologies in site information collection and analysis. These 

include the applications of modern remote sensing, geographic information systems 

(GIS) and other computer-aided spatial analysis, mapping and modelling techniques (see 

Chapter 2).

Remote sensing techniques clearly offer an alternative for forest growth and productivity 

estimation and especially for up-dating purposes. This is because the spectral values of 

individual pixels of digital remotely-sensed imagery and the values of corresponding
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forest stand structure characteristics are often correlated clearly with each other. The 

usability and capability of remotely-sensed imagery increases with the increase of the 

correlation. In particular, remote sensing provides an opportunity to view, assess and 

estimate forest resources in inaccessible areas at any season of the year, and very 

valuable information can be acquired at low cost.

In spite of its great potential, satellite remote sensing has found few direct applications in 

forest management. In principle, remote sensing can be expected to offer information on 

tree species, size, productivity and yield, and their variations, within a forest stand. 

However, in addition to the difficulties of establishing robust predictive relationships for 

these factors, practical applications are severely limited by logistic constraints: the spatial 

and radiometric resolution and sensitivity of the imagery (relative to the scales of 

variation that are important); the frequency and timing of the measurements (relative to 

the time scale of growth); and the cost of the data (relative to the benefit to be gained 

from it). This is why forest managers have generally been reluctant users of satellite 

remote sensing to date, despite the fact that numerous demonstrations have shown the 

possibility of using satellite remotely-sensed data for forest management purposes. Due 

to uncertain and variable results from imagery data quality, species and stand conditions, 

they have a strong preference for gathering detailed information using statistical 

sampling methods and relying heavily on the measurement of individual trees within 

discrete forest stands. Moreover, forestry organisations usually employ experienced aerial 

photo-interpreters rather than digital satellite imagery interpreters. Any decision on the 

use of satellite remote sensing to replace or supplement aerial photography and field 

sampling is therefore subjected to rigorous comparison of cost advantages and precision 

of stand measurements. This suggests that there is a need for further study to determine 

the capability of remotely-sensed imagery to detect, either directly, or indirectly by 

calculation, subtle changes of forest structure and site quality and the information 

required for modem site quality assessment.

1.2 A BRIEF DISCUSSION ON SITE AND SITE QUALITY 
CONCEPTS

1.2.1 Introduction

The concepts of site, site quality and site classification have traditionally been central to 

forest management, but as forestry terms they can be ambiguous and confusing. In some 

respects they are discredited and archaic terms, and their continued use and abuse can be
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seen as a ‘hang-up’ of an inherently conservative profession. They are nonetheless 

entrenched terms, which are used with reservation, where necessary, in this work but 

alternative terminology is also introduced. This section aims to review the concepts of 

site and site quality found in the literature. Some synonyms for these concepts are also 

introduced.

1.2.2 Site

In the Shorter Oxford English Dictionary (Williams et al. 1964), the word site is defined 

as “the place or position occupied by some specific thing.” This definition is not very 

meaningful in forestry. The earliest concept of forest site might be that of locality, i.e. a 

different locality indicates a different site quality (see below), which was later shortened 

to site (Fernow 1905). In Forest Terminology (SAF 1960), the term locality was seen as 

the synonym of site. According to Jiang (1990), as early as the latter part of last century, 

site had been used as a formal forestry term in German by Ramann (1893) in his book 

Forstliche Bodenkunde und Standortslehre (Forest Soil Science and Site Theory). For 

about a century, there have been various interpretations of the concept of site, 

consequently, many different definitions. In forestry, site is used to represent the sum 

total of environmental effects upon the quantity of wood grown by forest trees on any 

particular area (Minor 1954). The first official definition was given by the Society of 

American Foresters (SAF) in 1919: “an area considered as to its physical factors with 

reference to forest producing power; the combination of climatic and soil conditions of 

an area” (Frothingham 1921). Similar definitions were given later by many researchers 

(e.g Chapman et al. 1921; SAF 1960; and Davis 1966). In 1971, SAF redefined site as 

“an area considered in terms of its environment, particularly as this determines the type 

and quality of vegetation the area can carry.” (SAF 1971). In Australia, Speight and 

McDonald (1984) also defined site as “a small area of land considered to be 

representative of the landform, vegetation, land surface and other land features associated 

with the soil classification.” In Canada, it was defined as “an area homogeneous in all 

environmental conditions significant for the development of forest communities” (Green 

et al. 1984). This definition put emphasis on the climatic, physiographic and edaphic 

properties used for site diagnosis purposes. In Finland, Cajander (1926 and 1949), the 

founder of forest typology, suggested that site type (also called forest type) could be 

defined by composition of the undergrowth and used to indicate environment and its 

potential for growth of canopy trees. In these definitions, the term site is used in a dual
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sense. The SAF’s definition shows first that the term site carries a connotation of 

geographic and spatial location and second that the meaning of the word involves the 

totality of environmental conditions (i.e. biotic, edaphic, and climatic) existing at a 

particular location. This distinction may seem overly academic since a location cannot 

exist without an associated environment, and no environment can exist without being 

located at some particular place.

However, the site can also be understood in a wider sense, as the complex of the 

environment in which a given vegetal community lives and grows and of the plant 

community itself. Site embraces the atmosphere, soil and the underlying geology, the 

hydrology, and the plants on, above and below a particular place. In ecology, the term 

has two meanings: (i) an area described or defined by its biotic, climatic, and soil 

conditions as related to its capacity to produce vegetation; (ii) an area sufficiently 

uniform in biotic, climatic, and soil conditions to produce a particular climax vegetation. 

In much of the plant ecology literature and, to some extent, in that of forestry, the term 

site has been used as a synonym of ecosystem (or ecotope), biogenoconis, and total site, 

referring only to the physiographic or land features (Hills and Pierpoint 1960, and Burger 

1976). Tansley (1935), the founder of ecosystem theory, considered the site of a plant or 

of a vegetal community to be “the sum of the effective conditions under which the plant 

or plant community lives’’ (Phillipis 1960). This definition has been seen as the simplest 

and clearest of all and has been widely accepted. The SAF also interpreted site as 

synonymous with ecosystem. After Tansley put forward the concept of ecosystem, many 

site specialists considered site as ecosystem or elementary ecological unit, an ecotope 

(Rowe 1953; Philippis 1960). In North America, ecosystem principles were introduced 

into forest site classification and evaluation by Hills (1952b; 1953; and 1959), and Hill 

and Pierpoint (1960). The concept of total site and/or forest productivity system was 

developed and later simply called forest productivity or total site (Hills and Pierpoint 

1960; Hills 1961). Gessel (1967) also called forest productivity site or yield.

From the literature, many concepts of forest site have been developed for the purpose of 

describing the relationships between forests and their environmental conditions. The 

concepts similar to forest site include site type and/or forest type (Frothingham 1914; 

Cajander 1926; Forristall and Gessel 1955; Ray 1956), locality (Fernow 1905), total site 

(Hills 1952a; Rowe 1953), habitat or habitat type (Yapp 1922; Daubermire 1952; Hanley 

1976; Pfister 1976; Pfister and Arno 1980; Spurr and Barnes 1980; Verbyla and Fisher 

1989), ecosystem (Klinka et al. 1980; Bailey 1981; Daubenmire 1984; Barnes et al. 1982; 

Barnes 1984; and Pfister 1984), elementary ecological unit or ecotope (Philippis 1960),
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land type (Hills 1961), biogeocenosis (Suchachev 1960; Suchachev and Dylis 1964; and 

Burger 1976), land unit (LU) (Beek and Laban 1981) and land utilisation type (LUT) 

(Beek 1972; and Andel et al. 1981; and Gelens 1984). To a great extent, these 

definitions seem to share the same ideas, but with different emphasis on particular site 

attributes and/or combinations of site attributes in different physiographical backgrounds. 

From the viewpoint of forest management, the site concept tends to be relatively 

‘simple’, while from the viewpoint of ecology it tends to be complex and may not be 

very applicable to everyday practical work. Attempts have been made to find a simple 

and accurate unit of measurement to define site, but there has been no agreement on 

which are the most significant and most reliable factors. Most of the current site 

classification systems and evaluation standards are based on climate, soil, ground 

vegetation, forest stands, or multi-factors with one of them as a major feature. In the 

minds of most foresters, a forest site is every part of the forest environment that is 

relatively uniform in physiography and soil, and has the same biotic potential, usually 

expressed by a specific pattern of indicator plant species. Within a given regional 

climate, sites are recognised on the basis of significant differences in topography (slope 

position, gradient and aspect), soil parent materials, and/or morphological properties of 

the soil (e.g. the kind and arrangement of organic and mineral soil horizons, their colour, 

texture, structure, consistency, thickness, and coarse fragment content).

1.2.3 Site Quality

In forestry, the productivity of a forest site is largely defined in terms of site quality, 

which is measured by the maximum timber crop the site can produce in a given time. 

Code (1952) defined site quality as the productive capacity (or actual production) of an 

area of land for a tree species or mixture of species. Clutter et al (1983) also defined site 

quality as “the timber productivity potential of a site for a particular species or forest 

type.” The words good and poor are frequently-used modifiers of site quality and simply 

imply a high productive potential as opposed to a low potential. Daniel et al. (1979) 

defined site quality in a more comprehensive way: “Site quality is the sum of many 

environmental factors: soil depth, soil texture, profile characteristics, mineral 

composition, steepness of slope, aspect, microclimate, species, and others. These factors, 

in turn, are functions of geologic history, physiography, macroclimate, and successional 

development.”

Since site quality is measured by the maximum timber yield produced within a given 

period, it can vary with the tree species and time element chosen. Although the site is
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relatively constant, in the short term, regardless of species selection, site quality has 

meaning only with respect to the one or more species selected for a given location. 

Therefore, site quality remains a relative concept, and cannot be defined in an absolute 

sense, as a particular area may be a good site for one species and a bad site for another 

(Meyer 1953). For instance, a given site might have an excellent site quality for radiata 

pine but a very poor site quality for white ash.

Site quality is, in a general sense, a use-oriented concept, mainly for the purpose of site 

classification, evaluation and site management (silviculture), and with economic yield 

emphasised. Therefore, many concepts involved in economic yield have been developed 

to define site quality, such as site productivity (Smithers 1959; Ralston 1964; and Spurr 

and Bumes 1980), site class (Suchachev 1960), land quality (McCormack 1967; Löffler 

1981; Lundgren 1981; Nelson 1981; and Gelens 1984), land suitability (FAO 1984; 

Lewis et al. 1976; Nelson 1981; and Plochmann 1981), and land (site) capability 

(McCormack 1967; Gunn et al. 1969a; Lacate and Romaine 1978), and soil fertility or 

soil productivity (Baker 1982). The development of forest site studies will be discussed in 

more detail in the next chapter.

1.2.4 Summary

Logically, site quality concepts can be grouped as class concepts, relational concepts, or 

quantitative concepts. The class concept enables certain groupings to be made, for 

instance, forest site - non-forest site; good-medium-poor site. The relational concept 

allows comparisons rating from “different” to “better than.” The quantitative treatment of 

forest site quality calls for numerical modelling.

As noted above, the site concept is designated by the term ‘site’. By itself, it is 

ambiguous. Attempts to reduce ambiguity have involved addition of words to the term, 

such as site quality and site productivity. Quality seems in general less useful than 

productivity as the former usually connotes some sort of nonmetric measure of forest 

producing power. Productivity connotes both the relation between sites and forest 

vegetation on them or ecosystems and metric measurement. However, site quality is a 

widely-accepted concept in forestry, while productivity is usually used in ecology by 

ecologists. For this reason, site quality will be used to designate the concept of the forest- 

producing-power of a site in this thesis.



8

1.3 POSSIBILITY OF ESTIMATING STAND VARIABLES AND 
SITE QUALITY USING REMOTE SENSING: RESEARCH 
HYPOTHESIS

The success of monitoring and estimating forest resources by remote sensing depends on 

its capability to determine forest tree species, growth rate, size, and various stand 

variations from canopy reflectance measurements. In other words, it depends on the 

capability of remotely-sensed data to detect the subtle variations existing in forest stand 

growth processes. Current satellite remote sensing technology can be used for a number 

of ecologically meaningful analyses at various scales. In forestry applications, satellite 

remotely-sensed data have demonstrated some sensitivity to the canopy and stand 

structure parameters. For detecting changes in forest canopy, many investigations have 

been undertaken to relate spectral reflectance values in the different spectral regions 

(bands) to canopy closure (Butera 1986; Peterson et al. 1986; and Sader 1987), leaf area 

index1 (LAI) (Curran and Milton 1983; Curran and Williamson 1987; Spanner et al. 

1990), and biomass (Franklin 1986; Hardisky et al. 1984; Sader et al. 1989; Lee and 

Hoffer 1990; Hope et al. 1993). Spectral data have also been used by many researchers to 

detect variations in forest dendrometric variables, including basal area (Brockhaus and 

Khorram 1992), stand age (Danson 1987; Turner et al. 1987), volume (Jaakkola and 

Saukkola 1978 and 1979; Kazmieczak 1991; and Ardö 1991 and 1992), density of trees 

(Franklin 1986; Strahler et al. 1988; Woodcock et al. 1990; Cohen and Spies 1992; 

Joffre and Lacaze 1993), and diameter and height (Danson 1987). With repetitive 

acquisition of imagery, studies have shown that seasonal and/or inter-annual changes of 

vegetation can be detected and predicted using multi-temporal satellite data (Choudhury 

and Tucker 1987; Running and Nemani 1988; Spanner et al. 1990; Curran et al. 1992; ). 

There has been limited success in the detection of variation in site, such as site 

classification (Fox et al. 1985; Lov6n 1986; Walsh 1987; Pu and Miller 1991; Poso et al. 

1987; Tompro 1992), mapping (Getter and Tom 1977; Tom and Miller 1978 and 1980; 

and Häme 1984), and forest ecosystem productivity estimates (Cook et al. 1989; Vanclay 

and Preston 1990). Studies have also shown that the variation of spectral reflectance can 

be seen as a function of chemical constituents such as chlorophyll a and b (Khorram et al. 

1987; Wessman et al. 1988; Wessman 1990; Curran et al. 1991; Ritchie et al. 1990; 

Chappelle et al. 1992; Myneni et al. 1992; Olioso et al. 1992).

The applications mentioned above have shown the possibility of measuring and 

estimating forest stands and their site quality from satellite remotely-sensed imagery.

* LAI — total area of leaves per unit area of ground.
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However, accurate classification, assessment and estimation of forest site quality in a 

local area has been hindered by the considerable species and site variability and relatively 

coarse spatial, spectral, and radiometric resolution. Furthermore, the results reported are 

inconsistent and are generally data dependent. In some cases the near-infrared (NIR) 

band was found to be most important (Franklin 1986; Danson 1987), while in others the 

middle infrared (MIR) (Band 5 and 7) or thermal infrared (TIR) (Band 6) were reported 

to be best correlated with stand variables (Butera 1986; Peng 1987; and Brockhaus and 

Khorram 1992) (see Chapter 2 for details).

Applications of environmental remote sensing are generally based upon an implicit 

assumption that the spectral information from remote sensors can detect the variations of 

different objects of interest due to differences of optical properties (emittance, reflectance 

and absorption). These variations have usually been attributed to the internal changes of 

research targets over time, space, and spectrum (see Section 2.4.4). Studies have 

demonstrated that high resolution (including temporal, spatial, spectral, and radiometric 

resolutions) imagery has high internal variability within relatively homogenous land- 

cover types (Maxwell 1976; and Cushnie 1987). This high internal variability led to the 

development of the following research hypotheses:

• Internal variability in a remotely sensed image of a forest will be due to variation 

in stand structural properties;

• Remotely sensed imagery of high resolution (such as SPOT, TM, and lower 

altitude air-borne imagery) can detect subtle changes due to forest stand growth 

and site quality levels;

• Changes in the behaviour of spectral reflectance over time are related to the 

growth changes in stands, and therefore the height-age relation used for site 

evaluation can be paralleled by a reflectance-age relation;

• Stand variables and site quality can be seen as the functions of band spectral 

reflectances or band combinations as well as other site and stand variables, and by 

using these functional relationships, a model can be developed to predict the 

desired information on the basis of the satellite data.

• The accuracy and precision of estimation of site quality estimation can be 

improved by integrating remotely sensed imagery with ground ancillary data.
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• Based on the above hypothesis, direct modelling and prediction of the growth of 

stands and site productivity are possible using remotely sensed data and ancillary 

data;

• Site quality can be classified and mapped using remotely sensed imagery and 

ancillary data.

1.4 OBJECTIVES OF STUDY

The major objective of this study was to determine whether remotely-sensed imagery, 

either directly, or indirectly by modelling, can give meaningful site quality information, 

and to develop ways of using satellite remotely-sensed imagery and ancillary data to 

estimate forest growth and site quality at a local scale. The ancillary data used must be 

ecologically meaningful and able to be generated by computers, and used directly for the 

purposes of forest management in a GIS. More specific objectives included:

• testing the relationships between stand variables and spectral reflectance;

• determining the capability of remotely sensed imagery to detect variations in 

coniferous forest stands;

• testing the sensitivity and separability of remotely-sensed imagery to the 

characteristics of forest stands at different age levels and different site quality 

levels;

• determining the optimal combination of site and spectral variables for 

estimating forest stand variables and site quality.

• Comparing the differences between TM and SPOT data for predicting forest 

site quality;

• comparing the differences of spectral data acquired from different growing 

seasons.

1.5 THESIS OUTLINE

This chapter has outlined the need for and possibility of estimating forest growth and site 

quality. It has also reviewed the conceptual development of site and site quality. 

Questions concerning the research assumptions and objectives were also raised in this 

chapter.
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Chapter 2 is a review of the literature relating to forest site quality evaluation, remote 

sensing and its applications to forestry. The Chapter first reviews the historical 

development of the technologies of forest site quality evaluation and classifications and 

the principal approaches of site quality evaluation. It then reviews the applications of 

remote sensing technologies in forestry by giving an overview of the development of 

forestry remote sensing and a discussion of the spectral characteristics of forest canopies. 

The focus is on the following uses of satellite imagery: (1) mapping of forest (site) types; 

(2) forest inventories; (3) evaluation of stand variables; (4) assessment of forest (or site) 

productivity; and (5) detection of forest changes.

The physical and silvicultural characteristics of the study area are described in detail in 

Chapter 3. Chapter 4 presents the methods and procedures used for digitising and 

generating the digital ground truth data and the digital terrain model (DTM). The 

procedures for field sampling and measurement of stand and site variables are also 

described in Chapter 4 which also presents the image pre-processing procedures and the 

compilation of stand and site quality measures at each of the sampling points.

Chapter 5 investigates the relationships between stand age and satellite data. The main 

objective was to evaluate the sensitivity of spectral values to the plantation stands at 

different age levels. The study was conducted using correlation, principal component, 

regression and classification techniques.

Chapter 6 focuses on the relationships between stand variables and spectral data. The 

capability of the spectral data to estimate stand variables is evaluated by calculating the 

correlation coefficients between stand variables and raw band data and their various 

combinations. Correlation, principal component, and canonical correlation analysis 

techniques are used to determine the information content of each spectral band and 

optimal spectral bands and stand variables.

In Chapter 7 the relationships between site quality expressed as site index and/or mean 

annual increment and spectral band data and their various combinations and 

transformations are investigated. The aim was to develop models to estimate site quality 

with satellite and biogeographical data. The study was undertaken by using regression 

modelling techniques, including single, multiple and stepwise regression analysis.

Chapter 8 gives a summary of the methodology and procedures developed as well as 

conclusions on the results obtained. It also offers suggestions for future directions in 

localised forest site studies using satellite data.



Chapter 2

Literature Review on Evaluation of Forest Site 
Quality and Applications of Remote Sensing

2.1 INTRODUCTION

Observation and study of forests and their sites has a very long history. Particularly since 

early this century, with the development of forest ecology and soil science and other 

relevant disciplines, research into forest-site relationships has been receiving considerable 

attention from scientists working in a variety of disciplines. Numerous studies on specific 

aspects of site factors in relation to forest yields have been reported, utilising various 

methods, approaches and modelling techniques of forest-site relationships. These methods 

have been applied in site evaluation and classification for forest silvicultural management 

and planning. Since the 1950s, discussions and/or reviews on the topics of “site 

evaluation” and/or “site classification” have been published regularly, including those of 

Code (1952 and 1960), Heiberg (1956), Gaertner (1964), Ralston (1964), Page (1970), 

Carmean (1975), Daniel et al. (1979), Daubenmire (1976), Damman (1979), Spurr and 

Barnes (1980), Bailey (1981), Zonneveld (1981), Hägglund (1981), Barnes et al. T982), 

Kilian (1984), Lavery (1986), Grey (1989b), and Meads and Roberts (1992).

With the advent of computers and the space age, the techniques of computer-aided spatial 

data analysis, modelling, data capture and satellite-based information collection have been 

introduced into forest studies, causing a revolution in forest site classification and 

evaluation. In particular, since the launching of the first earth-observing civilian Landsat
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satellite in 1972, satellite remote sensing has been used for gathering synoptic information 

on forests. In the early years, satellite remotely-sensed imagery was used mostly by 

geographers to create maps of forests or forest types. These early efforts almost entirely 

depended upon satellite-collected digital spectral data with no integration of ground-based 

information such as topography. With the improvements in remote sensing technologies 

(e.g. spatial, spectral, radiometric and temporal resolution) and data analysis techniques, 

the use of satellite imagery has evolved from merely detecting forest phenomena to 

identifying and monitoring forest resources and currently to estimating and predicting 

forest ecosystem parameters. Accuracy and precision have also improved with the 

development of new data analysis techniques and through the integration of ancillary 

ground data sources.

In this chapter the development of site quality evaluation and the applications of remote 

sensing technology in forestry are reviewed. The discussion is organised in two major 

parts. The first part (Section 2.2 and 2.3) overviews the historical development of site 

evaluation with regard to the applications of major site quality evaluation techniques and 

approaches rather than the evaluation of them. The second part (Sections 2.4 and 2.5) 

reviews the development and applications of remote sensing to forestry, with an emphasis 

on the application aspects of digital remote sensing data in forest inventory. A brief 

discussion on the spectral properties of forest canopy is given in order to understand the 

reflectance mechanism of forest vegetation.

2.2 HISTORICAL DEVELOPMENT OF FOREST SITE QUALITY 
EVALUATION

2.2.1 Unwritten Records

Since time immemorial, people’s daily needs for forests have stimulated interest in the 

understanding and observation of the relationships between forests and their 

environmental conditions. In primitive societies individuals, to survive, needed to have 

definite knowledge of their environments, i.e. “the force of nature and of plants and 

animals around him” (Odum 1959). The earliest observations of the relationships between 

site and forest vegetation were made by the primitive forest dwellers. For many centuries 

American Indians and Mongolian tribes in Eurasia have had a remarkably clear concept 

of the adaptation and productivity of various soil types (Wilde 1958). The dependence of 

these people upon woodland crops led to an intimate understanding of the factors 

affecting the distribution of a variety of forest vegetation types and the quality of the
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wood. These understandings of forest-site relationships were recorded in a variety of 

forms such as symbols or stories, transmitted from generation to generation, and finally 

the results were accumulated as a multitude of collective experiences.

According to Wilde (1958), ancient American Indians could recognise certain types of 

soils as substrates of their medicinal plants and searched for different plants in different 

forest environments. In Southern China, ancient Chinese knew how to plant different 

trees in different site conditions. For example, they put the Chinese fir (Cunninghamia 

lanceolata) seeds on the mountains and pine seeds on the hilltops. As the local people 

said “hat (pine trees) on uphills and skirt (firs or deciduous) on downhills.” or “Chinese 

fir not cross half way up the hills”. This common knowledge has been transmitted for 

thousands of years and still can be heard nowadays in the Chinese fir productive regions.

Kalevala, the national epic of the Finns, has been seen as the oldest unwritten testament to 

the profound insight of the people of the wilderness. This document was transmitted by 

wandering bards and storytellers for nearly three thousand years, until it was recorded by 

philologists in the nineteenth century in a volume of many hundred pages. In one part of 

the Kalevala, there is a description of the hero, Pellerwoinen, broadcasting seed of forest 

trees on different sites. As was described by Wilde (1958): “In the words of a modern 

ecologist, they spread the spruce seed on the mountains and the pine on the hilltops; in the 

swamps he sows the birches, on the quaking marshes alder, and the basswood in the 

valleys; in the moist earth sows the willows, mountain ash in virgin places, on the banks 

of streams the hawthorn, junipers on knolls and highlands. ...” This implied a notion of 

“the right tree in right place” (Minckler 1941), as we call forest site quality today.

2.2.2 Early Documents

The classification of lands into more fertile and less fertile is as old as agriculture itself 

and antedates all written history (Roth 1916). There are many descriptions of forests and 

their growth environments left by philosophers of earlier civilisation. <i$&y(Book of 

Songs), the earliest collection of poems and songs in China’s history (between 2100 - 

1600 BC), described the differences of tree growth at different locations, such as 

“mulbery grows on hills and poplar trees on low and wet places” (Tang 1990).

-y(Guanzi) and > (Zhou Li) (800—300 BC) gave systematical descriptions of 

the relationships between tree growth and environment and these two books have been 

used as a guide to tree planting and crop cultivation in practice. Theophrastus (370 BC — 

285 BC), a student of the famous philosophers Aristotle and Plato, described in his nine 

books of the Enquiry into Plants the relationships between plants and environments
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(Oschman 1961). He described the differences between the plant world of the 

Mediterranean area, the semi-deserts of Libya, the south asiatic tropics of India, the 

pontic forests, steppes, and mangroves of the Persian Gulf, and the floodplain vegetation 

of the Nile (Bakuzis 1974). In The History of Plants, Theophrastus repeatedly attempted 

to classify a variety of natural phenomena and to explain the typical differences among 

plant species. This might be the earliest instance of using plants to indicate site type and 

quality. The modem division of plants into trees, bushes, shrubs, and herbs is attributable 

to Theophrastus (Makkonen 1968).-

According to Bukazis (1974), Theophrastus definitely forecast the natural associations of 

plants in particular places. He discussed the influence of habitat on tree growth, for 

instance, by remarking that the forest grows better on northern slopes than on southern 

slopes, by writing of trees that grow on exposed, sunny slopes, of those that flourish only 

on northern exposures, and also of those limited to the more frigid summits. It could be 

the first purposeful attempt in human history to describe the differences between plants on 

different sites. Theophrastus is therefore regarded as a forest ecologist in history (Allee et 

ai 1949).

Marcus Portius Cato (234 - 139 BC) has been seen as the first to write on site fertility 

classification (Heisdijk 1975). He described, in the book De re rustica (On Agriculture), 

nine classes of soil according to the vegetation, beginning with vine-yard land and ending 

with vineyard forest land (a mixture of vineyard and forest serving both wine and timber 

production) and pasture-forest land (Makkonen 1968). It is the first known classification 

of fertility of the ground encountered in the literature. Cato’s methods of land 

classification and evaluation influenced many successive generations.

Temtius Varro (116-27 BC) further developed Cato’s land classification evaluation and 

first suggested a landuse terminology. For example, he implemented the “tripart 

classification” of varying characteristics, i.e. “a classification which could be most 

appropriately described by the words much, average, and little.” He also suggested that 

ground can be divided into three classes: especially stony, average stony and virtually free 

of stones (Makkonen 1968). Even today this land evaluation is still serviceable in many 

cases.

Lucretius (96 - 55 BC) in his volume, On the Nature of Things, reasoned the process of 

plant succession and the victory of forest vegetation over its eternal adversary-grass 

(Taylor 1972). The influence of soil and climate on the distribution of woody plants was 

outlined by Vigil in his ‘Georgies’, written during the first century B. C.: “Nor indeed can
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all soils bear things. By riversides willows grow, and alders in thick swamps, barren 

mountain-ashes on rocky hills; on the seashore myrtle thickets flourish best; and the god 

of the vine loves open slopes as yew trees do the freezing north ... So diverse are the 

native lands of trees.”

It should be mentioned that many ancient writers describe the relationships between forest 

and environment. For example, Pliny (23 - 79 A. D.), in his “Natural History”, described 

ecosystem classification of vegetation (Alee et al. 1949). He also associated soils which 

supported elder, wild plum, thimbleberry, and oak with good wheat land (Kelley 1922; 

and Sampson 1939). Lucius Iunius Moderatus (first century A. D.) divided the terrain into 

three groups: the plain, hilly terrain, and mountainous terrain; he said that to each group 

belong six possibilities of ground quality, namely, rich or lean, porous or compact, damp 

or dry. He observed also that different combinations of these cause exceedingly great 

variation in the quality of the ground (Makkonen 1968). Boethius in about 500 AD 

intuitively foretold the importance of soil nutrients in the growth of trees (Wilde 1958).

After the fall of the Roman Empire, for more than a thousand years there were few signs 

of the contemplation of the nature of the universe. Even in the course of the seventeenth 

and eighteenth centuries only a few works were published on the subject of forest lands 

and forestry. As described by some researchers (Allee et al. 1949; Wilde 1958; and 

Bakuzis 1974) the studies of “the plant-environment relation had to wait for the 
development of other foundation sciences such as geography, geology, climatology, etc”.

2.2.3 Pioneer Studies

After the 17th and 18th century AD it became necessary in Europe to supplement the 

dwindling supply of timber from natural stands by the establishment of plantations. On 

the one hand, recognition of the obvious variation in wood productivity and quality 

associated with habitat variances made it imperative to strive for means of evaluating the 

potential of the environment as a guide in locating such plantations (Daubermire 1976). 

On the other hand, the advances in other disciplines (such as geology, soil science, plant 

physiology, biology, etc.) made it possible to evaluate forest site productivity 

systematically and scientifically.

Carl Von Linn6 (1707-1778) pointed out that floristic differences between sites depended 

upon elevation, climate, and soil (Bakuzis 1974). In his “Flora Lapponica”, Linnaeus 

(1737) commented on the dependence of vegetation upon habitat factors—climate, soil, 

and elevation (Udvandy 1969). In Russia, Nartov (1765) divided all types of habitat 

according to topography and soil-and-ground conditions in Russia, and distinguished
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three groups: dry terrain, bogged terrain, and marshland (cited in Renezov and 

Pogrebnyak 1965). At first, wholly subjective appraisals were based on the appearance of 

the trees, as illustrated by G. L. Hartig’s site quality classification of 1795 (Cajander 

1949; and Udvandy 1969).

Modem purposeful and systematic observations of forest sites and their productivity 

began in the late eighteenth and early 19th centuries, particularly in relation to the forest 

management practices developing at that time in Europe. Especially after the 18th 

century, site productivity evaluation from tree appearance and/or location began to be 

replaced by the practice of measuring trees and other site factors and arranging the data in 

tables or graphs showing the range in average tree height or volume at different times in 

the life history of the stands (Daubermire 1976). The first growth curves (tree height and 

volume over age) for individual trees were developed by Spaeth in 1797 and Seutter in 

1799 (Spurr 1952). According to Cajander (1926) and Spurr (1952), Huber first used site 

index in Germany as early as 1824. At the same time, he and Hundeshagen introduced the 
concept of normal yield tables. Many German and other central-European yield tables are 

based on site index curves in which cubic volume per hectare is plotted over age. German 

foresters also developed three methods of preparing site index charts: (1) index method, 

(2) strip method, and (3) directing-curve method. These methods were discussed in 

English by Spurr (1952), Jones (1969) and Hägglund (1981). The use of site index spread 

to Scandinavia and the United States early this century (Jones 1969). The height-age 

relationship and the concept of site index were discussed in a series of articles in the 

United States (Roth 1916 and 1918; Spring 1917; Watson 1917; and especially 

Frothingham 1918), and compared with the volume-age relationship, vegetation types, 

and site factors as possible alternative indices (Frothingham 1918 and 1921).

In 1840, the principles of soil science and ecology were introduced into silviculture by 

Grebe, a German forester. In his doctoral thesis “On Conditions Essential for Sound 

Growth of Our Trees,” by stressing “The iron law of the locality”, Grebe emphasised the 

importance of site factors including topography, geology, type of soil, and climate in 

forest management practice. This idea of site quality has been widely accepted all over 

the world and has been used for classification and evaluation of forest site quality till 

today. Grebe’s work is therefore considered to be a cornerstone of forest soil science 

(Daubermire 1976) and soil-based site studies have been one of the main directions in site 

quality evaluation since his time, as was summarised by Wittich (1960).
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In 1860, Pfeil, a German authority on forest management, published a book with an 

extensive chapter entitled “Science of Forest Habitat.” This work was widely introduced 

into silviculture and strongly affected a number of text books on silviculture, particularly 

the “Diagnosis of Forest Stands” by Gayer (1876) (cited in Wilde 1946 and 1958). In 

about 1860, Cooper (1859) and Hilgard (1860) began ecological site study in America 

(cited in Wilde 1958). Their work may be considered as the basis of later ecological forest 

(site) classification (total site), and Cooper and Hilgard are therefore seen as the 

forerunners of the ecological school.

Since the seventeenth century, European foresters have gauged the quality of the site for 

the production of forest crops from plant forms. For example, Oxalis in Prussia had been 

looked upon for generations as an indicator of site quality (cited in Korstian 1917). 

According to Korstian (1917), Heyer in his Bodenkunde, published in 1856, emphasised 

the significance of indigenous plants as indicators of site quality. Ramann of Germany, in 

1893, in his book ‘Bodenkunde’ also devoted a number of pages to Bodenbestimmende 

Pflanzen, which may be liberally translated as “ soil-determining plants or indicators” 

(see Korstian 1917). The notion of indicator plants was developed later into the plant 

indicator approach to classifying and evaluating site quality (Sampson 1939). Rowe 

(1956) outlined a specific methodology for using groups of undergrowth species as 

indicators of moistness of site in the southern boreal forest of Manitoba and 

Saskatchewan. The indicator plant approach was stressed and used until recently for site 

assessment (Gagnon and MacArthur 1959; Daubermire 1966; Hodgkins 1968; Damman 

1979; Randuska 1982; and Ferguson et al. 1989).

Considering the influences of treatment and density of stand on volume and the 

difficulties encountered in evaluating site, Schwappach (1908) first suggested using stand 

height to measure site quality (cited in Roth 1916). He recommended that “the starting 

point is the study and determination of height curves of the main stand; the height is the 

factor least affected by treatment.” Using the height-age relationship, he replaced the site 

classes by volume by height-age classes. The methods and principles of the height-age 

relation were discussed in the early review by Watson (1917) and Frothingham (1918). It 

was developed later into site index approach.

According to Spurr and Barnes (1980), the multifactor site assessment approach evolved 

from the pioneering work of another German scientist, G. A. Krauss who, beginning in 

about 1926 in Tharandt, initiated a team approach to study complex site relationships. The 

method consists of a synthesis of important site factors at regional and local ecosystem
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levels. The site classification system developed in the Bäden-Württemberg region of 

Germany combines site classification, productivity evaluation and site mapping and it has 

been used widely in guiding silvicultural activities. The method, later called the Baden- 

Württemberg model (Spurr and Barnes 1980), became the main example of site 

classification and evaluation for many countries, Canada and United States in particular. 

Indeed, the ecosystem approach used in Northern America is a further development of the 

Bäden-Württemberg model.

Since early this century, site research has been widely and intensively carried out in 

Russia, Finland, Germany, United States, and Canada, with many methods of site 

evaluation and many classification systems being proposed. Because of the varied 

possibilities for classifying sites, many schools have developed, each distinctive in its 

response to the site factors of different areas but interrelated through the sharing of ideas. 

These schools which have significantly influenced site quality evaluation are: the Finland 

school by Cajander (1909; 1926; and 1949), Cajander and Uvessalo (1921), the Russian 

school by Morozov (1904) and later by Suchechev (1928 and 1944) (cited in Frey 1980), 

and the ecosystematical school by Tansley (1935). For example, the theory of forest (site) 

types created by Morozov (1904) and Suchachev (1913) of Russia and Cajander and 

Ilvessalo (1906-1909) of Finland was established during this period (cited in Frey 1980). 

According to Morosov, at a regional level plant productivity largely depends on climatic 

conditions, but at a local level mainly on soil conditions. On this basis Morosov proposed 

the principle of dividing Russian forests into silvicultural zones and subzones, domains 

and sub domains based on site differences (Kdesinkov 1960).

In Finland, Cajander (1926) proposed that identification of a site might also be based on 

understory species. He stressed the importance of geographic distribution (i.e. locality) 

and stand structure, especially the significance of undergrowth plants in indicating site 

quality, while Morozov paid more attention to soils and climate. Therefore he defined site 

type as stands with similar site quality and similar understory composition. This marks 

the foundation of forest (site) typology, and both Cajander and Morosov are seen as the 

founders.

After Tansley (1935) suggested his ecosystem theory, the ecosystem concept was widely 

accepted. A multi-factor approach was introduced into site studies. However, little 

attention was paid to the ecosystem approach until the 1970s when it was revitalised in 

North America. Krauss, of Germany, might be seen as the first person to assess forest 

sites using ecosystem principles. He introduced geology, geography, climatology, soil
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science, plant geography and sociology, and even pollen analysis, and forest history into 

site into the Bäden-Württemberg models (Spurr and Barnes 1980). Subsequently, site 

evaluation methods similar to those of the Bäden-Württemberg model have been widely 

used in some other countries such as America (Spurr and Barnes 1980), Canada (Hills 

1952; Hills and Pierpoint 1960; Rowe 1971), and Australia (Christian et al. 1960; Lewis 

et al. 1976).

2.2.4 Development in the Last Five Decades

It could be said that the development of site concepts and principles mainly occurred in 

the last half of this century. Major developments currently focused on technical 

improvements and expansion of research scales. The scope of study expanded from local 

regions to entire countries. Although there are some differences in the site attributes used, 

most studies use a multi-factor approach. For example, starting from the 1940s, using 

ecosystem principles, Hills and his associates further proposed the concept of total site 

(ecosystem) and his ecological approach to site classification and evaluation was 

successfully used in the Ontario Region of Canada (Hills 1952b; Hills and Pierpoint 

1960). It is usually called “ecological and/or biological site evaluation’’ today 

(Boissonneau and Pala 1978; Franklin 1980). Their method allows extensive application 

of airphoto interpretation in the classification, mapping, and evaluation of large, often 

inaccessible land areas.

Wakeley (1954) proposed a growth-intercept method to build site index curves. This site 

quality assessment method has been widely accepted and used to assess site quality of 

plantations in many countries (see Ferree et al 1958; and Alban 1972). Since the 1980s, 

there has been growing awareness of worldwide pollution and unexplained forest 

deterioration has been identified throughout extensive areas, in the industrially advanced 

countries in particular. Fernandez (1986) suggested that this pollution should be taken as a 

site factor in evaluating forest resources and their sites.

Due to the development of calculation technologies (such as digital computers), site 

quality evaluation has evolved from traditional single factor and/or qualitative 

descriptions to multi-factor and quantitative modelling. The multivariate analysis 

technique is now widely applied in ecological research and it has been introduced into site 

quality assessment. For example, Carmean (1965) used multiple regression techniques to 

model black oak site quality and soil and topography in south eastern Ohio, USA. Similar 

studies were conducted by a number of authors (e.g. Kinloch and Page 1966; Page 1970; 

McNab 1987 and 1990; Worrell and Malcolm 1990a & 1990b; Hairston and Grigal
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1991). In addition to soil and topographic factors, McNab (1987) and McNab and 

Merschat (1990) also introduced geological variables. In one case the correlation between 

tree height and geological variables was as high as 0.91.

Techniques of ordination and grouping were used to order (or rank) forest sites to reflect 

an underlying gradient in physiography, soils, or vegetation. This method can be seen in a 

number of studies (Curtis and Mclntoch 1951; Whittaker 1967; Carleton et al. 1985; 

Roberts and Cristensen 1988; Chang and Gauch 1986; Radloff and Betters 1977). Such 

ordinations have proved useful for determining the influence of various site factors on 

forest composition and productivity. Grouping (or clustering) were employed to group 

similar sites for the purpose of classification (Barnes et al. 1982; Pregitzer and Barnes 

1984; Nowacki et al. 1990). Grouping is often done in conjunction with ordination to 

produce classification systems that can be used for stand management prescriptions (Spies 

and Barnes 1985, Hix 1988, and Burton et al. 1991). Ordination and classification can be 

achieved using a variety of multivariate analysis methods, including correspondence 

analysis, principal components analysis, principal coordinates analysis, clustering analysis 

and canonical discrimination analysis. Such methods produce graphical displays of the 

distance or dissimilarity among samples, which may be used to detect patterns or 

gradients in the data. McNab (1990), for instance, developed prediction models of forest 

types from topographic variables (i.e. elevation, aspect, index of landform and land 

surface shape), accounting for over 97 percent of variation in location of forest type 

centroids in a canonical discriminant analysis.

In recent years, increasing attention has been paid to multiple use of forest resources. 

Forest managers are often faced with several estimates of site productivity. Not only are 

there different measures of productivity, such as site index or mean annual increment at 

some fixed age, but estimates of each may be obtained from several sources, including 

site classification systems, site-forest relationships, and growth measures from young 

stands.

Using correlations among the habitat classification systems, soil site 

equations and growth and yield equations, Reed (1989) proposed a new method of 

assessing alternative estimates of plantation site productivity and mean annual increment 

in the absence of observations of the true values, through a quantitative evaluation of the 

alternative productivity estimates. His method was successfully used for the productivity 

estimates for young red pine plantations.
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The application of remote sensing technology may be the most significant development in 

site quality estimation and classifications since the 1940s. The early application of aerial- 

photography technology has proven to be useful in identifying forest sites because of the 

exceptionally detailed information on topography and forest structure contained in them 

(Seely 1960). For instance, during the 1940s air-photographs were successfully used in 

site quality classification and mapping based on soil types and/or topography (Losee 

1942). With the development of photo-interpretation techniques, aerial photographs have 

been successfully used in estimating forest stand variables. Forest site quality estimation 

therefore developed from early qualitative classification to quantitative estimation (Spurr 

1960; Choate 1961; Colwell 1970; Heller and Ulliman 1983; Howard 1991).

The launch of the first Landsat satellite in 1972 caused a revolution in site information 

collection, after which satellite-based digital imagery was introduced into forest 

inventory. The applications have advanced from early forest land cover/use classification 

and mapping to estimation and prediction of various forest stand structure attributes, 

phenological, physiological and chemical parameters. Moderate success has been 

achieved in forest (site) type classifications and mapping at regional scales (see Section

2.5 of this chapter), but only limited success in direct site quality estimation (e.g. Getter 

and Tom 1977; Tom and Miller 1978 and 1980; Driscoll et al. 1982; Häme 1984; 

Vanclay 1988; Vanclay and Preston 1990) and site degradation assessment (Johnston and 

Barson 1990). In the early stage the studies were concentrated on the use of digital 

imagery data alone. More recently, studies have been characterised by incorporation of 

ancillary data into satellite-based imagery using computerised spatial modelling, analysis 

and mapping techniques through GIS, knowledge-based spatial data analysis and 

decision-making systems (including expert systems, artificial intelligence, and/or neural 

network techniques) (Hollenbaugh 1987; Hart et al 1987; Hodgson et al. 1988; Klock 

1989; Rauscher et al. 1989; Skidmore 1989; Lowell 1990; Davis and Dozier 1990; Kourtz 

1990; Bolstad 1992). Applications of satellite technology in site studies will be discussed 

in more detail in Sections 2.4 and 2.5.

2.2.5 Summary Implications

The above review of the historical development of forest site evaluation shows that there 

has been progress from perceptual to theoretical abstract knowledge. This development 

process may be broadly summarised as the following four stages:

(1) Perceptual Knowledge This stage, which lasted for more than 2000 years, from 

primitive society to about the 18th century AD was characterised by perceptual
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and subjective descriptions of the superficial phenomena of forests and their sites, 

e.g., the evaluation of forest sites was based mainly on the appearance of forests 

and/or their growth locality. Although lacking precise concepts, this stage 

conveyed the idea of differences of site quality in different site conditions.

(2) Single-factor Site Evaluation The main features of this stage is that site 

classification and assessment were based on one or a few site attributes (such as 

soil, location, geomorphology or climates) to express site productivity. Most work 

done before the appearance of Cajander's forest typology (1940s), Tansley’s 

ecosystem and Sukachev’s biogeocenosis may be seen as single site evaluation.

Compared with perceptual knowledge, the single-factor site evaluation 

qualitatively describes site quality by one or a few site attributes. It clarifies the 

concepts of site and site quality. As it is relatively simple to use and successful in 

local (small) areas, single-factor site evaluation is still stressed and used today (see 

Zonneveld 1981). However, in areas where site conditions are more complex, a 

single-factor site attribute cannot reveal the complex relationships between sites 

and forests. This disadvantage stimulated the development of the multi-factor 

approach.

(3) Multi-factor Site Evaluation This stage stresses site as an ecosystem (i.e. total site 

or biogeocenosis) influenced by many site factors or combinations of ecological 

factors. Sites are classified and evaluated using the principle of ecology and other 

sciences. The main characteristic is that many disciplines contribute to the site 

study; the site evaluation is based on environmental and/or plant analysis. The 

ecosystem approach is a typical representative of this stage in the evolution of site 

evaluation and it is used at present.

(4) Comprehensive forest site evaluation and site mapping This stage is characterised 

by the combination of qualitative and quantitative methods to evaluate forest site 

quality. It stresses forest site as the sum of many site factors. Apart from the 

conventional site information collected from permanent and/or temporary sample 

plots, the information collected for site classification and evaluation can be 

acquired by remote sensors and/or computers. Methodologically, ecosystem site 

classification and evaluation approaches are widely accepted, and technically, 

multivariate analysis spatial modelling, GIS, expert systems, and artificial 

intelligence techniques have been widely introduced into site evaluation. Site 

quality is expressed by graphs, tabular and site maps, and can be stored in
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computer disks so that it is relatively indexed. This stage quantitatively and 

mathematically reveals the interrelationships between trees and their site 

environment. This represents the future of site productivity evaluation and defines 

the direction for future forest site studies.

2.3 MAIN APPROACHES FOR EVALUATING FOREST SITE 
QUALITY: A BRIEF OVERVIEW

As reviewed above, because of the great practical importance attached to the effective 

evaluation of forest site quality, much effort has been devoted to the development of 

techniques for evaluating site quality, and therefore a number of site classification 

systems and assessment methods have been developed. These many methods and 

approaches are summarised in Figure 2.1.

METHODS
VIEWS Direct Approaches Indirect Approaches

Stand
Variables

Yield
Volume
Biomass
Height (Site index) 
Mean annual increment 
Growth-intercept

Other stand variables

I Indicative plants 
i Overstory interspecies 

relationships
| lesser vegetation characteristics 

jj Other vegetation characteristics

Site Variables

Measures of availability of soil 
chemical elements

Soil moisture

photosynthetic active radiation

........5......................................................................
1 Climate variables 
I: Topographical variables 
1 Soil variables
1 Geological variables 

1 Other environmental variables

Holistic Combinations of both stand and site variables

Figure 2.1 Approaches for estimating site quality and relationships among them.

Figure 2.1 shows that all methods of site quality estimation are based upon three views: 

stand and site variables or both. Under these views, two common methods, usually called 

direct and indirect methods (Rennie 1963; and Clutter et al. 1983), have been developed 

for expressing and rating site quality. The stand variable view assumes that stand 

variables are the direct and ultimate measures of site quality. Although a number of 

measures from stands have been proposed to indicate site quality, the best measure of site 

quality may be stand volume or biomass. Because of the practical difficulties of direct 

measurement of total stand volume, site index has been the most commonly
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used measure, as it is strongly correlated with stand volume. Indirect methods concentrate 

on specific vegetation (e.g understory) sensitive to site quality.

The site variable approach assumes that site quality depends mainly on the soil, climatic, 

geological and topographic attributes, and that an accurate knowledge of these site 

attributes supplies a basis for estimating the amount of stand volume or yield from an 

area. Direct methods involve use of properties of the site itself as indicators of site 

quality. This approach is predicated on the idea that site quality is determined by variables 

such as temperature, light, supply of soil water and available nutrients etc. However, few 

of these properties can be measured under practical forest inventory conditions. Many are 

measured through indicator variables such as the composition of ground vegetation.

The holistic approach assumes that a site can be seen as a ecosystem (total site), and any 

factors affecting this ecosystem can be seen as site quality factors. The stand variable 

approach can not be used in a unforested area, while the site variable approach cannot 

provide information on the quantity of a site for a species of interest. For instance, the site 

index approach can not be used until the stands reach the index age, and mean annual 

increment can not be truly observed without measuring volume at the age of interest. 

Using the correlations among the habitat classification system, soil site equations and 
growth and yield equations, Reed (1989) proposed a new method of assessing alternative 

estimates of plantation site quality and mean annual increment in the absence of 

observations of the true values. In Canada, site quality was evaluated and classified by 

incorporating stand variables (e.g. site index), soils, topographic and climatic variables 

(Burger 1976; Pojar et al. 1987).

There has been detailed discussion on these specific methods by many authors. For 

instance, Jones (1969) gave a comprehensive review of forest site evaluation work in 

North America. The work in the United States was again reviewed by Carmean (1975). 

Most text and reference books on silviculture, forest management, inventory, and forest 

ecology devote major chapters or sections to site evaluation (e.g. Spurr 1952, Spurr and 

Barnes 1980, Clutter et al. 1983; Shepherd 1986). Hägglund (1981) presents a review of 

research on site quality evaluation published after 1973, with emphasis on the site index 

approach. Clutter et al. (1983) gave a similar discussion, but they put more emphasis on 

site index curve construction. The comprehensive evaluation and classification methods 

used in Canada were summarised in a recent review by Burger and Pierpoint (1990).
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2.4 FORESTRY APPLICATIONS OF REMOTE SENSING

2.4.1 Introduction

Since the launching of the first earth-observing civilian Landsat satellite in 1972, great 

efforts have been made to develop methods of forest inventory and management using 

digital satellite data. The aim is to eliminate time-consuming and expensive field work 

required to collect the data for various stand variables and to use computer-assisted 

interpretation techniques. Over the years advances have been achieved with the 

improvement of imagery resolution (spatial, spectra), radiometric and temporal) and the 

development of data processing and interpretation techniques. Forestry applications of 

satellite data have also been developed from simple mapping of forest types to detecting 

more subtle changes in forests over time and space.

Current trends in forest studies have been toward the integration of remotely-sensed data 

into GIS and/or expert systems. This integration allows satellite spectral data to be used 

beyond standard image processing. Furthermore, it allows for remotely-sensed data to be 

used in conjunction with spatially-referenced digital data such as site variables (e.g. 

elevation, slope, aspect, soils) as well as biological variables. In this way, information 

obtained from remote sensing of forests can be enriched, and the capacity of remotely- 

sensed data in detecting forest and site variations can be improved.

This section gives a review of the literature on some recent applications of remote sensing 

in forestry. The discussion is organised as (1) a discussion on the conceptions of remote 

sensing; (2) an overview of the technical development of remote sensing in forestry; and 

(3) a review of forestry applications of satellite data.

2.4.2 Definition of Remote Sensing

Remote sensing, or teledetection in French, teleperception in Spanish, il& in Chinese, 

and femerkundung in German, is defined as “a technique in geography for location, 

classification and estimation of features in the environment” (Curran 1987). Early broad 

definitions call it a technique of “acquisition of information about an object without touch 

or direct contact with that object” (Richason 1978; Slama 1980; Moik 1980; Simonen 

1983; and Sabins 1987), or “the group of techniques for collecting information about an 

object and its surroundings from a distance without physically contacting them.” (Lo 

1986). Barrett and Curtis (1982) defined remote sensing as “the science of observation 

from a distance”, while Richason (1978), Dahlberg and Jensen (1986) and Curran (1987)



27

saw it as a technique rather than a subject, or discipline. In recent years it has grown into 

a very wide ranging technique (Curran 1985).

As a term, remote sensing is itself relatively new. It was first proposed in 1958, and was 

formalised and defined by Parker in 1962, at the first Symposium on the remote Sensing 

of Environment in Michigan, as “covering the collection of data about objects which are 

not in contact with the collecting device” (Zhao (&&£.) 1983; Howard 1991). It was 

introduced to replace the traditional but more restrictive terms aerial photography, 

photogrammetry and/or aerial photo interpretation, which refer only to the acquisition 

and analysis of aerial photography acquired by the conventional photographic process 

(Slama 1980; and Simonett 1983).

The object in the above definitions usually means the earth’s surface. The information is 

typically in the form of electromagnetic radiation (EMR) that has either been reflected or 

emitted from the object. The earlier definitions of remote sensing were focused mainly on 

the acquisition of information. Remote sensing, however, has a broader meaning 

encompassing the acquisition and analysis of data from all portions of the electromagnetic 

spectrum, including the visible portion. Today, remote sensing is generally accepted as 

not only involving the collection of raw data, but also as involving manual and automated 

raw data processing, imagery analysis and presentation of the derived information. As 

stated by Luney and Dill (1970)

Remote sensing denotes the joint effects of employing modem sensors, data processing equipment, information 

theory and processing methodology, communications theory and devices, space and airborne vehicles, and 

large-systems theory and practice for the purposes of carrying out aerial or space surveys of the earth's 

surface.

The definition was further detailed by Short (1982) as

The acquisition of data and derivative information about objects or materials (targets) located at the Earth’s 

surface or in its atmosphere by using sensors mounted on platforms located at a distance from the targets to 

make measurements (usually multispectral) of the interaction between the targets and electromagnetic 

radiation.

With the development of the concept of remote sensing, the term photography was 

replaced by the term imagery, which was defined as “a continuous or discrete record of a 

two dimensional view” (Curran 1985). Imagery, in a technical sense, refers to products 

made from electromechanical scanners and other devices measuring radiation beyond the 

visible portion of the spectrum. The term photointerpretation becomes image 

interpretation or image processing. Although taking on discipline dependent meanings, 

remote sensing now usually refers to “the use of electromagnetic radiation sensors to
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record images of the environment which can be interpreted to yield useful information.” 

(Curran 1985).

Developed from aerial remote sensing, satellite remote sensing is therefore defined by 

Harris (1987) as “the use of sensors, normally operating at wavelengths from the visible 

(0.4 fim) to the microwave (25 cm), on board satellites to collect information about the 

earth’s atmosphere, oceans, land and ice surfaces.” Commonly, the information is 

collected in two dimensional form either as a photographic image, such as the high- 

resolution images from the metric camera carried on the space shuttle, or as an array of 

digital data.

Satellite remote sensing may be best defined by its mode of operation (Harris 1987). 

Based on the altitude of platforms, it can be divided into air-borne (aircraft) and space- 

borne (satellite) remote sensing. Based on the origin of the energy it can also be classified 

into passive and active remote sensing. Most images are passive since the energy is from 

the sun. Active remote sensing occur when the energy is from the sensor itself, such as a 

radar image.

2.4.3 The Development of Remote Sensing in Forestry: An Overview

Forestry has become one of the major applications of remote sensing technology. The 

early development of remote sensing as a scientific field was closely associated with 

developments in photography. The sensor systems were developed from the earlier simple 

cameras using the visible wavelengths to very sophisticated satellite sensors in a variety 

of portions of the spectrum. Simonett (1983) divided the development of remote sensing 

technology and practice into two time periods: prior to and since 1960. This section gives 

a brief review of the major development and applications of remote sensing in forestry 

summarised from Holter (1970), Hilbom (1978), Thomas and Grüner (1980), Simonett 

(1983), Harris (1987), and Howard (1970 and 1991). Based on the development of remote 

sensors, applications of spectral wavelength, the altitude of sensors, and the form of the 

photography and/or imagery, four phases are subdivided and discussed respectively, 

although these are a somewhat arbitrary division of an evolutionary process.

Phase 1. Prior to 1945: The invention and simple applications of early photography

According to Simonett (1983), the development of cameras stemmed from experiments 

over 2300 years ago by Aristotle with a camera obscuca. Experiments were continued 

from the 13th through to the 19th centuries with advances in chemistry providing the 

knowledge of photosensitive chemicals and the invention of optical prisms. The first
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successful photographs were taken from the air by cameras strapped to the breasts of 

pigeons in Paris in 1836 (Thomas and Grüner 1980). The first known popular interest in 

images of trees on photographs was in 1838 (Howard 1970). In 1849, aerial photographs 

were first used for topographic mapping in France (Elachi 1987). By 1858, balloons were 

being used to acquire photographs of large areas. Aerial photographs were taken from a 

balloon near Berlin in Germany in 1887 in order to examine the characteristics of beech, 

spruce and pine stands (Spurr 1960; and Heller 1972). Austrian foresters proposed, in 

1892, to use remote sensing to map forests and vegetation, the corridors of avalanches, 

screes, rocks and counterlines in inaccessible alpine areas (Hildebrandt 1983). This was 

followed by the use of kites in the 1880s and pigeons in the early 1900s to carry cameras 

to many hundred metres of altitude.

The Wright brothers’ airplane was developed in 1903, and the first aerial photograph 

from a plane was taken by Wilbur Wright in 1909 (Spurr 1960). Within ten years, aerial 

photographs were being successfully used for soil survey and mapping in the USA.

In the 1920s the techniques of aerial photography were used widely in agriculture and 

forestry. For instance, beginning in the 1920s, photointerpretation techniques were first 

introduced for forest inventory in Ontario, Canada (Craig 1920). The interpretation of the 

photographs was combined with field checking and the preparation of stock maps. The 

applications included estimation of stand volume, height, tree counts, and crown density 

measurements (see Heller and Ulliman 1983). In this period, as well as forest mapping, 

German foresters also used air-photography for inventory and forest management 

planning purposes (Hildebrandt 1983).

Many advances in photointerpretation techniques were made after World War II. Black- 

and-white (B/W) aerial photographs taken from aircraft platforms were widely used 

(mainly in the USA) on an experimental basis in forest inventory. Supplemented by 

ground checking, aerial photographs were interpreted to define and map forest types and 

major soil types between the 1940s and the 1950s (Spurr 1948 and 1960).

Phase 2. 1945-1960: Applications of nonphoto graphic Imagery

The most significant advances in this phase were the use of colour photographs and non

photographic image-forming systems (such as radar) for detecting radiation reflected or 

emitted (or both) from remote scenes. This innovation overcame the limitations of 

conventional photographs in the visible wavelength. Nonphotographic sensors operate in 

portions of the electromagnetic spectrum from the microwave to the ultraviolet region.
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Panchromatic aerial photography became more widespread, and the applications of its 

products spread from topographic and other thematic mapping to include estimating many 

stand variables, including tree size measurements, density, tree height, tree quality, 

growth rate, and site quality. Colour photography began to be used for land and soil 

classification and mapping. Descriptions of applications of aerial photography in forestry 

can be found in Spurr (1948 and 1960) and Loetsch and Haller (1964). The photo

interpretation techniques developed in this phase have played, and will continue to play, a 

significant role in forest inventory, especially at the national forest inventory (NFI) level 

(Thallon 1979; Köhl and Sutter 1991). Comprehensive reviews on the applications of 

remote sensing in forestry in this stage can be found in Seely (1960).

Phase 3. 1960-1972: Applications of Spaceborne (Satellite) Imagery

The major advances in this phase were the birth of satellite remote sensing and the 

application of laser technology. The phase began with the launch of the weather satellite 

TIROS (Television InfraRed Observation Satellite) and the invention of the laser in 1960. 

Besides the visible wavelengths, the satellite era also saw investigation of other portions 

of the spectrum, notably the thermal infrared (TIR). Colour photography, including 

visible, colour infrared (CIR), near infrared (NIR), panoramic photography and sideways

looking airborne radar (SLAR) imagery, were widely used for detection of changes such 

as disease, identification of tree species (composition), and estimation of stand variables 

(Colwell 1970; and Heller 1976). The scales in mapping vary from small-scale (about 

1:120,000 or smaller) and global coverage by ESSA (Environmental Science Service 

Administration) and NOAA (National Oceanic and Atmospheric Administration) series 

satellites to large-scale air-photography (1:2000 or greater) for detecting morphological 

and phenological characteristics of trees (Heller and Ulliman 1983).

Phase 4. 1972-present: Applications of Digital Satellite Remote Sensing Imagery

This phase began with the launch of the Landsat-1 (initially named ERTS-1) satellite in 

1972, and the development of multiple spectral scanner (MSS) images in digital form. 

The greatest improvement made in this phase was to focus all energy through a single 

aperture and record all wavebands simultaneously. Prior to 1971, only the visible and NIR 

wavebands were recorded through one aperture. The second generation of satellite remote 

sensors with higher spectral and spatial resolutions and more spectral bands (“a selection 

of wavelength portions of the electromagnetic spectrum” (Aldrich 1979)) were developed 

in the 1980s, including Landsat-4 (1982) and Landsat-5 (1984), SPOT-1 (1986) and
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SPOT-2 (1989), and NOAA-7-11 AVHRR (1982-1989) (see Section 2.4.5). Computer- 

aided image interpretation and processing techniques have been extensively used in forest 

inventory, for detection of changes, mapping and making estimates of many forest, 

ecological, morphological, phenological, physiological and environmental (site) variables 

(Section 2.5).

Recent developments in digital remote sensing include introduction of the imaging 

spectrometer and radio systems. In particular, low altitude airborne scanners (or 

spectrometers) can provide images with higher spectral (i.e. more spectral bands with 

narrower bandwidth, such as 10.0 nm, having up to 224 channels) and higher spatial 

resolution (2.5 m or smaller pixel size). These data types have improved recognition 

capability and they have been used to measure forest stand parameters and to estimate 

vegetation canopy characteristics constituents and pigments (e.g. fluorescence and 

chlorophyll a and b). For instance, the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) became operational in 1989, operating in the visible and near infrared (NIR) 
region from 0.4 - 2.5 |im. It has been used for estimating physiological variables (e.g. 

fluorescence of chlorophyll) in vegetation canopies (Elvidge et al. 1993; Hamilton et al. 

1993; Vane and Goetz 1993; and Vane et al. 1993). This technique is not yet used 

commercially in forestry due to its cost.

The review above showed that the development of remote sensing has been an 

evolutionary process stemming from increased information captured in terms of space, 

time, and radiance. This evolutionary process is summarised in Table 2.1.

Table 2.1 Remote sensing timeline. Some of the important dates in civilian remote sensing programs.

Phases Time Sensors Systems and Applications

1830s N ie p c e  takes first photographs o f  nature
1859 First aerial photographs - captive  b a lloon  o ver  the French countryside

Phase I 1862 Forest m apping from  aerial photographs
1910 W ilbur W right takes first photographs from  an airplane
1920s system atic  forestry m apping from  aerial photography in C anada and the 

U n ited  States.

Phase II 1940s Forest inventory and stand variable estim ates usin g photography  
and/or nonphotography.

1960 T IR O S -1 first operational m eteo ro lo g ica l sa te llite
Phase HI 1962 Prototype m ultispectral cam era constructed  by Zaitor and Tsuprun

1966 D ig ita l im age ana lysis for agricultural app lication s

1972 Landsat 1 (E R T S 1) M S S
1975 Landsat 2 M S S
1979 Landsat 3 M S S , N O A A -6  A V H R R

Phase IV 1982 L andsat/T M  4
1984 L andsat/T M  5
1986 SPO T-1
1989 A irborne im agin g  spectrom eter (e .g  A V IR IS ), N O A A -1 1
1990s M E R IS , H IR IS, L andsat/T M -6 (m issin g ), 7 , SP O T  -2 , 3, 4 , 5 , A D E O  1, 2
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2.4.4 Remote Sensing of Vegetation: an Overview

Remote sensing uses radiation in different parts of the electromagnetic spectrum (EMS) 

as the carrier of information regarding various phenomena of the Earth and in the 

atmosphere. In principle, remote sensing systems could measure energy emanating from 

the earth’s surface in any sensible range of wavelengths. However, technological 

considerations, the selective opacity of the earth’s atmosphere, scattering from 

atmospheric particles and the significance of the data provided exclude certain 

wavelengths. The major ranges of wavelengths used for earth resources sensing are 

between about 0.4 and 12 pm (referred to below as the visible/infrared range) and 

between about 30 to 300 mm (referred to below as the microwave range). In the 

microwave bands it is often more common to use frequency rather than wavelength to 

describe ranges of importance (Richards 1986). Visible and reflected infrared radiation is 

the most frequently used range of EMS for vegetation.

Figure 2.2 shows typical reflectance characteristics for green vegetation, water and soil 

over the wavelength interval from 0.4 to 12.5 pm and corresponding system parameters 

of the four common satellite remote sensors (Landsat TM, MSS, SPOT and AVHRR 

systems). All of the reflectance spectra of plant leaves (including conifers) have the same 

reflectance shape. Differences appear only in the magnitude of the reflectance (Goillot 

1980). Dependent upon the optical properties of leaves, four spectral regions are usually 

considered for digital satellite remote sensing: visible, near-infrared (NIR), middle- 

infrared (MIR) and thermal-infrared (TIR).

2.4.4.1 Visible Region (0.4 -  0.7 pm)

As shown in Figure 2.2, the reflectance curve in this region shows that the leaf reflectance 
is low in the blue band (about 0.45 to 0.52 pm), peaks in the green-yellow region (about 

0.52 to 0.55 pm), and decreases to a minimum in the red (about 0.63 to 0.70 pm). 

Typically, about 70-90% of blue and red light is absorbed to provide energy for 

photosynthesis (Carolis and Amodeo 1980), with the absorption maxima at 0.435 and 

0.67 pm respectively. This low reflectance (less than 15%) in the blue and red 

regions is generally attributed to absorption by leaf pigments such as chlorophyll and 

xanthophyll, carotenoids and anthocyanins (Gate 1970; Rock et al. 1986; Goyut 1990; 

Moya et al. 1992).

Gates (1970) and Carolis and Amodeo (1980) stated that chlorophyll, carotenes, and 

xanthophylls absorb radiation in the blue region (around 0.445 pm), but only chlorophyll 

absorbs radiation in the red waveband (near 0.645 pm). Yamada and Fujimura (1988)
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Figure 2.2 Spectral reflectance curves of typical green vegetation, soil and water. Also shown are the 
system parameters of the four most common digital satellite remote sensing systems: SPOT, 
TM, MSS, and AVHRR.

considered the reflectance of leaves to be a function of chlorophyll pigment content. For 

this reason, any changes of reflectance intensity of leaves occurring in these wavebands 

may indicate a subtle change of canopy, stand structure and/or stand conditions. There is a 

slight peak in the green, which is why growing vegetation appears green. The sharp 

increase in the curve (Figure 2.2) between about 0.68 pm and the NIR plateau is called 

red edge1. The slope and position of this red edge have been directly correlated with leaf 

chlorophyll concentration (Horler et al. 1983). An important feature of the visible 

radiation is that the relationship between reflectance and amount of green vegetation 

(biomass, LAI, and height of trees) is usually negative.

2.4.4.2 Near-Infrared Region (about 0.7 -  1.3 pm)

In this spectral region, leaf pigments and the cellulose of leaf cell walls are transparent, 

therefore leaf absorption is very low (less than 10%) and incoming radiation is either

1 The red edge is the sharp transition region between the red and the near-infrared wavelengths (see Figure 2.2)
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reflected or transmitted (Goyut 1990; Barrett and Curtis 1992). About 50% of NIR light is 

reflected in the infrared-plateau (see reflectance curve in Figure 2.2). The reflectance 

level depends largely upon the anatomical structure of the leaves, and usually increases 

with the number of cell layers (Gates 1970; Rock et al. 1986). Westman and Price (1988) 

showed reduced cell volume could reduce NIR reflectance. This reflectance property is 

useful in detecting the changes of canopy cover and biomass by LAI (Tucker 1979; 

Tucker et al. 1975; and Curran 1985). However, this analysis of the reflectance properties 

of vegetation in the NIR is not necessarily suited to coniferous canopies. Many studies 

(e.g. Colwell 1974; Danson 1987; Poso et al. 1987; Häme 1991) have indicated that there 

exists a strong negative correlation between canopy cover and NIR reflectance. This 

means that the reflectance intensity of coniferous canopy in all wavelengths, including the 

NIR band, usually decreases with accumulated stand growth. Like visible light, NIR 

reflectance also has a strong negative correlation with the amount of vegetation. This may 

be attributed to effects of increasing canopy shadows resulting from crown expansion. 

This will be discussed in more detail in Chapters 5 and 6.

2.4.4.3 Middle-Infrared Region (1.3 -  2.5 pm)

The optical properties in the MIR wavelength are influenced somewhat by internal 

(cellular) structure but more particularly by water concentration within the leaves (Tucker 

1980; Barrett and Curtis 1992; Wessman 1989; and Danson et al. 1992). MIR is therefore 

usually called the “water-absorption” region. As can be seen from the reflectance curves 

in Figure 2.2, leaf reflectance decreases with increasing wavelength, with the minimum 

near 1.40 and 1.85 pm, and becomes negligible beyond 2.5 pm. The levels of the 

absorption of light in these two spectral portions vary according to leaf water content. 

Landsat TM bands 5 and 7 are centred on these two regions and it has been suggested that 

the data obtained in them could be used for detecting the various levels of water-related 

stress in vegetation (Guyot et al. 1985; Rock et al. 1986; Westman and price 1988). The 

upper limit of 2.5 pm is a result of the decrease of sun radiation with wavelength and the 

absorption of radiation by atmospheric water vapour. This may be why the remote 

sensing of vegetation is generally restricted to the spectral region from 0.4 to 2.5 pm.

2.4.4.4 Thermal-Infrared Region (about 3 - 2 0  pm)

The thermal-infrared (TIR) portion of the EMS extends from about 3 to 20 pm. 

Atmospheric water vapour strongly absorbs radiation in much of this region. Strong 

atmospheric absorption occurs between 3.5 to 4.5 pm, the level of absorption depending
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mainly on the water content of the atmosphere. Within this region, radiation naturally 

emitted from all objects is easily detectable and is related to their surface temperature 

(Olsson 1987). Advance Very High Resolution Radiometer (AVHRR) band 4 (10.3 - 11.3 

|im) and 5 (11.5 - 12.5 pm), Landsat TM channel 6 (10.4 - 12.5 pm), and Heat Capacity 

Mapping Radiometer (HCMR) band 2 (10.5-12.5 pm) are centred on this region, and the 

data are usually used for plant heat stress management. However, the effect of 

atmospheric water absorption significantly reduces in the spectral range from about 8 to 

14 pm (Jackson 1986). Data obtained in this wavelength region usually have much 

coarser spatial resolution (120 m for Landsat 4/5 TM band 6, 1100 m for AVHRR 6/7 and 

500 - 600 m for HCMR); the measured radiating temperature is compounded of 

vegetation and soil temperature, and it is difficult to separate the vegetation component 

from the total thermal radiation. The emissivity of a vegetation canopy and soil surface 

vary in time and space (Olsson 1987). For a review of TIR remote sensing from satellites 

see Lynn (1986).

2.4.4.5 Microwave Region (about 30 pm -1 m)

The microwave region of interest to remote sensing is usually restricted to 5 to 500 pm 

and the most common sensing systems working in this band are RADAR (RAdio 

Detection And Ranging) instruments. Radar is an active remote sensing technique, where 

the radiation is transmitted towards the surface of the object, by the instrument. The 

returning radiation is then measured in terms of the time interval between the 

transmittance and return and the properties of the returning signal. RADAR imaging 

systems (such as SEASAT SAR (Synthetic Aperture Radar) and Side-Looking Airborne 

Radar system (SLAR)) can provide an all-weather day-and-night imaging capability as 

they are neither blocked by clouds nor dependent on solar radiation. Three characteristics 

of the surface being sensed are: surface roughness, conductivity and slope (or incidence 

angle). Different vegetation and/or different parts of a tree have different sensitivity to 

radar wavelengths. This means that the data obtained from a radar system can provide 

information on vegetation type (e.g. Bush and Ulaby 1978; Shanmugam et al. 1983) as 

well as vegetation conditions (Ulaby et al. 1984; Paloscia and Pampaloni 1984). Bush et 

al. (1976) reported that radar returns from deciduous trees in the spring are much higher 

than those in autumn (Smith 1983). Radar data have proved useful in detecting soil 

degradation (e.g. soil salinity) (Smith 1983). The data are also useful in soil and site 

diagnosis for silvicultural management. Details on the principles, imaging systems,
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analysis procedures and applications of radar can be obtained from Smith (1983), 

Simonett and Davis (1983), and Elachi (1988).

2.4.4.6 Some General Features of Reflectance of Forest Canopies

As indicated above, the intensity of reflectance of the forest canopy is affected by both 

the internal structure of leaves and the external conditions. Canopy structure factors (such 

as branch and canopy layers, depth and shadows) also have significant effects on the 

intensity of reflectance (Williams 1991). These factors, however, usually change over 

time. For instance, pigment (e.g. chlorophyll and carotenoid) concentrations may vary, 

and additional pigments may build up within leaves in response to stress. Such variations 

can appear as subtle spectral changes in the visible and red edge portions of reflectance 

curves from vegetation in decline and can be used to detect forest damage (Jackson 1986). 

For instance, the internal structure of leaves changes with their increasing age (e.g. more 

spongy mesophyll, higher chlorophyll concentration and senescence) and therefore 

significantly influences the intensity of the forest canopy (Ajai et al. 1983; Mather 1987).

In general, the leaf absorption coefficient is lowest (i.e. highest reflectance) in young 

leaves in the visible wavelengths and highest in the NIR range (Wanjura and Hatfield

1988) . During leaf senescence, starch, chlorophyll and protein are degraded. Usually light 

reflectance increases markedly (especially in the visible region (e.g. 0.55 p.m) when 

chlorophyll degradation takes place (Barrett and Curtis 1992) and leads to a negative 

correlation with leaf age. However, leaf optical properties change significantly only 

during the juvenile and senescence stages. During the major part of the growth processes 

of deciduous trees their leaves have practically constant optical properties (Guyot et al.

1989) .

The optical properties of conifer needles (pine, fir or spruce) change slowly as a function 

of their age (from year to year) with increasing pigment and water content (Westman and 

Price 1988; Guyot 1990). LAI has been one of the major factors estimated from remotely- 

sensed imagery since it has a strong relationship with plant productivity (see Section 

2.5.5).

As shown in Figure 2.2, the reflectance of non-vegetation surfaces shows different 

patterns with wavelength. Water reflects only about 10% or less in the blue-green range, a 

small percentage in the red and no energy after the NIR range. Soils and/or non-green 

parts of vegetation typically increase monotonically with wavelength. As seen in the 

figure, soils show an approximately linear reflectance with wavelength, however, with
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dips centred at about 1.4 pm, 1.9 pm and 2.7 pm respectively, owing to moisture content. 

These water absorption bands are almost unnoticeable in very dry soils and sands 

(Richards 1986). All soils show the same reflectance pattern, but the reflectance level 

(pixel intensity) may be very different due to soil properties such as moisture content, 

colour, texture, and physical and chemical properties (Ritari and Saukkola 1985; Mulders 

1987). Based on these optical properties of soils, remote sensing can be used to detect the 

soil-based site quality over unforested sites. For instance, the red light reflectance of the 

A horizon of a podsolised soil at normal moisture content was approximately 2.5 times 

the reflectance of the undergrowth of medium rich site type (Mulders 1987).

Williams (1991) found that conifer forests, in general, are more absorptive of radiation 

than broadleaved, deciduous hardwood forests. He also found that the magnitude of 

reflectance throughout the visible and NIR wavelength regions decreased dramatically for 

the conifer species as scene complexity increased from the needle, to the branch, to the 

canopy level. DeGloria and Benson (1987) have done a series of interpretation tests to 

determine the interpretability of spectral data from different bands of advanced SPOT 

film products for forest and agricultural survey in California, USA. They suggested that 

the best data for interpreting renewable resources were from the spectral bands sensitive 

to the red, NIR, and MIR.

2.4.4.7 Three Basic Characteristics of Forest Cover

Forest remote sensing is based on interpreting measurable variations in the spectral, 

temporal and spatial characteristics of forest cover types of interest. The capability of 

remote sensing to detect the changes of forest structure or growth is generally decided by 

the three basic characteristics briefly described below:

(a) Spectral characteristics (or signature) of the target are the unique spectral 

reflectance for each specific earth feature. Different land cover types show 

different reflectance intensity and therefore can be differentiated. The reflectance 

levels depend upon a wide range of factors relating to the structure and condition 

of a particular land cover type.

(b) Temporal characteristics Temporal effects are any factors that change the spectral 

characteristics of a feature over time. For example, the spectral characteristics of 

many tree species are in an almost continuous state of change throughout a 

growing season or whole growing process and these changes must be accounted 

for when interpreting the satellite data for a particular application. Another 

example is the use of seasonal thermal data to infer information about the cover
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types. Temporal effects influence virtually all remote sensing operations. These 

effects normally complicate the issue of analysing spectral reflectance properties 

for forest resources. However, temporal effects might be the keys for generating 

the information sought in an analysis. For instance, the growth and/or change of a 

stand is predicated on the ability to measure temporal effects.

(c) Spatial characteristics that are used involve shapes and relative sizes as well as 

absolute sizes of objects. The term spatial effect also applies to factors that cause 

the same types of features at a given point in time. An example of this type of 

spatial effect is the change in leaf morphology, leaf angles and location of trees 

when they are subjected to some form of stress.

2.4.5 Applications of Satellite Data to Forests

2.4.5.1 Introduction

This section is a review of recent literature on the applications of remote sensing in 

forestry. The applications before the 1980s have been reviewed in great detail by Heller 

and Ulliman (1983). The discussion here will focus mainly on some recent applications of 

the data from the US Landsat MSS and TM, NOAA AVHRR, and the French SPOT, 

since these four data sources are most commonly used in forestry. The spectral, spatial and 

temporal resolution and other system parameters of these four sensors were summarised in 

Figure 2.2. More details on their characteristics can be found in Curran (1985), Harris 

(1987), Mather (1987), Amaud and Leroy (1991), Barrett and Curtis (1992), Torlegärd 

(1992), and Richards (1993). Reviews on the forestry applications of other remote sensing 

systems can be found in Leckie (1990).

The objective of this section is to briefly review the ways in which satellite remote 

sensing can be useful in delineating and evaluating the structural characteristics of forests 

which are required for forest management and planning. The discussion is organised with 

regard to (1) some general features of forestry applications of satellite data; (2) forest 

(site) type mapping; (3) forest inventory; (4) evaluation of stand variables; (5) assessment 

of forest (site) productivity; and (6) detection of forest changes.

2.4.5.2 Some General Features of Forestry Applications

Forestry needs information about general growing conditions, forest resources and 

changes within them. Traditionally,-information on forests is from inventories. Therefore, 

forest inventory has become the basis for forestry information acquisition systems.
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Inventories are generally defined in terms of their function which is to determine the 

extent, scale, quantity, quality, and the locations of the forest resources. Inventories are 

classified in many different ways, depending on their objectives. FAO (1982) presented a 

classification of forest inventories used in various planning situations (Table 2.2). Table 

2.3 lists some typical information requirements for these forest inventory and 

management activities. Most forestry information requirements that can be met by 

satellite remote sensors arise within the context of forest inventory, environmental 

monitoring and related special surveys. Not all data acquired by remote sensing systems 

can meet such information requirements (Table 2.3), nevertheless satellite remote sensing 

has become an increasingly important information source on forests. Detailed discussion 

on the requirement for forest information can be found from many forest inventory and 

forest management textbooks (e.g. Spurr 1952; Davis 1966). Sayn-Wittgenstein (1986), 

Cicone et al. (1977), and Ahem and Leckie (1987) also gave detail on the information 

requirements in respect of remote sensing. Aldrich (1979) listed various USD A Forest 

Service remote sensing user’s requirements, desired ground resolution and/or preferred 

film (data) type, and recommendations for photographic remote sensing.

Table 2.2 Classification scheme for forest inventories (FAO 1982).
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In v e n to ry
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1 0 -2 0
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Priority Classes: I - very important, needed in detail (or according to detailed stand classes); II - general estimate; III
- little emphasis or can be eliminated.

Although forestry applications have many features in common with other land 

applications, they differ from the other major land application fields in a number of ways, 

such as their large area covering capacity and long time periods and therefore great 

usefulness of multi-temporal and multi-spectral data. Forestry applications are
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Table 2.3 Forestry information requirement and possible forestry applications of remote sensing.

1. Reconnaissance M apping
Pre-inventory stratification  
Special purpose m apping

Ecosystem  and  w ildlife habitat 
Forest fu e l  maps 

Overview maps

2. Detailed Forest Inventories

Forest
Stand (forest) types 
Stand boundaries 
Stand  structure variables 

Species com position  
H eight classes  
A ge (or age classes)
D ensity (including canopy closure, stocking) 
D iam eter (or basal area)
Volume (or yield) 
other stand variables 

Location
Status (conditions, alive or cut)

N on-forest
fa rm  land, water, rock, roads and  tracks, etc

3. Forest Change 
(inventory update)

Decreasing
Cutover
Damage

Insect and disease dam age assessm ent 
O ther dam age assessm ent (w ind fa ll, waterkill, etc) 

Increasing
N atural regeneration  
Plantings (plantations)

3. Forest Protection
Fire protection  

Fire detection  
Fire mapping
Fuel types fo r  the pro tection  
Insect attack  

Pollution

4. Site Evaluation

Site quality
Soil (e.g. soil physica l conditions, fertility , paren t rock) 
Climate (tem perature and  rain)
Topography (slope, aspect, elevation, brief)
Site Index, yield, or other site quality m easures 

Site (forest type) classification and mapping

5. Other information 
requirements relevant to 
forest management

Vegetation Science
Various vegetation indices 
Biomass 
Global change 
Species diversity  

Soil science
Soil classification and m apping  
Soil type m apping  
soil erosion  
soil salinity  

G eology (rock type)
Geography and geom orphology  
Climate
Environm ental impact studies
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characterised by a number of phenological, ecological, economic, long time horizontal, 

and large area land (site) management features, which together will ensure that remote 

sensing has and will continue to play an increasingly important role in forest type 

mapping, forest inventory, and monitoring, especially at national and even global levels. 

For one thing, the community interested in the remote sensing of forestry areas is large 

and diverse, including scientists, forest managers, government bodies and international 

organisations (e.g. FAO, UNESCO, and UNEP), as well as many consulting organisations 

and many large and small public companies concerned with forest resource, ecosystem 

and environmental management. Then again, forest management per se also involves 

different levels of planning (see Tables 2.2 and 2.3).

In forestry, strategic and operational planning are the two basic levels of planning activity 

(Davis 1966). The information required for strategic planning includes forest area, timber 

volume, timber growth, and health and mortality by strata. Strata are usually defined by 

tree species composition, age classes, size-class, site type and accessibility. The 

operational planning helps management determine (1) where, when and how much to cut; 

(2) the need and kind of silvicultural treatments; and (3) the need for, and location of 

logging roads, drainage and fertilisation. The information needed for operational planning 

is provided by forest maps which define the locations, shapes and area of each operative 

unit (e.g. compartment, block, stand etc). Also needed is information on timber volume, 

species composition, age, and growth rate, as well as soil and site quality. Thus there is a 

large and diverse demand for information, and varied applications of remote sensing in 

forestry and the areas relevant to forestry involving renewable and non-renewable 

resource survey and management applications are required. The role of forestry 

applications of remotely-sensed images at national and/or international levels is obvious, 

but there will also be an increasing role for them in forest planning and management at 

local levels. The following sub-sections will review the applications of remotely-sensed 

data to meet these information requirements.

2.4.5.3 Mapping of Forest (Site) Types

A forest type is a forest area which exhibits a general similarity in tree species, 

composition and structural characters. According to forest type theory (Cajander 1926 and 

1949), biologically equal sites have similar vegetation cover and productivity (site 

quality) and therefore belong to the same forest type. Ecologically, a forest type is treated 

as an ecosystem unit and is classified using the ecosystematic approach (Clark et al. 1986; 

Mackinnon et al. 1992). Due to their large area scale and the difficulties of and high costs
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of obtaining information in the field, using remotely-sensed data to classify and map 

forest types has historically been and continues to be the most frequent use of remotely- 

sensed data. In fact, the first forestry application of Landsat MSS data was forest cover 

type classification and mapping which began immediately after the launch of the ERTS 

satellite in the USA (Landgrebe et al. 1972; Latham and McCarty 1972).

Spectral data (pixels) can be classified into classes (usually called information classes or 

spectral classes in remote sensing) according to their reflectance values measured by 

satellite remote sensors. In forest inventory (sampling, for instance), forest cover type 

classification usually means stratification. The spectral classes may represent forest types 

(usually called strata). The desired forest cover type maps can be produced by displaying 

the classified and interpreted pixels with an appropriate presentation format (such as 

labels, colours and text).

There are two main categories of satellite data analysis procedures that may be followed 

to create a forest type map from a remotely-sensed image: image enhancement and image 

classification (Estes et al. 1983; Curran 1985; Hoffer 1986; Mather 1987). The objectives 

of image enhancement, also called “image optimisation” in some literature (e.g. 

Kaufmann and Pfeiffer 1988), is to transform and display the multidimensional 

(multispectral) data such that ground features of interest are accentuated. The imagery is 

then interpreted visually using tone, grey-scale, texture, pattern, boundaries, shape, 

colours, and context. A variety of image enhancement techniques, such as ratio, principal 

component analysis, spatial filtering, stretching, transformations, and band combinations, 

have been developed to increase the image contrast in the range of reflectance of the 

forest types of interest and produce a colour image highlighting these forest types (Leckie 

1990).

In general, image enhancement can visually differentiate forest cover types at lower levels 

(usually Level I and II) and may meet the reconnaissance purpose. In the early examples, 

Howard (1976) and Jaakkola (1976) successfully mapped forest and non-forest classes. In 

Australia, using Landsat MSS data, Jones (1976) successfully mapped in the New 

England district in New South Wales several forest cover types (Level II) which included 

rain forest, wet sclerophyll forest and dry sclerophyll forest. Ahem and Bennett (1985) 

developed a standard enhancement procedure for Landsat MSS data for forest mapping in 

Canada. A review of digital enhancement of Landsat MSS data was given by Beaubien 

(1986). The applications he reviewed covered forest vegetation classification and forest 

type, biomass and inventory mapping. The most recent development of image
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enhancement technique is the integration of enhanced digital satellite data with digital 

topographic data in a GIS. This image enhancement approach has proved to be valuable 

in improving land cover mapping accuracy in complex and rugged territory (Walsh et al. 

1990).

Two principal types of automated classification procedure can be used to create forest 

type maps: supervised classification and unsupervised classification (Swain and Davis 

1978; Tom and Miller 1984; Richards 1986; Mather 1987; Howard 1991). In supervised 

classification, the spectral characteristics of each forest cover type (class) are defined by 

statistics (e.g. mean pixel intensity in each band, and the covariance matrix) derived from 

within a known area of that cover type called a “training” sample. The analyst then 

assigns specific pixels to classes (cover types) according to the statistical similarity of 

their spectral values. The data analyst in a sense “supervises” the establishment of 

decision boundaries by providing the training samples, and “teaches” the classifier to 

recognise the information classes. Therefore, the classification accuracy from the 

supervised approach, to a great extent, depends on the knowledge of the analyst about the 

interest areas and the numbers and representativeness of training samples (Thomas et al. 

1987; Fukue et al. 1988).

Unsupervised classification is based on a specific algorithm (such as clustering) to 

separate the spectral data of the entire image into classes. It is then up to the analyst to 

label these classes as to cover types. During the classification processes the analyst has 

little control over the establishment of the decision region. The classes are independent of 

any a priori assumptions about what ground covers they actually represent. To complete 

the analysis the spectral classes produced from unsupervised algorithms must eventually 

be converted to information classes by identifying the ground cover which corresponds to 

each spectral class (e.g. water has unique reflectance characteristics so that it can be 

discriminated easily by its spectral signature). Because of the analyst’s reduced control 

over the classification processes, unsupervised classification is not generally as effective a 

method of characterising information classes as is supervised classification. This is 

particularly true when the spectral classes are only marginally separable in the 

measurement space (e.g. two tree species and age stages of the same species which have 

only subtle spectral reflectance differences). When based entirely on unsupervised 

classification, analysis can be expected to produce reliable results only when the spectral 

classes are easily discriminated in the image. While in complex terrain where there are 

many cover types and therefore many spectral classes, it may be difficult to classify forest
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types (Townshend and Justice 1980), or even impossible to identify land-cover types of 

interest (Evans and Hill 1990).

A discussion of the capabilities and limitations of some most commonly used supervised 

and unsupervised approaches was given by Hoffer (1986). In view of the advantages and 

disadvantages of supervised and .unsupervised approaches, a hybrid approach (the 

combination of both supervised and unsupervised classifications) was proposed to 

improve classification and mapping capabilities of spectral data by incorporating two or 

more decision rules rather than using only one of these techniques (Walsh 1980; Thomas 

1980; Thompson et al. 1980; Hoffer 1986; Mather 1987; Chuvieco and Congalton 1988).

Spectral data of all resolutions have been employed to generate forest type maps, from 

high resolution of SPOT and TM to mid resolution MSS and to coarse resolution AVHRR 

maps (see below). Mapping accuracy, however, varied greatly between locations, terrain 

conditions, growing seasons (dates), resolutions and data qualities, processing and 

classification algorithms, scales, and detail degrees (classification levels), ranging from 

very low (less than 50%) to very high (greater than 95%) accuracy.

Landsat MSS data have performed successfully in classifying and mapping land cover 

and forest types at Levels I (e.g. forest and non-forest) and II (e.g. coniferous and 
deciduous forests), with 80% or higher mapping accuracy in many studies (e.g. 

Landgrebe et al. 1972; Howard 1976; Jaakkola 1976; Jones 1976; Cameiro and 

Hildebrandt 1978; Kan and Weber 1978; Beaubien 1979; Walsh 1980; Hill and Kelly 

1986; Kelly and Hill 1987; Karteris 1988; Hall et al. 1989 and 1991). However, the 

mapping accuracy of Landsat MSS data at higher classification levels (III-IV) has been 

typically below 80% (Dodge and Bryant 1976; Strahler et al. 1978; Häme 1984). The 

limitations of the Landsat MSS data prevent the extraction of much of the detailed 

information foresters require. These limitations include deficiencies in spatial and 

radiometric resolution, spectral bands of the sensor, frequency and timing of image 

acquisition and lack of flexibility of illumination and viewing geometry.

The spectral and spatial resolution of TM data have been increased over the original MSS 

data to improve the data quality and products. Anuta et al. (1983) identified six categories 

of level II-III land covers with Landsat 4 TM data, with classification accuracy ranging 

from 76.6% to 98.5% and overall accuracy 88.4%. These six categories are: (1) medium- 

aged slash pine (10-20 years old); (2) medium-aged loblolly pine; (3) young pines (<5 

year old); (4) uneven and mixed natural longleaf-loblolly pines; (5) hardwood-pine; and 

(6) non-forest. Coleman et al. (1990) could differentiate 5 age groups (i.e. 0-1, 2-5, 6-10,
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11-20, and >20) of pine plantations with TM data in Louisiana, USA. The classification 

accuracy ranged from 68% to 74% using band combination 5, 4, and 3, and could be as 

high as 98% in some sites. Lillesand et al. (1985) obtained 93% overall and 90% average 

class accuracy for an area which included hardwoods, jack pine, red pine, lowland 

conifers, and three levels of jack pine defoliation. Similar species separation was also 

obtained by Shen et al. (1985) with simulated TM (TMS) data of a Minnesota study area 

(USA). They discriminated forest covers from non-forest (level I) classes with as high as 

98% mapping accuracy. Bradbury et al. (1985) used both Landsat TM and MSS data to 

classify woodland in southern Wales. Their study area comprised stands of spruce, larch 

and pine on the uplands and oak, ash, beech and elm on the poorer soils and steeper 

slopes. The data showed the classification accuracy from TM data were better in most 

cover types (about 20% higher) than that from MSS data. Superiority of TM data over 

MSS data is also apparent in many reports (e.g. DeGloria 1984; Williams et al. 1984; 

Franklin 1986; Hopkins et al. 1988; Hall et al. 1989; Evans and Hill 1990; Arai 1992). 

Toll (1985), Hopkins et al. (1988) and Evans and Hill (1990) attributed better mapping 

results to better spectral discrimination of TM data (especially bands 1, 3, & 5).

TM data are superior to MSS data in mapping of level III but not necessarily of levels I 

and II. Dottavio and Williams (1982) classified a southern US. pine plantation into four 
classes, (i.e. clearcut, young pine, mature pine and hardwood) and found that the overall 

classification accuracy from Landsat MSS data was 71%, and that from TMS data 77%. 

When the pine classes were subdivided (i.e. pine: 1-5, 6-10, 11-25 years old and mature, 

and mixed pine/hardwood) the overall accuracy dropped to 30% for Landsat MSS and to 

60% for TMS. Benson and DeGloria (1985) evaluated digitally enhanced Landsat 4 TM 

data of a California study area. The classes included in this study were high density 

conifer, hardwood/conifer, hardwood, brush, meadow, grassland, bare ground, and rock. 

Overall classification results varied with sensor and band combination. General results 

were as follows: high density conifer—TM 62-85% correct, MSS 80%;

hardwood/conifer—TM 23-57% correct, MSS 47%; brush—TM 22-80%; MSS 20% 

correct; low density conifers—50-70%, MSS 90%; hardwood—TM—20-37%, MSS 

40%; and grassland—TM 60-70%, MSS 43%. Keil et al. (1990) obtained varied mapping 

accuracies in level II (deciduous forest 86%, pine 80%, and mixed deciduous and 

coniferous 69%) and III (species subclasses 52-71%). Similar varied results have been 

obtained by many other researchers (e.g. Toll 1985; Hudson 1987; Parks and Petersons 

1987). The data show that MSS data are more interpretable than TM data for certain 

cover types.
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Evans and Hill (1990) found that TM data were superior to MSS data for identification of 

longleaf-slash pine, loblolly shortleaf pine and hardwood stands in the Kisatchie National 

Forest, Louisiana, but no significant differences were observed between TM and MSS 

supervised classification of pines and hardwoods. By statistical analysis, Williams and 

Nelson (1986) found that the differences in classification accuracy lie in the nature of the 

land cover classes desired: for classification of finer, higher levels (levels III, IV or 

higher), the higher spatial resolution of TM is beneficial; whereas for classification of 

coarser, lower levels (Level I and II), TM has disadvantages unless the spatial context of a 

pixel is incorporated into the classification procedure. As pointed out by Townshend and 

Justice (1981), classification accuracy could sometimes be improved by coarser resolution 

of sensor data, since internal variations (e.g. sense noise) decline within each single class. 

Woodcock and Strahler (1987) showed that local variance of a forest type sharply 

decreased with pixel cell sizes from 30 m to 120 m. Recorded variations caused by the 

reflectivity differences between tree crowns and their shadows are increased as the spatial 

resolution is made finer, but are average when the spatial resolution is coarse (Howard 

1991). Maxwell (1976), Toll (1985), Cushnie (1987) and Justice et a l (1989) found 

higher spatial resolution imagery has higher internal variability within homogenous land- 

cover types than coarser resolution and therefore a poorer classification accuracy. At 

higher resolution forest stands look less homogeneous as areas of varying species or crown 

closure become distinct units. This causes greater variance in the reflectance from a forest 

stand and difficulties in classifying forest type. It is therefore useful sometimes to degrade 

the recorded signals by averaging groups of pixel values (e.g. 3 x 3  window) within each 

segment which is being digitally analysed; but the risk is that more mixed pixels are 

introduced into the classification.

The capability of SPOT data in classifying forest types has received mixed reviews. In an 

urban study in Athens, Georgia, SPOT data were found to increase the accuracy of level 

II and III classifications by 15 to 20% over that of TM data (Welch 1985). Skidmore and 

Turner (1988) discriminated five age classes in radiata pine plantations in Australia with 

an 87% mapping accuracy. In assessing the capability of species recognition of SPOT 

data in northern Belgium, Borry et al. (1990) could map the forest cover types at level II 

with 95% accuracy and 60-95% at level III information details. In Kenya, SPOT imagery 

was used to identify and to delineate the boundaries of land systems, in which the 

plantation boundaries could be mapped at a scale of 1:10,000. Within the compartment, 

the planted species, height classes, age classes and crown cover could often be inferred 

from variations in hue (colour), tone and texture (see Howard 1991). In a recent study of
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subtropical vegetation classification using SPOT data, Franklin (1993) showed varied 

classification results at levels I and II. Low separability was found in an area with sparse 

and variable vegetation.

SPOT and TM data showed approximately equal capability for forest type mapping, but 

the SPOT system has fewer spectral bands and therefore statistically provides less spectral 

information than TM data (Parks and Peterson 1987; Chavez and Bowell 1988). Büttner 

and Csillag (1989) showed that the spectral separability and classification accuracy of 

soils was better with TM imagery owing to its MIR band (TM5), compared to those of 

SPOT imagery. Manure and Courboul£s (1989) showed that TM5 data allowed better 

identification of tree species, whereas TM1 (blue band) data were useful to separate 

species in terrain shadow zones. Chavez and Bowell (1988) stated that SPOT data may 

not necessarily produce higher accuracy in land cover classification than TM data, but 

that they may be better in cartography and area estimation. Welch (1985) suggested that 

SPOT data were more suitable for cartographic mapping at a smaller scale (e.g. 1:24,000 

or smaller) than TM data, but may be less helpful for forest type mapping because of 

reduced spectral resolution (fewer bands) relative to TM which may obscure vegetation 

differences. Parks and Peterson (1988) reported that both TMS and SPOT data have the 

same capability in identifying level III categories of different vegetation species, age 

classes and cover density using supervised classification techniques. They also stated that 

TM data could provide better opportunities for high resolution monitoring of vegetation, 

moisture, and geology through its many spectral band combinations and its extensive 

coverage; whereas SPOT data were more useful for acquiring information on spectrally 

and spatially complex ground features occupying small areas. In particular, SPOT has 

advantages in vegetation analysis through its limited spectral band combinations, its 

frequent coverage, and nadir and off-nadir viewing.

NOAA AVHRR data are usually used for forest type classification and mapping on a 

large area scale, such as national, continental and even global levels, because of their 

coarser spatial resolution. Since the mid-1980s, there have been several studies using 

AVHRR data for forest vegetation classification and mapping at the continental level. For 

instance, Justice et al. (1985) produced a continental digital image composite at the level 

of plant formations/pan-formations for Latin America using AVHRR data. Tucker et al. 

(1985) used AVHRR data to classify vegetation communities in Africa based on eight 

composite observations from an 11-month period. These composites were created by 

producing images composed of the maximum normal difference vegetation index (NDVI) 

values for each pixel during contiguous 21-day periods. Such compositing and use of
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multitemporal data are feasible at continental scales only with coarse resolution, high 

frequency coverage. Townshend et al. (1987) created a vegetation map of South America 

in which 16 vegetation classes were differentiated, several with accuracy greater than 

90%. Clark et al. (1986) used AVHRR data to classify ecological units at a 1:250,000 

scale (Level I: forest and non-forest areas; Level II: coniferous, deciduous, and mixed 

forest types) using colour enhancement methods with AVHRR. In comparison with 

Landsat MSS data, Gervin et al. (1985) produced a land-cover map for the Washington, 

DC, area with AVHRR data. In this study, classification accuracy at level I obtained from 

AVHRR was similar to classification accuracies for Landsat MSS data (71.9% and 76.8% 

respectively). The accuracy for the predominant classes was similar for both sensors, and 

land-cover discrimination for less commonly occurring and/or spatially heterogeneous 

classes was improved with MSS data. They concluded that the AVHRR data performed as 

well as, or better than, MSS data in classifying large homogeneous areas. Given mapping 

accuracy, lower processing cost and more temporal frequency, AVHRR imagery provides 

an attractive and reliable alternative to the higher resolution data for regional forest cover 

mapping. A comprehensive review of the applications of AVHRR data in ecological 

surveys, including stratification, inventory, and condition assessment, and detection of 

changes, has been made by Roller and Colwell (1986).

In site productivity/type mapping at the regional scale, Getter and Tom (1977) developed 

a multivariate discriminant model for classifying the site productivity of 14 coniferous 

species using Landsat MSS band data and ancillary data (i.e. elevation, slope, aspect, and 

airphoto-derived vegetation data) in Colorado, USA. The overall classification accuracy 

was 92% on the ten site index classes, while a classification accuracy of only 68% was 

obtained without using spectral data (Tom and Miller 1978). The ancillary variables (e.g. 

topographic data) were found to be generally more useful discriminators than spectral 

data. The work was continued by Tom and Miller (1980) by combining the four MSS 

bands and all their various band ratio combinations and topographic data, resulting in a 

training set accuracy of 97.3% for nine site index classes (i.e. 97.3% of 37 field site lots 

could be correctly assigned to their known site productivity class). Häme (1984) reported 

that, by using numerical interpretation of Landsat MSS data combined with colour 

infrared photography and map data, it is possible to map forest site types faster and with 

lower costs than by using traditional methods. Eleven of thirteen site types could be 

recognised from imagery, and mapping accuracy ranged from 0 to 100% with an average 

of 59%. Site type mapping using MSS data has been used in practice for forest taxation 

purposes in Finland (Lovdn 1986). A recent investigation showed that net primary
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productivity (NPP) (tons/ha/year) could be mapped with moderate accuracy in continental 

scale with AVHRR data (Chong et al. 1993).

With respect to mapping scales, Krebs (1982) produced forest type maps at 1:250,000 

scale at Level I information detail (75% correct) and Level III information detail (52% 

correct) and the interpretation cost was only 1%, which is lower than other photo

interpretation techniques (aerial photographs and colour infrared). Keil et al. (1990) 

produced 1:200,000 scale forest type maps from Landsat MSS data with 69-86% 

accuracies for level II and 52-71% accuracy at level HI. Mead and Meyer (1977), working 

with boreal forest types in Minnesota, concluded that 1:123,000 was the smallest 

acceptable scale when working with Landsat MSS data. Howard (1991) stated that 

Landsat MSS data favour forest mapping at a scale of 1:100,000 and map revision at a 

scale of 1: 50,000 or larger. Using manual interpretation, Karteris (1988) could map 

forest land at levels I and II at 1:50,000 scale using four Landsat MSS images in 

southwestern Michigan from winter and fall growing seasons. He obtained an accuracy of 

79.9-88.3% for mapping, and 86-95% for identification, with winter imagery showing 

better accuracy. In Ireland TM data has been demonstrated experimentally to be suited to 

forest stock mapping at a scale of 25,000, but with the species information mainly 

provided from other sources; and for stock map revision of wind throw and clear felling 

at scales up to 1:10,500 using a GIS overlay of forest compartment and sub-compartment 

boundaries (MacSiurtain et al. 1989). In comparing the mapping capability of satellite 

imagery from several sensors, Konecny (1990) suggested 1:200,000 scale for Landsat 

MSS data, 1:100,000 for TM and 1:15,000 for SPOT panchromatic data (cited in 

Torlegärd 1992). Gugan and Dowman (1988) developed a topographic mapping model 

using SPOT imagery. The mapping accuracy with this model was compatible with that of 

mapping at 1:50,000 with 25 m contours and about 80% of the information content 

required by 1:50,000 scale mapping could be extracted. Hall et al. (1991) showed that 

SPOT panchromatic band data were able to map forest cutover at 1:15,000 scale as 

accurately as from traditional aerial photographs at the same scale. Based on Markham 

and Townshend (1981), smaller map scales (such as 1:10,000 or smaller) may be obtained 

using higher spatial resolution images (e.g. SPOT Panchromatic band 10 m resolution, or 

low altitude imaging spectrometer) since mapping scale can be seen as a function of 

spatial resolution.

Many efforts have been made to improve classification accuracy by (1) development of 

new classification and enhancement techniques or discrimination roles; (2) application of 

ancillary data, (3) application of multi-temporal or multi-sensor data; and (4)
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improvement in data quality by error corrections. To improve forest site mapping 

accuracy, Pu and Miller (1991) developed a classification method using fuzzy sets theory 

by incorporating TM and ancillary data, obtaining an accuracy of 78%, which is close to 

that derived from site index. Fisher.and Pathirana (1990) suggested that a fuzzy classifier 

may enable the extraction of information about individual pixels and about sub-pixel 

phenomena not addressed by other classifiers. Wang (1986a, b), Lees and Ritman (1991), 

and Moore et al. (1991) showed better classification and mapping accuracy using a 

decision-tree classifier. Skidmore (1989) developed an expert system classifier to map 

eucalypt forest types in Australia and concluded that it could improve forest type mapping 

accuracy. Kanellopoulos et al. (1992) proposed an artificial neural network based on the 

multilayer-perception model to classify land-cover types using two-date SPOT data. The 

average classification accuracy was 91%, exceeding the performance of a maximum- 

likelihood classifier by 28%. Another example of using the neural network classifier can 

be found in Salu and Tilton (1993). Plumb (1993) improved the mapping accuracy of 

vegetation types in Big Bend National Park, Texas, from 42% by traditional supervised 

classification to 72%, using knowledge-based digital mapping techniques. Using landform 

and vegetative factors, Satterwhite et al. (1984) could improve land cover classification of 

Landsat MSS data from level II to III and at times to level IV. Lynn (1986) and Hill and 

Aifadopoulou (1990) suggested that application of multi-sensor data could improve 

classification accuracy. Merged images of different spatial and spectral resolution have 

been used to enhance interpretability (Welch and Ehlers 1987) and merged images from 

different growing seasons have shown more ability to make land cover classifications 

than single date images (Fuller and Parsed 1990). Multi-temporal data are especially 

useful in discriminating land cover types in extremely complex and heterogeneous 

environments where the surfaces are barely identifiable spectrally (Conese and Maselli 

1991; Fleischmann and Walsh 1991; Thomson 1992). The mapping capability of coarse 

spatial resolution data (e.g. AVHRR) can be improved by incorporating higher resolution 

data sources (Iverson et al. 1989; Marsh et al. 1992). Skidmore et al. (1986) and Richards 

et al. (1987) showed improved mapping accuracy by combining SIR-B radar and Landsat 

MSS data. Strahler et al. (1978), Tom and Miller (1980), Satterwhite et al. (1984), and 

Moore and Bauer (1990) showed improvement in classification results when combining 

spectral and ancillary data.

To improve data quality, Chen (1984) developed a topographic correction procedure for 

Landsat MSS data using the DTM data over the same area. The corrected Landsat MSS 

data showed better classification accuracy than the original data. Yu and Chen (1990)
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showed that topographically-corrected TM data give better information on vegetation in 

mountainous regions than uncorrected data. Kawata et al. (1988) proposed a radiometric 

correction method for removal of atmospheric and topographic effects on Landsat MSS 

data. Hall-Könyves (1987) showed that the topographic effects on the spectral responses 

of cultivated fields in gently undulating terrain (0-15°) were weak. Itten and Meyer (1993) 

showed that in complex terrain, TM data corrected geometrically (slope-aspect) and/or 

atmospherically-corrected could increase classification accuracy by 10 to 30%, 

geometrically-corrected data having better accuracy than atmospherically-corrected data. 

The data showed that in terrain with 5° or higher degrees of slope the spectral responses 

were significantly affected. Similar error correction methods have also been used for 

improving the quality of SPOT data (Senoo et al. 1990; Yang and Vidal 1990; and Baker 

et al. 1991) and AVHRR data (Singh and Saull 1988; Teillet and Staenz 1992).

The current trend in improving classification accuracy is the use of GIS to integrate 

digital biogeographical data with satellite remotely-sensed data and the introduction of 

knowledge-supported data analysis techniques. The data sources can be from multi

sensors, multi-temporal, multispectral, or multi-resolution data sources. The most widely 

used ancillary data are from digital terrain models (DTM) which include elevation, slope, 

aspect and slope position data. The variation in the topographic configuration of an area 

can produce a complex reflectance geometry that can increase the probability of 
misclassification, and this can be more important in altering spectral responses than crown 

size and crown density (Walsh 1987). By incorporating DTM data, the shadowing effects 

caused by sun angle can be corrected. For instance, topographic variables were integrated 

with TM data to increase the accuracy of classifications of vegetation communities in the 

Rocky Mountain terrain (Frank 1988). Increase in accuracy of classification has also been 

reported by a number of other authors (e.g. Skidmore 1989; Janssen et al. 1990; 

Kanellopoulos et al. 1992; Chagarlamudi and Plunkett 1993).

2.4.5.4 Forest Inventory

Using remotely-sensed data for forest inventory purposes has become a common forestry 

practice, especially for the purposes of inventory data base update (Hegyi and Quenet 

1982 and 1986; Poso et al. 1987; and Pilon and Wiart 1990). Jaakkola (1986a and 1986b) 

gave a broad summary of applications of Landsat MSS data to forest inventories and 

forest management in the European countries, especially in the Nordic countries. The 

applications are directed to inventory sampling designs (e.g. two-stage and multi-stage 

sampling), forest site type mapping, forest cover (type) classification, estimating stand
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variables, and monitoring forest changes. Applications of Landsat MSS for regional forest 

resource inventory and management in North America were summarised by Leckie 

(1986).

Multi-stage sampling procedures (also called multi-phase sampling, double sampling, 

photo-plot sampling, two-stage, or three-stage sampling in some work) have been used in 

studies associated with forest inventories with satellite data. Since sampling from imagery 

and/or photographs is far quicker than ground sampling, it is advantageous to sample in 

the field on a fraction of the plots sampled on the imagery and then to collect field data, 

which cannot be otherwise obtained. Usually remotely-sensed data are used for forming 

the sample of the first stage in multiphase sampling. This is accompanied by several 

stages of sub-sampling using low and/or high altitude photography and/or ground data 

acquisition to check the first-stage interpretation (e.g. Heath 1974; Kalensky et al. 1979; 

Hegyi and Quenet 1986; Jaakkola 1986a; Poso et al. 1984 and 1987; Peng 1987; and de 

Gier and Stellingwerf 1992). Refer to van Genderen et al. (1978), Nelson et al. 1987, and 

Skidmore and Turner (1989) for detailed discussion on sampling designs for accuracy 

assessment of maps from satellite data.

A three-stage sampling model for large-area timber inventories was developed at the

University of Freiburg (Jaakkola 1986b). In this study, Landsat MSS imagery was used to

create the first-stage sampling units resulted in identification of forest type covers such as

hardwood and conifer forests. Second-stage sampling units were selected (at 5% sampling

error) from 1:50,000 scale CIR-film by applying the PPS (probability proportional to

size) sampling method based upon the timber characteristics: age, crown closure, height,

crown diameter, and stocking. A total of 320 photo points were measured in the field in

the third stage of the inventory. The results showed strong agreement in forest area

estimate (compared with the actual area); the standard error of volume estimate of

principal tree species was 5%. The disadvantage of the three stage sampling method is the 
*

requirement for full coverage of aerial photographs, which may not always be available.

Poso et al. (1987) presented a two-phase sampling procedure for estimating stand 

variables using Landsat TM data. By integrating Landsat TM data with permanent sample 

plots, Peng (1987) proposed a continuous forest inventory method for compartmentwise 

estimation. An example of successful multiphase sampling is provided by the Alaskan 

multi-resource vegetation inventory (LaBau and Winterberger 1988). The sampling 

design uses three levels of remote sensing information: Landsat MSS data classification, 

small scale CIR aerial photographs (1:60,000) and macro-scale CIR photographs (1:3,000 

to 1:7,000). The fourth phase is provided by field plots.
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Stratification, correlation and regression modelling are three basic approaches used for 

estimating stand variables in multi-phase forest inventory. The major purpose of sampling 

stratification is to reduce the standard error of the estimate (Strahler 1981), while 

correlation and regression are used to establish the relationships between the estimated 

and true values. Kirby and Van Eck (1977) used Landsat MSS data to stratify forest into 

cover types as a first stage during conifer forest inventories. Jaakkola and Saukkola 

(1979) used Landsat MSS data to develop regression models for timber volume 

estimation in the forest stands dominated by Scots pine in northern Finland. The means of 

the block volumes were 80.1 m3/ha (measured) and 79.7 m3/ha (model-estimated) 

respectively. Strahler and Li (1981a and 1981b) reported studies using Landsat MSS data 

to estimate stocking and height in sparse to moderately stocked ponderosa pine forests.

Nelson et al. (1987) reported a statistical procedure which utilised Landsat MSS data in a 

stratified random sampling design to assess continental or sub-continental forest 

resources. In their study, sample blocks were analysed from MSS imagery selected 

throughout the continental USA in order to estimate the areas of conifer and broadleaved 

forests. Misclassification errors reduced the reliability of the estimates. The accuracy of 

estimates was significantly improved after improving the sampling design procedures by 

incorporating aerial photo-interpretation information to “correct” or “adjust” Landsat- 

based estimates of coniferous and broadleaved forests (Nelson et al. 1989). The sampling 

procedure, according to the authors, was useful for assessment of continental (e.g. whole 

country) or sub-continental (e.g. forest types) forest resource.

Poso et al. (1984) proposed a stratification model for compartmentwise estimation with 

Landsat MSS data. He found the best stratification was obtained from the first principal 

component. The stand variables estimated by the model showed high correlation with the 

same variables measured in the field. The correlation between the first principal 

component and stand age was 0.82 and between the first principal component and stand 

volume 0.78 for the two best sites. This work was continued three years later by using 

both Landsat MSS and TM data for plotwise and compartmentwise estimation of stand 

characteristics (Poso et al. 1987). Again the best stratifications were obtained from the 

first principal component images, with a correlation of about 0.85 for stand volume, age 

and mean height. Similar procedures and results were reported by Peng (1987).

A forest classification and inventory system (FOCIS) was designed by Franklin et al. 

(1986) at the University of California for stratified sampling. They combined Landsat 

MSS data with DTM data for timber stratifications. The overall accuracy of stratification 

and estimates of timber for a large area was about 87%, with standard errors ranging from
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6.7 to 24.4. The results suggested that FOCIS can produce a softwood timber volume 

estimate for very large areas with an accuracy comparable to estimates produced by 

conventional means, but at significantly lower cost than conventional methodologies.

As discussed earlier, Landsat MSS have been shown to be capable of classifying forest 

land into cover types (or stratifications) at levels I and II with reasonable accuracy. In 

some cases, this level of stratification is adequate for an initial reconnaissance of 

unmapped, poorly mapped or inaccessible areas. The improvements in the accuracy of 

broad level classification with better spatial resolution data (such as TM and SPOT) make 

the results more acceptable as a source of reconnaissance-level forest information than the 

results from the coarser spatial resolution data (such as Landsat MSS data). Hall et al. 

(1989) used both Landsat TM and MSS data for mapping and estimating area of forest 

cutover, obtaining an approximately equal mapping accuracy (89.5% for TM and 86.9% 

for MSS data respectively). Roller and Colwell (1986) and Hall et al. (1991) suggested 

that NOAA AVHRR data may be more useful and cost-effective for stratifying broad land 

cover types prior to sampling, whilst the combinations of AVHRR and TM data may 

increase the accuracy of stratification.

Bercha et al. (1990) developed a multi-sensor airborne forest inventory system in Alberta, 

Canada. The system provided a three-dimensional description of forest using the spectral 

information from vertical and horizontal planes recorded by Laser and multispectral 

camera (video) sensors. The forest description included principal stand characteristics 

such as species composition, forest condition, crown density, height, vertical stratification 

and foliage density. The system provided an economical and efficient technique for 

obtaining forestry parameters ranging from pre-inventory surveillance to detailed 

inventories and monitoring of changes in the forests in different conditions.

Reich and Hussin (1993) used a two sampling design for estimating stand above-ground 

biomass on a regional basis using L-band radar backscatter imagery. Two models were 

derived to estimate stand biomass by comparing three estimations in a simulation study 

using four sample sizes (25, 50, 100 and 200 stands). Model 1 estimated average stand 

biomass as a function of the amount of radar backscatter, while Model 2 estimated 

biomass as a function of the radar backscatter and basal area. The F-test and t-test showed 

that no significant differences existed between the model-estimated and ground measured 

biomass (a < 0.05). Model 2 showed better estimate accuracy than Model 1. Mean square 

error (MSE) dramatically decreased from 100-650 to 10 - 64 as sample sizes increased 

from 25 to 200.
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2.4.5.S Evaluation of Stand Variables

Remotely-sensed data have been used with varying degrees of success to quantify various 

stand variables such as canopy closure, density, diameter, basal area, height, tree age, 

volume, biomass, and LAI. In general, the technique is to relate the forest structure 

variables of interest obtained from ground measurements to the spectral data at the same 

location. The spectral values can be original data or various combinations and 

transformations. The most common method is correlation analysis and/or regression 

modelling (including simple, multiple and/or stepwise regression techniques). Virtually 

all studies have focused on coniferous forests, especially plantations, which tend to be 

more uniform and more distinguishable from other vegetation types than are deciduous 

forests.

Canopy closure of coniferous forests in Sequoia National Park in California, USA, 

correlated well with the spectral values of several bands or band combinations of TMS 

data, with correlations (r) ranging from 0.62 to 0.69 (n = 123) irrespective of forest type 

(Peterson et al. 1986). Total basal area, however, was poorly related to the spectral data (r 

< 0.5). They found that stratification by forest type could significantly improved the 

correlation with basal area. The data analysis suggested that the relationships between 

total basal area and spectral values will be strongest in young, low density, even-age 

managed plantation stands. In another study of California coniferous forests, TMS visible 

bands (Bands 1, 2, and 3) were found to be most strongly correlated with basal area and 

leaf biomass (Franklin 1986), but the correlations were relatively low (r2 = 0.29 - 0.30). 

The best result was obtained from the band 3 with log-linear equation (r2 = 0.64 and 0.67 

for basal area and biomass respectively).

A relatively high negative correlation between TMS and canopy closure was found for the 

pine-aspen forests in southwest Colorado, USA (Butera 1986). The correlation 

coefficients were -0.76 (TM1), -0.66 (TM2), -0.67 (TM3), -0.09 (TM4), 0.80 (TM5), - 

0.60 (TM6) and 0.76 (TM7) respectively. By using a regression model, she created a map 

of forest canopy closure for the area. The accuracies of the map were 71%, 74% and 54% 

for percent canopy closure classes of 0-25%, 25-75% and 75-100% respectively. Jensen 

et al. (1991) obtained much higher correlation between canopy closure of mangrove and 

SPOT XS data (NDVI) (r = 0.91) in southwest Florida, USA.

Spanner et al. (1984b) used a classification method to study the capability of TMS data to 

differentiate crown closure and tree size classes in a fir-dominant forest in Idaho, USA. 

They obtained a classification accuracy of 60% in differentiating canopy closure classes
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of 10-39%, 40-69%, and 70-100%; with lower accuracy on the sites of very low canopy 

closure (0-10%). Saw timber and pole size classes were also classified with 72-87% 

accuracy. Based on the classification accuracy, the bands in these analysis were ranked in 

order of TMS bands 4 > 7 > 5 > 3.

A regression model was built to estimate stand volume of Scots pine in Finland with 

Landsat MSS data (see Jaakkola 1986b). The correlation between volume and combined 

band data (i.e. Ch4 + Ch5)»(Ch6 + Ch7)) (r2) was 0.88 at forest block level. But the 

estimate at pixel-by-pixel level was low (r2 = 0.41). The model was tested in a timber 

inventory by visual checking and correlation analysis which resulted in correlation 

coefficients from 0.8 to 0.92. According to the authors, the model is applicable in forest 

inventory for estimating the regional distribution of timber volume. Forest management 

planners can use the results as such, or as a first step in a more sophisticated inventory.

Ardö (1991) investigated the relationships between Landsat TM data and the volume 

(m3/ha) of forest compartments in a coniferous forest dominated by Scots pine in southern 

Sweden. The correlations (r) between TM band data and compartment volume ranged 

from -0.50 to -0.80 (n = 99).

Li and Strahler (1981; 1985; 1986a; 1986b and 1992), Strahler and Li (1981a and 1981b), 

and Strahler and Jupp (1990) and Nilson and Peterson (1991) have taken different 

approaches to the study of satellite data of coniferous forests by using forest canopy 

reflectance models to investigate the potential of estimating forest canopy and stand 

parameters. Using the Li-Strahler geometric-optical canopy reflectance model, Woodcock 

et al. (1990) could estimate size and density of trees with Landsat TM data. Using the 

same models, reasonable estimates of woody biomass on a regional scale could be given 

with TM data (Franklin and Strahler 1988).

Franklin et al. (1991) correlated tree canopy cover of blue oak woodland and wooded 

grassland (semi-arid woodlands) in California, USA, to TM data over two seasons. The 

correlations (r) ranged from -0.76 (TM4) to -0.83 (TM3) for the raw band data of the 

September image, and -0.67 (TM4) to -0.77 (TM1) for the December image. The 

correlations were improved (about 2-7% increase) when using the canopy cover plus 

modelled canopy shadow cover. In a recent study in young conifer stands in Oregon, 

USA, a very high correlation was obtained between TM band data and stand ages of 

Douglas-fir dominated stands (2 to 35 years old) (Fiorella and Ripple 1993) with linear 

correlations (r) ranging from 0.82 to 0.96 (except TM4). Log-linear regression modelling 

showed that the TM4/TM5 ratio could explain 91% of stand age variation.
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Many studies have related the LAI of coniferous forests to satellite data. Running et al. 

(1986) correlated LAI of coniferous forest stands along a transect across the mountains of 

Oregon, USA, to airborne Thematic Mapper (ATM, i.e. TMS) data by linear regression 

analysis. The strongest positive correlation was produced between the LAI and NIR/red 

band ratio (r2 = 0.76, SE = 0.38, n = 18). The correlation was improved to 0.82 (SE = 

1.187) after correction for atmospheric effects. The LAI for these stands ranged from 0.6 

to 16.0 m2/m2. In another study by Peterson et al. (1987), a log-linear equation fitted the 

asymptotic characteristics of the relationship better, explaining 89% of variation for the 

red and 91% for the NIR/Red band ratio respectively. Inverse curvilinear relationships 

were observed between LAI of temperate coniferous forests in the western US and TM 

data by Spanner et al. (1991), the best correlation being obtained from TM5 (r = 0.74), 

and improved to 0.80 by topographical and atmospheric correction. However, the 

estimate accuracy of LAI at sub-regional scale is generally low (Memani et al. 1993).

Sader et al. (1989) examined the relationships between forest structure and biomass and 

TM-derived vegetation indices in three forest types (tropical, subtropical and warm 

temperate forest biomes) in Puerto Rico and the USA. The normalised difference 

vegetation index (NDVI), calculated from low altitude aircraft TMS data, was found 

significantly correlated with forest age classes (r = 0.67 and 0.65 respectively), but the 

TM-derived NDVI was not correlated with the same age classes (r = 0.11). Moreover, 

biomass differences were found undetectable with NDVI. They concluded that NDVI 
computed from TM data does not appear to be a good predictor of stand structure 

variables or total biomass in uneven age, mixed broadleaf forest, especially in areas with 

complex terrain conditions. Nemani et al. (1993) and McGwire et al. (1993) also showed 

a low relationship between TM-derived NDVI and LAI. The correlation between LAI and 

NDVI could be somewhat improved by correction for canopy closure using the MIR band 

(Nemani et al. 1993), or by reducing the effects of spatial autocorrelation in sampling 

design (McGwire et al. 1993).

Larson (1993) established predictive models for estimation of canopy cover of Acacia 

woodland in eastern Sudan using the NDVI computed from Landsat MSS, TM and SPOT 

data. The correlation coefficients (r) between field-measured canopy cover and the 

satellite sensor derived NDVI were 0.552, 0.698 and 0.718 for MSS, TM and SPOT data 

respectively. The best correlation and estimate were obtained from SPOT data.

Spanner et al. (1990) related LAI from 19 coniferous stands in Oregon, Washington, 

Montana, and California, USA, to NDVI of multi-temporal AVHRR data. The NDVIs of 

the summer images were found best correlated LAI (r2 = 0.70 for July 1986 image and



58

0.79 for July 1987 image). They concluded that AVHRR NDVI could be used to detect 

seasonal differences in all of the forest stands. These seasonal difference were related to: 

a) phenological changes in LAI caused by climate; b) proportions of surface cover types 

contributing to the spectral reflectance; and c) large variations in the solar zenith angle. 

Curran et al. (1992) found seasonal LAI of coniferous forests could be estimated using 

Landsat TM data.

Turner et al. (1987) related SPOT-1 data to stand variables of radiata pine in Canberra, 

Australia. They found that only the NIR band (XS3) was significantly correlated with 

stand age and dominant height (r2= 0.5 approx.). Danson (1987) correlated SPOT data 

with five stand variables of Corsican pine in England and found strongly significant 

correlations of SPOT NIR band (XS3) to tree density (r = 0.65, n -  29), mean diameter at 

breast height (DBH) (r = 0.79), mean tree height (r = -0.83) and age (r = -0.67), but not to 

canopy cover. The correlations between green (XS1) and red (XS2) and stand variables 

were relatively low (r < 0.48). Similar correlation patterns were also reported in a recent 

study with ATM and SPOT data (Danson and Curran 1993), where ATM band 7 and 

SPOT XS band 3 were found most strongly negatively related to stand age, tree density, 

mean tree height, DBH (ATM 7: r = -0.60 to -0.76; SPOT XS3: r = -0.66 to -0.84).

Stenback and Congalton (1990) examined the understory of mixed coniferous forests in 

northern California, USA with TM data. They found that TM data could be used to 

recognise the presence or absence of vegetated understory in three canopy closure classes: 
sparse (< 30%), moderate (30-70%), and dense (> 70%). The best classification accuracy 

was obtained from a combination of TM bands 2, 3, 4, 5, and 7.

SPOT and TM data were used to estimate tree density of sparse oak (Quercus ilex and Q. 

suber) woodlands in southern Spain (Joffre and Lacaze 1993). The regression analysis 

showed that TM data were less successful than SPOT data. SPOT panchromatic band data 

explained about 72% of variation of tree density. The explanatory power could be 

improved to 88% through a 0-100 binary coding of panchromatic data, called thresholded 

Laplacian Index (TLI)). TM data could explain only about 37% or less variation.

Westman and Paris (1987) developed a model to estimate 31 structural features and the 

biomass of forests of pygmy cypress (Cupressus pygmaea) and pine (mainly Pinus 

contorta ssp. Bolabderi) near Mendocino, Canada with great success using C-band radar 

(4.75 GHz) data. The model enabled independent testing of the effects of tree stem, 

branch, and leaf branch biomass, branch angle, and moisture content on radar backscatter. 

Tree LAI was strongly correlated with vertically polarised power backscatter (r = 0.94),
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while branch mass per unit area was highly correlated with crosspolarised backscatter (r = 

0.93).

An airborne pulse laser system, called the Light Detection and Ranging (LIDAR) system, 

has been used by Nelson et al. (1988) to predict total tree volume and green weight 

biomass of a pine plantation in Georgia, USA. They were able to estimate overall tree 

volume to within 2.6% and mean biomass to within 2.0% (based on 38 test plots), but 

were not successful in predicting volume or biomass on a site by site basis. Their earlier 

study (Nelson et al. 1984b) showed that airborne laser data were highly correlated with 

canopy closure (r2 = 0.82), but less well correlated with tree height.

A knowledge-based expert system was developed to assess vegetation characteristics from 

spectral albedo and biogeographical information (Kimes et al. 1991). This system can be 

used for inferring and evaluating the physical and biological characteristics of a forest 

stand including ground cover, biomass, LAI, and photosynthetic capacity. The inferences 

from this system were significantly more accurate and robust estimates of vegetation 

characteristics than conventional data analysis (information extraction) techniques.

2.4.5.6 Estimation of Site Productivity

As discussed in Chapter 1, the productivity of a forest site is the productive capacity (or 

actual production) of an area of land for a given forest type or tree species. In forestry it is 

commonly designated as site index, yield and/or mean annual increment of timber 

volume; whereas in ecological studies, it is usually measured with biomass weight of a 

unit area (e.g. tonne/ha). Using satellite data, forest productivity is generally assessed by 

means of ways of (1) digital classification and mapping of forest type or site classes and 

(2) estimation of productivity variables such as volume, yield, site index, mean annual 

increment, and/or biomass through correlation and regression modelling. Although 

classification and mapping of site productivity (or site types) based on satellite data have 

been produced at broad levels with some success, the successful direct estimates of forest 

productivity using satellite data are fare.

Fox et al. (1985) developed a discriminant model for predicting forest productivity with 

moderate success using satellite and biogeographical data (18 variables) in northwestern 

California, USA. Three broad productivity classes delineated by wood volume classes (> 

85 ft3/acre/year, 50—84 ft3/acre/year, and < 50 ft3/acre/year) could be predicted using 

vegetation cover data obtained from Landsat MSS data classification and combining it 

with topographic data and ecological zone information. The mapping of the productivity 

classes produced from the model showed an overall accuracy of 86.6% at one site and
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73.7% at another. However, these productivity classes are too general to show the real 

differences between site classes. For instance, site classes I to IV of Douglas-fir were all 

classified into the first, while class V was in the second productivity class and none were 

in the third productivity class.

In another study, predictive models of mean increment of timber volume in three study 

sites of the United States (southern Illinios, eastern Tennessee, and northwestern New 

York) were developed using TM data and digital biogeographical data on forest 

productivity and soils, DTM, solar radiation, vegetation type in a GIS (Cook et al. 1987; 

Cook et al. 1989). In general, forest productivity was more accurately predicted with a 

combination of TM and biogeographical variables than with either data type alone. The 

best regression models in each of the three study sites were statistically significant (p < 

0.002). However, the correlations were generally low (r = 0.30 - 0.64).

Iverson et al. (1988) used AVHRR data to estimate site productivity (i.e. mean increment 

of timber volume) at regional levels in Illinios and Tennessee, USA. A multiple 

regression technique was used to derive the predictive models by relating AVHRR data to 

the TM-derived estimates of forest productivity mentioned above (i.e. Cook et al. 1987; 

and Cook et al. 1989). The predictive models were employed to estimate the site 

productivity of each AVHRR pixel for creating regional maps of forest productivity. The 

results were then compared with the forest productivity estimated by the US Forest 

Service at county levels. For the 428 counties in the southern Illinios region, the 

correlation (r) between the two productivity estimates was 0.71. For the 168 counties in 

the eastern Tennessee region, the correlation was 0.52. The data suggested that forest 

productivity could be predicted with moderate accuracy (about 60 to 70% of total 

variance) at the continental scale by stratification of sites within ecological regions.

Predictive models were derived to estimate site quality with limited success using Landsat 

5 TM data in tropical moist forests of northeast Queensland, Australia (Vanclay and 

Preston 1990). Site quality, defined as growth index (GI) derived from stand variables 

(e.g. DBH, diameter increment, basal area, and tree species) was strongly correlated with 

TM data (r = 0.293 - 0.719). The best correlation was obtained from band 5. Geological 

variables were found helpful for improving the performance of TM data for site quality 

estimation.

In Finland, satellite data have been used to rate site productivity with some successes 

(Häme and Saukkola 1982; and Häme 1984). An operative forest productivity class 

estimation method, called KAUKO, was developed to determine site quality classes using
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Landsat MSS imagery (Häme and Saukkola 1982). The site quality classes which 

represent the timber growth potential of each site were defined based on lesser vegetation 

according to Cajander’s (1909) forest type theory. Tomppo (1992) improved the method, 

called KAUK02, and used it to estimate site fertility applying Landsat TM and DTM 

data. The results obtained were very close to that from inventory sampling and have been 

used by Finland Government for forest income taxation. The method developed could 

save 14 to 60% cost and 20-30% of the time compared to conventional methods.

Estimation of vegetation productivity has proven to be globally applicable. Box et al. 

(1989) have shown that the AVHRR-derived NDVI has as strong a relationship with net 

primary productivity (NPP) as climate-based productivity models do, and the relationship 

is reliably consistent over most ecosystems (r2 = 0.81 based on measurements of annual 

NPP from different biomes, n = 94). NDVI is also related to actual evapotranspiration 

(AET) across a range of biomes (r2 = 0.87) (Box et al. 1989). Running et al. (1989) also 

determined that AET and PSN (net photosynthesis) estimates from AVHRR-derived 

NDVI closely matched ground measurements (r2 = 0.90), even in mountainous terrain. 

Forest productivity, the productivity (NPP) of coniferous forests in particular, was found 

most strongly correlated with NDVI; while above ground annual NPP was found to be the 

best indicator of productivity (Box et al. 1989). However, the correlations varied greatly 

with scales, indicators of productivity and vegetation types. For instance, in the example 

mentioned above (Box et al. 1989), the NPP-NDVI correlations were relatively low at 

regional levels.

2.4.5.7 Detection of Forest Changes

2.4.5.7.1 Introduction

Remote sensing is a useful tool for detecting, determining and evaluating changes in a 

variety of surface phenomena over time. The information about changes in forests is 

especially important for updating forest resource maps and forest statistics. Two major 

types of change appear in forests: natural and man-made. Natural changes are 

consequences of seasonal variations, growth, mortality and damage (e.g. water stress, 

insect and disease damage). Man-made changes involve cutting, road construction, 

silvicultural treatments, and man-made damage (such as burning). Milne (1988) noted 

that common types of change detectable in remotely sensed data are those associated with 

the clearing of natural vegetation, increased cultivation, urban expansion, changing 

surface water levels, post-Fire vegetation regeneration, and soil disturbances resulting 

from mining, landslides and overgrazing. Satellite data are therefore very suitable for
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monitoring the kind, quality, distribution, and condition of natural vegetation found on 

range and forest lands (Milton and Mouat 1989).

A key technique for detecting changes in the forest is the use of two or more satellite 

images of the same area, preferably acquired from the same sensor at the same 

phenological period but in different years. The multi-temporal satellite images can be 

obtained from different sensors, but must be geometrically and atmospherically corrected 

and merged to make a new multiple band combination data set for change detection use. 

Many digital analysis techniques have been developed for studying remotely sensed data 

for change detection purposes. Milne (1988) divided these techniques into five broad 

groups: (1) visual interpretation; (2) differencing images and ratioed images; (3) 

classification routines; (4) data transformation (e.g. principal component analysis, albedo 

differencing images); and (5) regression analysis. Discussion of the principles and 

methodologies of these techniques can be found in reviews by Milne (1988) and Hobbs 

(1990). Singh (1989) gave a discussion on these different change detection techniques. 

Mouat et al. (1993) reviewed the applications of combinations of various data sources for 

forest change analysis. Hallum (1993) proposed a sampling and stratification procedure 

for “change estimation”. Several examples of detection of forest changes with remotely 

sensed data: deforestation (clear cutting, cutover), forest damage, forest declines, forest 

stand dynamics; and seasonal variation of stand variables are reviewed below.

2A.5.7.2 Deforestation

Monitoring changes in forest cover over time is, perhaps, one of the most important 

applications of satellite data. In Brazil, AVHRR and/or Landsat MSS were used to 

estimate deforested areas and deforestation rates with moderate success at a regional level 

(Malingreau and Tucker 1987; Nelson and Holben 1986; Nelson et al. 1987; Woodwell et 

al. 1987). By comparing the Landsat MSS and TM derived forest cover maps produced 

from manual interpretation in a GIS in three regions in western Victoria, Australia 

(Mildura, Horsham and Portland regions), Frisina et al. (1991) identified the area of 

forests cleared and the amount reforested between 1987 and 1990. They also determined 

the gross rate of forest clearing on freehold land for the three years.

Comparing the forest cover maps derived from Landsat MSS data of 1977 and 1983, 

forest cover in Costa Rica was found to be significantly decreased (Sader and Joyce 

1988). Furthermore, four of the 11 Costa Rican forest zones have disappeared completely: 

dry tropical forest, moist montane forest, moist lower montane forest and wet montane 

forest. They also found that a close relationship existed between road building and
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deforestation by overlaying transportation network maps with forest cover maps. In 

another study using Landsat MSS data from 1973 to 1988 in the Mabira Forest in 

southeastern Uganda, Westman et al. (1989) found a net forest removal of 29% during the 

15-year period.

2.4.5.7.3 Forest Damage

Damage is any loss, either biological or economic, due to environmental factors (called 

“stress” in some literature) capable of inducing injury to a plant (Murtha 1982). Damage 

caused by insects and/or diseases has been evaluated successfully using remotely-sensed 

imagery (e.g. Heath 1974; Dottavio and Williams 1983; Nelson 1983; and Häme 1991). 

Work by Dottavio and Williams (1983) showed that Landsat MSS imagery was capable 

of indicating where areas of heavy gypsy moth (Lymantria dispar L.) defoliation occurred 

but was only partially capable of resolving areas of moderate defoliation. Since 1983, 

annual defoliation of hardwood forests by gypsy moth in the mid-Atlantic states has been 

regularly mapped from high altitude panoramic CIR aerial photos (Ciesla et al. 1989). By 

comparing the capability of SPOT-1 data with high altitude CIR panoramic aerial photos 

in mapping the defoliation of hardwood in the same regions, Ciesla et al. (1989) showed 

that 86% agreement could be obtained between the two map products, but SPOT data 

were cheaper and easier to interpret. They concluded that the visual interpretation of 

SPOT data could provide the general location of defoliated areas and produce reliable 

statewise or regional maps showing defoliation, but was less reliable for estimating 

intensify of defoliation on a site specific basis.

Cohen (1991) detected the changes caused by water stress of vegetation using Landsat 

TM data and obtained a relatively high correlation (r = 0.84 for NDVI). Damage to 

hardwoods caused by pear thrips (Taeniothrips inconsequens Uzel) in 1984 and 1988 was 

evaluated using Landsat TM data in southern Vermont and northwestern Massachusetts, 

USA (Vogelmann and Rock 1989). The image analysis by using band ratioing and 

subtracting techniques showed that in approximately 0.33 million ha of deciduous forest 

in the study area, 39.4% was classified as medium damage, and 9.7% was high damage. 

By comparison, the damage in 1988 was higher than in 1984. In their early study using 

airborne NS-001 TMS data in the spruce-fir forests in the same region, the ratios of 

1.65/1.23 and 1.65/0.83 pm reflectance were found to be strongly correlated with ground- 

based measurements of forest damage, with correlation coefficients (r2) being as high as 

0.95 (Vogelmann and Rock 1986). Several investigations have also used satellite data to
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map and assess forest damage caused by other insects (e.g. Leckie and Ostaff 1988; 

Mukai et al. 1987; Nelson 1983).

A comprehensive study was conducted in Finland to detect the changes in both coniferous 

and deciduous forests resulting from thinning, clear cutting, damage and growth using 

multi-temporal SPOT and TM data (Häme 1991). The results of this work showed that 

using multi-temporal spectral data and knowledge about changes in forests, changes 

resulting from thinning (e.g. thinning intensity), clear cutting and growth could be 

detected, and the degree of forest damage could be estimated and predicted, but changes 

due to site preparation methods could not be separated. The NIR band was most sensitive 

to forest damage. The study suggested that satellite-aided detection of change can be used 

for updating forest map systems, aiding normal treatment planning, updating sampling 

inventory results and giving information for ecological investigations. An automated 

system for monitoring forest changes can be created using multi-temporal spectral data 

combined with knowledge about changes in forests.

Brockhaus et al. (1993) successfully estimated forest decline by combining Landsat TM 

with topographic data in the boreal montane forests in the Black Mountains of North 

Carolina, USA. Correlation coefficients between the single TM band data and field 

estimates of defoliation taken from 21 one-ha field plots were low (r = 0.10 - 0.54). 

However, the correlation could be improved to 0.85 by introducing topographic data 

(elevation, slope, and aspect). The model was shown to be applicable in predicting 

conditions through the ecosystem. A forest decline class map could be created by 

applying the model. TM band 4 was the only band significantly related to needle loss.

2.4.5.7.4 Change Dynamics

Using a visual interpretation technique, Sader and Winne (1992) were able to track 

changes in a forest of the Great Pond, Maine, US, from 1978 to 1987 resulting from 

natural causes (e.g. spruce budworm damage) and from silvicultural and management 

activities (e.g. harvesting, regenerating, clearcut, road building, etc.) by using multi

temporal Landsat MSS and TM data. Stand history maps were created and shown to be 

very useful for inventory stratification and updating forest resource information. Walker 

et al. (1986) successfully used Landsat MSS data to examine the forest structure gradient 

of semi-arid eucalypt woodlands in southern Queensland, Australia. The data showed that 

the various successional stages of poplar box woodlands (a simple vegetation type) in the 

study area could be detected, based on the differences in a structural gradient from 0 to 50 

years since clearing.
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2.4.5.7.5 Seasonal or Interannual Changes

Studies have shown that seasonal and/or inter-annual changes of vegetation can be 

detected and predicted using satellite data. For instance, Spanner et al. (1990) and Curran 

et al. (1992) indicated that the seasonal and inter-annual changes of LAI could be 

detected using multi-temporal imagery. They compared the LAI of slash pine plantations 

in northern Florida, USA estimated from Landsat TM data recorded at different growing 

seasons, and found that the LAI of slash pine plantations varied greatly through the year.

Choudhury and Tucker (1987) utilised AVHRR data recorded from 1982 to 1984 and 

scanning Multi-channel Microwave Radiometer data (Nimbus-7 satellite) from 1979 to 

1985, to differentiate seasonal and inter-annual vegetation variations on three large 

deserts, the Kalahari in Africa, and the Great Victoria and Great Sandy Deserts in 

Australia using NDVI and the 37 GHZ brightness temperature. The temporal variation of 

the difference of the brightness temperature followed the phenology of the regional 

vegetation. Results of their study indicated that NDVI values calculated for the two 

Australian deserts were identical in the time series, proving the evaluation technique to be 

valid for determining the aridity of the deserts.

Running and Nemani (1988) could detect seasonal changes of forest productivity with 

low to moderate success by relating seasonal patterns of the AVHRR vegetation index 

(NDVI) to simulated photosynthesis and transpiration of forests in different climates. An 

ecological simulation model, called the FOREST-BGC model, was developed to estimate 

seasonal above-ground net primary production (ANPP) and rates of transpiration (TRAN) 

and photosynthesis (PSN) using weekly AVHRR NDVI data for 1983-1984. The 

correlations for annual data (r2) ranged from 0.72 to 0.87, but they were lower and more 

variable for weekly data. They concluded that estimates of vegetation productivity using 

the global vegetation index (GVI) can be done only as annual integrations until 

unsubsampled local area coverage NDVI data can be tested against forest PSN, TRAN 

and ANPP, measured at shorter time intervals.

2.4.5.7.6 Land Quality and Degradation Changes

Robinove et al. (1981) showed that the relative annual change in the land quality of arid 

and semi-arid environments can be assessed by monitoring changes in albedo estimates of 

the landscape with the Landsat MSS data. Albedo is the ratio of the amount of EMR 

reflected from a surface to the amount of radiation incident on the surface. The authors 

concluded from field investigations at the Desert Experimental Range in southwestern 

Utah, USA that annual changes in albedo, as measured with successive fall-to-fall
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Landsat images, are related to land quality changes. In another study in the same region, 

Frank (1984) showed that the changes in land quality and degradation caused by soil 

erosion and changes in vegetation productivity are predictable using Landsat MSS data 

using residual difference and/or ratio difference images. A regression model could explain 

about 50% of the variance. A comprehensive discussion on the use of remote sensing 

techniques in land degradation studies in Australia before 1990 can be found in Johnston 

and Barson (1990).

2.4.5.8 Conclusion

Satellite data from Landsat MSS, TM, SPOT and AVHRR systems have been used 

extensively by foresters in understanding the nature and dynamics of forest ecosystems. 

Most forestry applications have understandably focused on forest cover classification and 

mapping. The accuracy of forest type mapping has been improved with increased 

resolution (spatial, spectral, radiometric and temporal) and data processing techniques. 

There are also some successful examples of practical forestry applications. For example, 

classifications have been successfully used to generate fuel type data for a decision 

support system for forest fire prediction and fire growth modelling in Canada (Kourtz 

1984) and have assisted forest site type mapping for taxation purposes in Finland (Home 

1984; Tomppo 1992). However, the accuracy of forest type classification and mapping of 

digital images has not been consistent and it is data dependent. Most of the accuracies 

reported for forest and site type classification seem disappointingly low (less than 80%). 

According to Anderson et al. (1976), a classification accuracy of 85% should be the 

minimum acceptable when utilising remotely-sensed data. Based on this standard, the 

forest type maps created from image classifications cannot be used for direct forest 

management purposes, especially at the operational planning level, where more detailed 

information is needed.

Successful forest management begins with the compilation of a detailed management 

inventory. As in forest type classification and mapping, the successes in forest inventory 

using satellite data have been at a broad (regional) scale only. The data may be detailed 

enough for strategic planning, but it is still inadequate for operational planning purposes. 

Because of the detailed information requirement (see Tables 2.2 and 2.3), current satellite 

remote sensors seem unable to provide significant information for new forest 

management inventories. Repeatedly, studies of forest stratification and classification 

using satellite data have shown that the spectral data can only provide stratum information 

which is too general for forest inventory requirements.
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The results of estimating forest stand structure parameters and site productivity with 

satellite data are very encouraging in that they show that statistically significant 

relationships between various forest stand variables and spectral data generally do exist. 

The results are frustrating, however, because the established relationships are not 

consistent and vary greatly between species, locations and data recording date (seasons), 

especially at a per pixel scale. The correlations are generally not high enough to provide 

accurate estimates of various stand variables. Due to these weaknesses, the relationships 

are unacceptable to most forest managers. Nonetheless, in some cases, the relationships 

may be used to accurately estimate the mean or median of a given forest stand (type) over a 

large region. For more accurate estimates of stand variables at a small local scale, further 

studies concerning the use of satellite data with Finer spectral, radiometric and temporal 

resolution are needed.

Forest ecosystems are the most complex ecosystems to classify, detect, measure and 

predict because of their heterogeneity and the many factors affecting their spectral 

response. The information required on forests is also diverse. Although satellite remote 

sensing, at least at the present time, can not meet all of these diverse requirements, 

research has suggested that satellite data will prove extremely useful in extracting spatial 

information on forest ecosystem attributes with the further development of remote sensing 

technology. Because satellite sensors record information about ground surface on a pixel 

basis, they may not be as useful as finer resolution data if information on site specific 

stand parameters is required.

Satellite imagery offers a promising means 

for making forest management and planning more efficient. To what extent the imagery 

can be used for these purposes at the operative level is still not clear. The results obtained 

so far usually do not meet the detailed information requirements of the forestry 

community. Consequently, only a few countries, most in Northern Europe and the North 

America region, have had serious, long-term research projects on the application of 

satellite remotely sensed data. To approach the operative use of satellite data in forestry, 

many of the spectral, spatial, temporal, physiological, ecological and phenological 

relationships among various forest phenomena and spectral data remain to be further 

explored.
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2.5 SUMMARY AND CONCLUSION

Forest site quality evaluation has a long history and it has been, and continues to be, seen 

as “the iron law” in forestry due to its extreme importance in silvicultural management. 

Many methods and approaches have been developed for forest site quality evaluation and 

classification purposes. Many measures have been used to express site quality, but no 

consistently applicable index of quality has been standardised. As stated in the open 

introduction in Chapter 1, most of the established methods for site information collection 

involve very time-consuming and very expensive direct field measurements of a large 

number of temporary or permanent sample plots and trees. To date, foresters have been 

seeking ways of accurately estimating site quality using modern technologies in site 

information collection and analysis. These include the application of modern remote 

sensing, geographic information systems (GIS) and other computer-aided spatial analysis, 

mapping and modelling techniques.

Satellite data have been used extensively by foresters in understanding the nature and 

dynamics of forest ecosystems. Innumerable examples exist for using such data to map 

and quantify forest stand structure variables (see Sections 2.4.5.3 to 2.4.5.6). Patterns of 

changes in forests over time have been assessed with multi-temporal data. Satellite data 

have also been used to evaluate forest stress and/or damage due to diseases, insect attack, 

drought, and pollution (see Section 2.4.5.7). Forest productivity or biomass estimates 

have been made for several forest ecosystems with a variety of satellite remote sensors 

(see Section 2.4.5.6). However, very little work has been reported for directly estimating 

forest site quality and stand variables at local scale (such as an area of 5 x 5 km). No 

study has been reported in the literature on estimating radiata pine forest growth and site 

quality with satellite data.

There seems to be no doubt about the capability of satellite data in classifying and 

determining forest stand variables at large regional scales. However, accuracy of

estimation at the sub-regional level, especially the accuracy at the local

scale, has been generally low and therefore there is no direct operational use at a local 

level. This study will focus on addressing the relationships between various stand 

variables and satellite data on a local scale (see Chapter 5 and 6), and developing methods 

to estimate forest variables and site quality with satellite data in conjunction with 

biogeographical data (see Chapter 7).



Chapter 3

Description of Study Site

3.1 INTR O D U C TIO N

Selection of a suitable research site is a vital part of any research project to effectively use 

remotely sensed data and the corresponding ancillary data sources available. Based on the 

research assumptions and objectives set up in Chapter 1, any site under consideration for 

this study had to include most of the forest vegetation characteristics stipulated for the 

research project so that procedures developed could be extrapolated to other areas. In 

addition, the sites selected had to be in the area where required data sources were 

available. These data sources may include satellite remotely sensed data with different 

resolutions, aerial photographs of higher quality taken at the same location and time, and 

other ground maps or data sources available. Importantly, the sites selected had to be 

readily accessible for field procedures. The basic objectives of this study were to explore 

the relationships between stand variables and satellite data, and on that basis to estimate 

site quality at a local scale, satellite data of high resolution and forest stands with a 

relatively complete age class structure were required.

Having regard to these considerations, Kowen Forest (also called Kowen District) in the 

Australian Capital Territory (ACT), Australia, was selected for this study as it has large 

stands of pine plantations in ages ranging from newly-planted to forty-five years. The 

forest comprise mainly radiata pine {Pirns radiata D. Don) stands (covering about 98% 

of the total plantation area) with a small area of other pine plantation stands such as P.
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ponderosa Lawson and P. jeffreyi Grev. and Balf. The site quality and plantation 

productivity are diverse, ranging from poor to good sites for P. radiata growth. Most of 

the compartments are easily accessible by road.

In addition, SPOT High Resolution Video (HRV) (XS and PS modes) and Landsat 5 

Thematic Mapping (TM) data were available for the area selected. Some other ground 

information on the area such as historical records of the pine plantations, meteorology, 

geology, soils, aerial photographs and maps were also available.

The object of this Chapter is to give a broad description of the study area, including 

geographic location and physiographic characteristics. The satellite remotely sensed data 

and corresponding ground truthing of the study area are described in Chapter 4.

3.2 LOCATION OF THE STUDY AREA

Kowen Forest occupies the northeastern comer of the Australian Capital Territory, about 

14 kilometres east of Canberra City (Figure 3.1). It juts into New South Wales (NSW) 

north of Queanbeyan as a shoe shaped projection covering about 80 square kilometres. 

The western boundary is defined by the Sutton Road and the southern boundary by the 

Goulburn-Bombala railway line. The northern boundary follows a ridge line varying 

between 820 and 900 m above sea level (Figure 3.2). The area of interest for this study is 

situated at latitude 35° 15' S to 35° 21' S and longitude 149° 12’ E to 149° 22' E. This area 

covers Fairbairn Block in the west, extends to the Mountain Block in the east and follows 

the ACT—NSW border up to the northern end of Kowen Forest, and down to the 

Molonglo River in the south.

3.3 SITE CHARACTERISTICS 

3.3.1 Geology

The rocks of the area are diverse and generally old (Öpik 1954; Strusz 1971; Strusz and 

Henderson 1971). The eastern part of the study area mainly consists of Upper Ordovician 

sandstone and shales, with some outcrops of Upper Silurian Porphyry; while the western 

part of the area (Fairbairn) is dominated by Middle Ordovician shale, sandstone and 

quartzite1. Surficial Quaternary sediments can be found on hillsides and some valley 

floors (Öpik 1954; Dijk 1959; Sleeman and Walker 1979). On ridge crests, where erosion

1 Source: 1:50,000 Geological Map and Explanatory Notes, Canberra City, A.C.T., Bureau of Mineral 
Resources, Department of National Development, Canberra, Australia.
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is dominant and rock outcrops common, lithosols and shallow earths tend to occur 

irrespective of the nature of the parent rock but are invariably gravelly when underlain by 

metamorphic rocks.

Canberra/-

20 km

Figure 3.1 Location of the study area

In addition, some other rock types2 occur in the western part of the study area, including 

Middle Silurian, Lower Devonian , and Lower Silurian rock types (Strusz and Henderson 

1971). The hills are over folded sedimentary rocks (inclined shales and sandstone) of 

which outcrops frequently occur, and minor volcanics (e.g. quartzite). The undulating 

“lowland” area is also over sedimentary rocks, but less severely folded.

3.3.2 Soils

The 1:2,000,000 soil map3 shows that the dominant soils in the area are “hard setting 

loamy soils with mottled yellow clay, neutral to alkaline reaction trends with bleached A2 

horizon” (from Atlas of Australian Soils, 1965). The main soil groups found in the area 

are lithosols (skeletal soils), red and yellow earths and podzols (Sleeman and Walker 

1979).

2 Geological series sheet Canberra SI-16, Bureau of Mineral Resources and Geological Survey of New  
South Wales, 1964, Second Edition, Dominion Press, Box Hill, Victoria, Australia.

3 Source: Atlas of Australian Soils (Sheet 3): Sydney-Canberra-Bourke-Armidale Area (NMP/62/053), compiled by 
K. H. Northcote et al, 1965, CSIRO, Published by Division of National Mapping, Department of National 
Development, Canberra, ACT, Australia.
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Both deep massive-earth, and uniform coarse to medium-textured soils are found in the 

study area. The latter are characteristically stony and gravelly, shallow, lacking of 

differentiation and of low natural fertility (Gunn and Story 1969; Byron 1971) and they 

often occur on the highest ridges and steepest slopes where there are extensive rock 

outcrops. Generally, shallow sands, loams and clay loams containing a large proportion of 

coarse textural material in the form of fragmented shales and gravel, interspersed with 

numerous outcrops of inclined shale and quartzite, predominate in the area, except in the 

alluvial beds (Sleeman and Walker 1979; and Waring [unknown]). The deep massive 

earths usually occur in hilly and rolling to undulating terrain and on the terraces of the 

intermediate level in alluvial landscapes associated with site drainage conditions. Most 

soils of the area are slightly acid to neutral in reaction throughout (pH value from 5.5 to 

6.5) and salt content is low.

In general, the soil conditions in the area are relatively poor. However, the radiata pine 

can still grow well, since the drainage condition on the slopes is apparently quite good 

and the rock is well broken so that tree roots penetrate easily to the fragmented shales and 

to the moister subsoils.

3.3.3 Climate

The main climatic factors of the study area were summarised in Table 3.1. According to 

the records over 48 years4, the mean annual rainfall ranges from 625 mm at Canberra 

Airport (near the Fairbaim Block, about 1.2 km away from Kowen) to 660 mm at Kowen. 

Mean annual maximum and minimum temperatures at the Kowen Forest area are 19.4 and 

6.3° C respectively. Mean annual evaporation from a class ‘A’ pan is 1664 mm, and there 

are 83 days of frost annually. Absolute maximum temperature is 41.9° C, recorded in 

1939 and absolute minimum is -7.8° C, recorded in 1935. The mean monthly maximum 

temperature is in January and minimum temperature in July.

3.3.4 Topography

Much of the ACT would be regarded as geomorphologically mature with mainly gently 

rolling hills and broad valleys having gentle slopes (Noakes 1954). The topography of the 

Kowen Area varies from gently undulating low land surfaces (slope < 5°) to rather steep 

(slope > 40°), hilly country on the north-eastern boundary of the ACT and the southern 

border. Elevation ranges from 570 m in the southwestern part (Fairbairn) to 930 m in the 

northeastern part. Lowest elevation is 558 m at the Molonglo River and the highest at the

4 Climatic Average: Australia, Bureau of Meteorology, Australian Government Publishing Centre, April, 1988
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top of Cohen Hill on the northeastern boundary. Most of the study area is higher than the 

surrounding district, as implied in its common name “Kowen Plateau”5.

3.3.5 Vegetation

Most of the area (about 98%) is now covered by Pinus radiata plantation stands, most of 

the reminder being P. ponderosa.plantation stands. The surrounding indigenous mixed 

eucalypt forest comprises the following species: Eucalyptus melliodora, E. polyanthemos, 

E. macrorhyncha, E. maculosa, E. rossi, E. dives and E. stuartiana, with an average 

height of 12 m, rising to a maximum of 21 m. in the gullies, and with an average DBH 

(diameter at breast height) of 25 cm (Shoobridge 1951). Poor quality, dry sclerophyll 

eucalypt forest with sparse coverage can still be seen on adjacent unplanted sites. The 

sparse undergrowth of sclerophyllous shrubs is about 1 - 1.5 m in height.

3.3.6 Land Capacity Classes

Based on the conditions of geology, soils and physiographical characteristics of the area 

and the land classification systems proposed by Gunn et al. (1969a and 1969b), Byron 

(1971) and Enchelmaier (1973) classified the Kowen Forest area into two land systems - 

Gundaroo and Woolcara Land Systems. The former is usually located in the undulating 

lowlands on folded sedimentary rocks with well-textured massive earths. The latter land 

system usually occurs on folded paleodoic sedimentary rocks with minor volcanics, with 

shallow gravelly uniform, medium-textured soils.

According to the site quality (SQ) class standards for radiata pine growth in ACT 

(Appendix A) suggested by Lewis (1967), Duffy (1968 and 1969), Galloway (1969), and 

Lewis et al. (1976), the site quality class of Gundaroo Land System was estimated from 

III to VII (i.e. the site index6 (SI) estimated from about 24 to 38 m), with a volume mean 

annual increment (MAI) of about 8-30 m3/ha/year. The SQ of Woolcara Land System 

was approximately from V to VII, and productivity varies from about 11 to 16 m3/ha/year 

of MAI. The land capacity classes and their corresponding productivity criteria were set 

out by Lewis et al. (1976) (See Appendix A).

5 Kowen Cultural Resource Survey and Management Plan Final Report, Prehistory and Anthropology Department, 
the Faculties, Australian National University, 1990.

6 Site index (SI) is taken as the height of 220-30 of the tallest trees in the forest land at 20 years of age, minus 2 
meters. This is equivalent to the stand mean height at 20 years of age (Duffy 1969).

*



76

3.4 SILVICULTURAL CONDITIONS

3.4.1 Establishment of Kowen Forest

Kowen Forest is owned by the Commonwealth of Australia, and managed by the Forest 

Branch of the ACT Administration. It presently appears to be well managed, and it is 

mainly used for the purpose of timber production.

The establishment of softwood plantations in the ACT commenced in 1915, but the 

purpose of this early planting was largely to enhance the landscape and to control soil 

erosion7. By 1925 only 650 acres had been planted (Shoobridge 1951). The success of 

these plantings led to a continuing program of plantation establishment in the same region 

commencing in 1926 and using a number of exotic coniferous species. The first planting 

of the Kowen Forest was carried out in 1927 (Carron 1967), primarily as an erosion 

measure and an attempt to control blackberry. During the 1930s it was apparent that Pinus 

radiata was the most successful of many species tried and was capable of relatively fast 

growth. Consequently, a major program aimed at wood production from this species was 

initiated. The stands of interest cover about 3,000 ha, with planting year ranging from 

1945 to the present.

3.4.2 Site Preparation

Before the 1940s, little site preparation was undertaken because of limited labour. 

Occasionally the eucalypt woodland or forest was salvage logged for firewood or timber 

prior to clearing. A broadcast burning of the debris was the only practical form of site 

preparation in the early years of plantation establishment at Kowen. Site preparation 

methods such as clearing, ripping and ploughing were first introduced in 1945, and have 

been widely used in the ACT for many years. Since the 1960s plantation establishment 

techniques have included deep ripping to 40 cm depth (using Caterpillar D7s and D8s), 

and fertilising at the time of planting. These practices have resulted in a very high 

survival rate of 90% in the first year of growth. Since then, ripping-heaping-burning has 

been the most used site preparation technique.

7 Source: A Resource and Management Survey of the Cotter River Catchment, Resource and Environment 
Consultant Group, Department of Forestry, Australian National University, Canberra, ACT 1973.
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3.4.3 Planting and Tending Techniques

Until 1945, almost all planting at Kowen had been in ten-inch (25 cm) deep holes dug 

with a double-ended mattock. Since 1945, ‘slit’ and/or ‘split’ techniques have been more 

popular, with the seedlings planted in the middle of the rip furrow (Scott 1972). There is 

very little difference in radiata pine growth with respect to these two planting methods 

(Clarke 1956).

Since 1941 standard initial spacing has been 2.4 by 2.4 m (8 by 8 ft) to 2.7 by 2.7 m (9 

by 9 ft); prior to 1941 it was mainly 12 by 12 ft. The spacing of existing stands is mainly 

2.7 by 2.7 m. During the 1950s, thinning was carried out first at 15 years of age and every 

3 years thereafter.

The field investigations (see next chapter) found some wind damage and windthrow 

occurring in areas where soils are shallow (such as at the uphill and/or top of the hills).

3.5 PREVIOUS WORK ON STUDIES OF SITE QUALITY AT 
KOWEN: A BRIEF OVERVIEW

As stated in Chapter 4, extensive studies have been conducted on site quality evaluation 

for the purposes of timber production, environmental conservation, education and 

scientific research at Kowen. Initially, six site quality classes (see left side of Table 3.2) 

set by Gray (1945) were used and subsequently seven site classes (right side of Table 3.2) 

(Gunn et al. 1969; and Lewis 1976) defined by site index and mean annual increment. In 

Carron’s (1955) work, the site evaluation was based on a relationship between mean 

height at 20 years and site index defined by the conventional graphical method. Based on 

the “Australian equation” developed by Stoate (1945) (cited in Spurr 1952; and Carron 

1967), he also constructed a volume (V) equation from stand top height (STH) and basal 

area over bark (BAOB) at Kowen, i.e.

V = -7 .9205 -  0.3645. BAOB + 0.0407. STH + 0.3342. BAOB. STH

Further studies on the “height-age” relation in the same area were carried out. Carron 

(1967) constructed a family of anamorphic curves on age of trees from 12 to 37 years in 

50 plots in radiata pine plantations, and used them to classify site quality at Kowen. Scott 

(1972) built a series of a site index curves for five stand top height levels. A site index 

estimation equation was derived to estimate site quality for Kowen forest by Bary and 

Borough (1978) and Ferguson (1979). This model was applied in this study to calculate 

site index from stand top height and stand age (see Chapter 4). In a recent study, West et
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al. (1988) developed a series of simulation models for predicting the growth of radiata 

pine plantations in the Australian Capital Territory (ACT).

Table 3.2 Site classes of radiata pine defined by top height (TP) at 20 years of age (Gray 1945), site index1 
(SI) and mean annual increment2 (MAI) of volume (Gunn et al. 1969; and Lewis et al. 1976)

Site Quality 
and Land 
Capacity 

Class

by top height at 20 years of age 
(from Gray 1945)

by SI & MAI
(from Gunn et al. 1969; and 

Lewis et al. 1976)
TP class & mean 

Top height (ft)
Limits of class (ft) SI

(m)
MAI

(m3/ha/yr)
I 100 (30.48 m) 105.0 - 95.0 (32.00 - 28.96 m) 38 30
n 90 (27.43 m) 94.9 - 85.0 (28.95 - 25.91 m) 36 27
m 80 (24.38 m) 84.9 - 75.0 (25.90 - 22.86 m) 34 24
IV 70 (21.34 m) 74.5 - 65.0 (22.85 - 18.91 m) 32 21
V 60 (18.29 m) 64.9-55.0(19.90- 16.76 m) 30 17
VI 50 (15.24 m) 54.9-45.0(16.75 - 13.72 m) 27 13
VII 24 8

1 Predominant height: mean height of 75 tallest trees per hectare at age 30.
2 Cubic meters to 10 cm top per hectare per year; rotation 50 years

In determining the effects of site factors on the growth of radiata pine in Pierces Creek 

Forest (about 25 kilometres away from Kowen), Heberle (1968) suggested that at least 27 

site variables should be considered in predicting site index of the species in the area. 

Similar conclusions were reached by Kloeden (1969) at Mt. Stromlo of ACT (about 12 

km from Kowen). He concluded that the depths of the soil horizons, slope position, slope 

steepness and altitude were the most important factors to take into account for rating site 

quality. Based on a study in Kowen, Byron (1971) suggested that aspect, slope steepness 

and soil depth should be taken into account in evaluating the site potential of radiata pine 
at Kowen.



Chapter 4

Data Sources

4.1 INTRODUCTION

Site quality is an expression of the average capacity or productivity of a designated land 

area for growing trees. Measures of site quality attempt to bring together in a single 

expression the combined, interacting and interdependent effects of all the environmental 

factors operating at the site. From the viewpoint of remote sensing, site quality can be 

seen as an expression of the average response of a tree species or stand to specific 

conditions at a specific site. Consequently, site quality evaluation by remote sensing, in a 

general sense, becomes the evaluation of the spectral-vegetation-environment interaction. 

The capture of vegetation and environmental information influencing the spectral 

responses is a prerequisite for evaluating this interaction.

Traditionally, site quality is evaluated by (see Figure 2.1 in Section 2.3):

1. The measurement of one or more of the individual site factors which are closely 

associated with tree growth and which will permit practical field or photo (or 

image) recognition. These include geological, soil and topographical 

characteristics.

2. The measurement of some characteristics of the trees or other vegetation 

considered expressive of site quality. These include the quantity of wood (e.g. 

timber volume) produced per unit of land area, size characteristics of trees and the 

plant species naturally occurring on the area.
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3. A combination of the above two. Site quality is evaluated through establishing the 

relationships (or models) between site quality measures and site factors. This 

requires measurement of some characteristics of trees as well as some site factors.

As this study is not concerned with testing the relationships between tree growth and 

environmental factors, but rather with determining the relationships between remotely 

sensed data and stand growth parameters, and then indirectly expressing the site quality 

from spectral responses, the third method above will be considered. The conditions of the 

study site were described in Chapter 3. Because no recent stand and site data were 

available for the study area, field sampling and measurements were made to obtain the 

variables related to site quality. This chapter focuses mainly on the data preparation. 

Specifically, the major objectives of this Chapter are to:

• Select the site factors and stand variables related to stand growth and site quality 

respectively;

• describe the field measurement and calculation procedures for the site variables 

selected;

• describe the methods and procedures for digitisation of site information, i.e. the 

generation of digital terrain models (DTM);

• describe the satellite data selected; and

• describe how the data were combined.

4.2 SITE AND STAND VARIABLES 

4.2.1 Selection of Sample Points

Previous work has shown that great variations in site quality of Pinus radiata plantation 

stands occurred within a small area due to the influence of soil and topographical factors 

(Heberle 1968; Scott 1972; and Turvey 1987). Therefore the selection of sample plots 

should reflect these variations of sites and stands. Due to the limitations of labour and 

costs for detailed measurements of stand and site variables, the point sampling (also called 

temporal angle-count sampling) method was chosen as the easiest to perform in the field. 

The accuracy of the method was considered to be adequate for the purposes of the 

investigation.

In point sampling, the probability of a tree being tallied is proportional to its stem basal 

area. Large trees tend to be sampled in greater proportion than smaller trees with lesser



The major purpose of this study was to develop models to estimate SQ with satellite and 

ancillary data. The major measure used to indicate SQ was SI which was derived from 

height-age relation. The key parameter in the field measurements was stand top height. 

Purposive sampling method was used to locate sample plots in the stands to be 

representative of corresponding age classes and site conditions. No attempt was made to 

choose random samples to accurately estimate other stand parameters. Therefore the 

representativeness of sample points became very important (Paragraphs 3-5).
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volume and height. The sample points are analogous to plot centres, and an angle gauge 

(Relaskop) is used to subtend a fixed angle of view to “sight in” a tree (Avery 1967; 

Avery and Burkhart 1983). Point sampling produces very acceptable results compared to 

other methods if the sample is representative (Phillips and Saucier 1981). Therefore, in 

selecting the sample points, the following four aspects were considered for the selection 

and distribution of sampling points:

• Representativeness A sampling point must be representative of the stand. Before 

choosing sample points, the stands to be measured were examined. In order to 

obtained better estimates, at least two sample points were selected in each stand 

investigated.

• Comprehensiveness The distribution of sample points needs to include stands of 

different ages and/or showing possible differences in stand growth and site 

potential. For example, sample points were chosen at different positions on the 

slope, or on different soil types.

• Non-disturbance The sample points should be selected in stands in which there 

has been little or no disturbance because disturbances such as recent thinning, 

pruning, and/or damages (e.g. winthrow) may affect the intensity of stand spectral 

reflectance.

• Locatabilityt and recognisability The sample points must be easy to access and to 
locate on the corresponding imagery.

In order to locate the sample points accurately, the satellite data were registered to ground 

truth maps (i.e compartment maps by ACT Forests) and displayed on the same scale of the 

compartments and aerial photos (see Section 4.4 in this chapter). Each sample point was 

located at least one pixel (about 20 meters) away from stand boundaries in order to avoid 

the effect of the stand edge. This was done by overlaying the compartment maps on the 

false colour imagery maps with the same scale, and then marking all sample points on the 

compartment and air-photos and imagery maps.

4.2.2 Measurements of Stand Variables

The major stand parameters measured at a sample point were stand top height, basal area 

and stand mean diameter at breast height over bark (DBHOB). As the top height is 

defined as the mean height of the 40 tallest trees in a hectare, the 4 tallest trees were 

selected in an area of 0.1 hectare (i.e. sample size).



Canopy coverage was estimated using the canopy density scale from aerial photographs. 
Understory coverage was estimated using the following method, two lines of 18 metres 
were established at rightrangles to each other, passing through the sampling point (centre 
of plot - see the figure below). Along each line, six points were defined at 3-m intervals. 
A point was recorded as *1* if it fell beneath understory cover, otherwise it was recorded 

as ‘O’. The percentage understory coverage was estimated by dividing the 12 selected 
points by the number of points beneath understory. For example, if 8 points fell selected 
points by cover, the coverage was estimated by 8/12 * 100 = 66.67%.

—  3 metres

Centre

(attached to Page 82, Paragraph 2).

Although attempts were made to measure 
overstory and understory coverage, these 

estimates are not considered to be very 
accurate.

The distribution of the sample points at each age level was presented in the following table 

(attached to Page 82, Paragraph 5).

The distribution of sample points at different age.

* The stands of 28-year old covered a very large area in the 
study area. They showed differences in growth because of 
the differences in site conditions (e.g. slope position and 
and soils). 11 points were therefore selected at different 
site conditions.

Age Point Number
9 2

10 2
11 2
12 3
14 2
16 5
20 3
21 3
23 3
24 4
25 4
26 5
27 4
28 11*
29 3
30 3
32 3
34 3
42 3
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The stand basal area (m2/ha) was determined by the Bitterlich Angle Count Method. The 

principle of this method is that an estimated measure of basal area can be obtained by 

counting, in a sweep (plot), the number of trees whose diameter at breast height is greater 

than the width of an angular field of view, and multiplying it by a basal area factor (BAF). 

This factor is dependent on the angle of view. The details of the methods can be found in 

Hiiggard and Owen (1960) and Bitterlich (1984). In this work, each site was sampled with 

a Spiegel Relaskop with BAF=4. Two to three angle sweeps with the Speigel Relaskop 

were performed at each sample site to ensure accuracy of measurements.

All trees in the angular field of view were measured for DBHOB. The four tallest trees 

within the 0.1-hectare sample point were selected for measuring top height. A Blume- 

Leiss altimeter was used for measuring the top height. In order to calculate canopy depth 

(green index), the height from the ground to the first green branch of the trees selected for 

measuring top height was also measured. The canopy coverage, undergrowth height and 

coverage (as percentages) were subjectively estimated at each point.

In addition to the measurements of stand variables, two soil profiles were obtained with a 

soil auger from each sample plot to determine soil parameters. The soil parameters 

measured are described in Section 4.2.4.1. The method of soil profile measurement was 

based on Northcote (1979) and Turvey (1987).

Other factors measured at each sample point included slope, elevation, aspect and position 

on slope. The elevation above sea level in meters at each sample point was measured 

using a pocket aneroid barometer. The field data sheets for soil and stand measurements 

are presented in Appendices B and C.

A total of sixty-eight sample points were measured in stands aged from 9 to 42 years in 

the study area. The methods and procedures of the field measurements are described in the 

following sections. The field work was conducted from March to September 1989.

4.2.3 The Measures of Site Quality for Radiata Pine

In Australia, several measures have been proposed to express radiata pine site quality 

(SQ). These includes site index, site quality classes, and mean annual increment (MAI). 

Among these measures, site index is the most commonly used measure of site quality in 

radiata pine plantation management as other measures are affected by stand density (or 

planting spacing) and used only for references in practice. Site index was therefore used 

as the measure of site quality in this study. Twenty years was selected as the standard age. 

In addition, several stand variables and their ratios to stand age, termed mean annual
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increment (MAI), were also tried in data analysis. These measures and corresponding concepts 

are defined as follows:

(1) Site Index (SI)

The equation developed by Ferguson (1979) for the ACT region was used, i.e.

l

S I = H '  +
l _ e - a iA ' 0 - a 2)

l - e - M Ü - « : )

i-a 2
(4.1)

where SI - site index in metres

H' - measured top height in metres 

A - standard age (20 for radiata pine in Australia)

A ' - stand age in years

oq and oc2 - formula parameters, in Kowen oq = 0.119, and oc2 = 0.442

(2) Top Height (TH)

Stand top height is defined here as the mean height of the tallest trees in the stand at a rate 

of 40 per hectare (Lewis et al. 1976). In this study, the mean value of the four tallest trees 

selected within 0.1-ha circular sample points was used as stand top height. The methods of 

selection and measurements are described in Sections 4.2.1-2 above.

(3) Height Index (HI)

The height index is defined as the ratio of measured stand top height and stand age, i.e.

HI = JopHeight_ (42)
Age

where HI is equivalent to mean annual increment in height (MAI/?)

(4) Volume (V)

The stand volume (m3/ha underbark) of each stand was estimated from basal area (m2/ha) 

and top height using the equation developed by Carron (1968), i.e

V = N(- 0.03818+ 0.00223T- 0.0001414T + G (0.4145 + 0.3390T) (4.3)

where V — stand volume under bark (to 10 cm d.u.b.) of trees 13 cm DBHOB and larger 

N  — number of trees in stand (per hectare)

T — stand top height in meters

G — stand basal area over bark in m2 (trees 13 cm DBHOB and larger)



In even-aged plantation stands such as the Kowen Forests, there did not exist great 

differences between dominant and codominant trees. Therefore the canopy depth 

calculated from top height trees may be close to the mean stand level (attached to Page 

84, Paragraph 2).



84

(5) Volume Index (VI)

Like the height index, the volume index was defined as the ratio of stand volume per 

hectare and corresponding stand age (i.e. mean annual increment in volume (MAIV):

VI Volume
Age

(4 .4)

(6) Canopy Depth (CD)

In remote sensing of vegetation, canopy depth (or crown size) is an important canopy 

parameter in determining the canopy reflectance (or absorption). Because it affects the 

number of leaves and the size of shadows, it is generally highly correlated with spectral 

reflectance (See Chapter 2) and was selected as one of stand variables in this study.

CD = TH - Hb (4 .5)

where CD — canopy depth in metres 

TH — Total height in metres

Hb — the height from ground surface to the first green branch of the trees.

(7) Canopy Index (Cl)

Cl = CanopyDepth (46)
Stand Age

(8) Basal Area Index (BAI) (i.e. mean annual increment in basal area (MAI^))

_ . r Basal AreaBAI = -----------------  (4.7)
Stand Age

(9) Diameter Index (DI) (i.e. mean annual increment in diameter)

_ y Mean DiameterDI = -----------—--------- (4 .8)
Stand Age

(10) Other Stand Parameters

In addition to the eight parameters listed above, several other stand variables were tested 

to determine their relationships with satellite data. These stand variables included density 

(number of trees per hectare), basal area (m/ha), mean stand diameter, stand age in years, 

canopy percentage coverage, and undergrowth coverage.
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4.2.4 Selection and Field Measurements of Site Variables

For a given tree species, site quality is mainly determined by growth responses to physical 

environmental factors - soil, climate and terrain. The climate factor may be relatively 

important for site productivity assessment in a large region. In a small area, however, it 

can be ignored as climate does not vary over a short distance (micro-climate may be 

different, but it is very difficult to measure). Therefore, the variation of site quality may 

be mainly due to changes of soil and local terrain (landform). The temperature and 

moisture conditions may differ from location to location, but these differences arise from 

the differences in topography and soil. Thus this study mainly concentrates on the effects 

of soil and terrain conditions on tree growth.

4.2.4.1 Soil Variables

The soil attributes selected are those thought by Turvey (1987) to be important for 

silvicultural activities. He classified Pinus radiata plantations by coding the soil attributes. 

As this study was concentrated in a small area, the main soil properties considered were 

depth, structure, moisture, and texture. Other soil factors tested and recorded in the field 

were pH values, colour, parent rock, and content of gravel (diameter > 5 mm). The 

definitions of soil factor attributes were based on Northcote (1979), Turvey (1987) and 

Murtha (1988). A brief summary of the attributes investigated in the field follows.

(1) Soil Depth

Radiata pine growth has been found to be very strongly correlated with soil depth 

(Raupach 1967; Jackson and Gifford 1974; Turvey 1983 & 1986; Grey 1989a). Depth 

here refers to the vertical depth to any layer in the soil which impedes root extension, such 

as rock, dense soil, an indurated pan, or the influence of permanent or prolonged seasonal 

waterlogging. This depth is sometimes referred to as the “effective soil depth” for 

distribution of most plant roots (Jackson and Gifford 1974; and Murtha 1988). This 

usually includes only the combined thickness of the A and B horizons. Due to difficulty in 

preparing soil profiles, this field investigation concentrated on measurement of the 

“effective depth”. The field investigation included measurement of sub-horizons (i.e. O - 

O, and Oh) (above the mineral soil surface), A (Ah and A2) and B (Bl and B2). The 

definition of these soil horizons can be found from Charman (1978) and McDonald et al. 

(1984a).
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(2) Texture

The texture of a soil profile and the changes in texture withii> it are important 

determinants of the physical and chemical environment of the root zone (Turvey et al. 

1986; and Turvey 1987). Field measurement methods used were those of Northcote 

(1979). An approximate estimate was made of the clay content (%) of each texture grade 

within the profile (including the uppermost 10 cm of soil).

(3) Structure and Pedality

Soil structure refers to the distinctness, size and shape of peds (Murtha 1988). The grade 

of structure and the stability of the ped are of major importance for air and water entry to 

the soil. It was measured in the field for each layer of the soil profile. The definitions were 

taken from Northcote (1979) and Turvey (1987).

(4) Soil Colour

Soil colour was defined in terms of hue, values and chroma using Fujihara Industry 

Company colour charts (1966). No special colour names were used, only the 

value/chroma rating and hue.

(5) Gravel or Stone Contents

The gravel contents of the A and B horizons were measured. It was estimated from a 

Visual Percentage Estimation Chart (see Northcote 1979).

(6) Field pH Value

Since acid soils are high in exchangeable hydrogen and alkaline soils are high in 

exchangeable bases, the pH reflects, in a general way, the base status of the soil and gives 

an indication of the availability of plant nutrients. The pH values of the A and B horizons 

were measured. Field kits for measuring pH employ a mixture of indicator dyes. The pH 

values were read from the Van der Burg Universal Indicator with a range of pH from 5 to 9.

(7) Others

Other soil-related attributes recorded in a sample point (or soil profile) included parent 

rock, the condition of the uppermost 10 cm of soil and the nature of the subsoil as defined 

by Turvey (1987). In addition, lower boundaries between soil horizons, moisture and 

organic matter (i.e the distribution of plant roots) were estimated visually from the soil 

profile.
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4.2.4.2 Topographic Variables

The topographic conditions usually influence forest growth by changing the features of 

soil and climatic conditions. Tree growth is significantly different in different types of 

terrain. Studies have indicated the growth of radiata pine is significantly related to 

elevation, slope and aspect variables (Ballard 1971; Woollons and Hayward 1985). 

Consequently, terrain conditions are important site factors influencing tree growth and can 

be used to indicate site quality. On the other hand, because of their effects on spectral 

responses from the ground surface (such as azimuth angle and slope shadows), terrain 

factors can also be used to improve classification accuracy in remote sensing (Hall- 

Könyves 1987; Kawata, et al. 1988; Thomson and Jones 1990; Conese and Maselli 1991).

Terrain attributes recorded at each sample point were elevation height above sea level, 

aspect, slope, and topographic position (position on slope). The elevation in meters was 

read from an altimeter. A compass was. used to measure the aspects in degree. The slope 

in degree was measured with a Blume-Leiss altimeter. The topographic position of each 

sample point was recorded according to its specific position in relation to the surrounding 

geomorphological and landform types (e.g. distance from top of hill) that may cause 

differences in tree growth (see McDonald et al. 1984b; and Speight 1984). Five 

topographic position grades were recorded in the field (see Table 4.1).

Aspect was recorded from 0 to 360 degrees clockwise from N. Four aspect grades were 

classified based on their possible influences on growth of trees in the study area, with each 

covering 90 degrees (see Table 4.1).

The grid-based digital topographic data covering the whole study area were generated by 

digitising and interpolation (see Section 4.4).

Table 4.1 The category division levels of qualitative site variables (aspect and topographic positions)
over the study area. The division levels are used for ‘0-1’ coding and quantitative analysis in 
Chapter 7.______________________________________________________________________

Qualitative Variables Levels Descriptions

A S P ] 0° - 90°
Aspect A SP2 91° - 180°

A S P 3 181°-270°
A S P 4 271°-360°

TP1 Top of Hill
Topographic TP2 Upper slope

Positions TP3 Lower slope
TP4 Level area (No aspect)
TP5 Gully, Valley or drainage line
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4.3 SATELLITE DATA

Four satellite data sets of the study area were obtained. Two were acquired from the 

SPOT satellite system one on September 11, 1986 and the other on January 24, 1987. A 

broad panchromatic band (PS mode) of 0.51 - 0.73 pm was included in the SPOT scene in 

1987 to provide a 10 x 10 meter resolution. Some cloud shadows occurred in the SPOT 

scene in 1986 and partly obscured the study area. The other two data sets were obtained 

from Landsat TM with 6 bands and 30 x 30 meters resolution in Bands 1, 2, 3, 4, 5 and 7, 

120 x 120 meters in Band 6. The first TM data were recorded on February 8, 1988, and 

the second on April 21 in the same year. The system parameters of these two satellite 

systems are shown in Figure 2.2 (Chapter 2).

A sub-image of 800 x 500 pixels over the study area was used for data pre-processing. In 

order to locate exact features, both SPOT and TM images had to be incorporated with 

digital ground maps (see Section 4.4). As there is geometric distortion, digital image data 

were geometrically corrected by establishing mathematical relationships between the 

addresses of the pixels in the images and the corresponding coordinates of those points on 

the ground (via a digital map). This was done using the microBRIAN programs 

mCNTRL, mSIEVE, mMODEL and mMAPPR. A total of 24 ground control points 

(GCPs) were selected. The model error (mMODEL) was limited to below 0.8. The 

AFINE model in program mMAPPR was chosen for geometric correction. The principles 

and resampling procedures are explained by the CSIRO Division of Water Resources 

(1988).

After image registration, all data outside the radiata pine plantation stands were cut off, 

producing a subimage of 576 x 375 pixels covering the stands of interest. The 1986 SPOT 

image was used only for producing colour composite maps for field work but not for 

further data analysis as parts of the stand were cloud shadowed. The three images were 

then combined together into a data set of multi-sensor, multi-temporal and multi

resolution and multi-spectral images. The basic statistics of these three images are 

summarised in Table 4.2, and their frequencies of pixel intensity in each wavelength 

bands were presented in Figure 4.1. They were respectively named as the January-24 

SPOT image (24/1/1987 SPOT data), the February-9 TM image (9/2/1988 TM data), and 

the April-21 image (21/4/1988). The first two are referred to as the Summer images and 

the last the Autumn image. Figure 4.2 is a false colour composite map produced with 

SPOT Panchromatic band and the February-9 TM band 4 and 5. The radiata pine 

plantations are shown in green colour with compartment boundaries around them.
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Figure 4.1 The frequency of spectral values over the study area (576 x 375 pixels).
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Figure 4.2 Radiata pine plantations in the study area. The map was produced with SPOT panchromatic band 
and the February-9 TM bands 4 and 5. The pine plantations are dark green in colour surrounded 
by compartment boundaries.

Figure 4.3 The digitised 5-year age class map of the radiata pine plantation stands in the study area. The area 
and percentage of each age level are summarised in Table 4.4.



91

Table 4.2 The basic statistics of imagery data over the whole study area. The total pixel number is 216000 
________ (576 x 375). SD - Standard deviation, CV - coefficients of variation (%).____________________

Systems 
(data sets)

Bands Wavelength
(gm)

Mean SD Min Max VC
(% )

XS1 0 .5 0  - 0 .5 9 4 1 .7 2 9 .15 1 2 2 0 21 .9 3
SPO T  H R V X S2 0.61 - 0 .6 9 35 .1 3 11.07 1 2 20 31.51

(2 4-Jan -1987) X S3 0 .7 9  - 0 .9 0 5 7 .75 8 .35 1 197 14 .46

PS 0.51 - 0 .73 4 5 .7 7 13 .44 2 0 191 2 9 .3 6

2TM 1 0 .45  - 0 .52 69 .0 7 9 .95 4 9 157 14.41

2T M 2 0 .5 2  - 0 .6 0 3 2 .1 9 7 .68 18 9 0 2 3 .8 6
Landsat TM 2T M 3 0 .6 3  - 0 .6 9 4 4 .4 6 16.28 15 9 0 3 6 .6 2

(9 -F eb -1 9 8 8 ) 2T M 4 0 .7 6  - 0 .9 0 5 9 .5 9 9 .2 9 2 129 15 .59
2TM 5 1.55 - 1.75 99 .3 8 4 6 .1 2 6 21 0 46 .41

2T M 6 2 .08  - 2 .35 130 .43 8 .33 115 155 6 .3 9
2T M 7 1 0 .4 0 -1 2 .5 0 4 2 .8 0 23 .4 8 3 113 5 4 .8 6

4TM 1 0 .45  - 0 .52 4 8 .8 4 5 .57 3 .6 115 11 .40

4T M 2 0 .5 2  - 0 .6 0 19.11 4 .0 9 11 62 2 1 .4 0

Landsat TM 4T M 3 0 .6 3  - 0 .6 9 19.13 6 .2 0 9 76 32.41
(2 1 -A p r-1988) 4T M 4 0 .7 6  - 0 .9 0 34 .2 3 6 .72 6 75 19.63

4T M 5 1.55 - 1.75 4 7 .1 4 2 3 .9 0 6 205 5 0 .7 0
4T M 6 2 .08  - 2 .35 113 .38 4 .45 104 128 3 .92
4T M 7 1 0 .4 0 - 1 2 .5 0 2 0 .0 0 11.33 2 131 5 6 .65

4.4 GENERATION OF DIGITAL GROUND TRUTH AND DIGITAL 
TERRAIN MODELS

4.4.1 Need for Digitising

Forest data are usually collected by administrative or forest management units with 

distinct boundaries. Site information (such as soil, climate and terrain) is usually shown in 

attribute maps (e.g. soil maps, contour and landform maps, etc). Consequently, any 

remotely sensed data have to be related to these site attributes and forest area units by 

associating each pixel with the administrative units at the specific geographic locations to 

which they belong. Site information in a digital form is suitable for input into a computer 

and can be incorporated into other data sources, such as satellite remotely sensed imagery 

data, for computerised forest management and planning through a GIS.

As noted earlier in this chapter, age is an important variable for prediction of forest

productivity. In order to locate stands of different ages, the compartment maps showing
a

the stand boundaries and stand age after planting at different locations had to be in^digital 

form for incorporation into corresponding imagery data at the same locations.

Topographic parameters such as surface elevation, slope, aspect and topographic position 

are important site factors influencing both the growth of trees and the spectral reflectance
a

of the ground surface. This site information also had to be inAdigital form and combined 

with remotely sensed data. The following section gives a description of the methods and
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procedures for generation of a digital stand age map and a digital terrain model for the 

study area.

4.4.2. Digitisation of Compartment Maps

Kowen Forest is divided into management blocks and compartments (polygons), each 

with clear boundaries (roads) around it. The input data used in this study were taken from 

the Kowen Forest compartment map of 1:25,000 scale (revised in 1987) obtained from the 

Forestry Division of the ACT Administration, Canberra. The digitised area covered from 

49° 12’ 30" - 149° 21' 30" E and -35° 15' 20" - -35° 20' S.

The digitising was performed using a PC-based ARC/INFO system (PC Network Version 

3.3, Environmental System Research Institute (ESRI), 1989) in the Department of 

Geography, the Australian National University. The digitising equipment used was the 

Tektronix 4958 tablet with a 4-button mouse puck attached. Other software used for data 

conversion and editing included IDRISI and microBRIAN.

A total of 219 polygons (stand compartments) was input. Each polygon was assigned a 

value (i.e stand age). The input polygons covered stands from 3 to 42 years of age. In 

order to produce digital grid data that could be incorporated with other data sources, the 

digitised coverage was converted from ARC/INFO format (rational) into the data format 

required by setting up a correct grid spacing value. The programs LINEGR1D and 

POLYGRID, as the names imply, were used for grid line (compartment boundaries) and 

polygon (tree age within a compartment) data interpolation respectively. Based on the 

maximum and minimum values of the digitising coordinates and the corresponding 

ground distance (calculated from the base map), the grid spacing values can be calculated 

for determining grid pixel size. With the grid data used in this study, the grid spacings of 

0.035 were specified to produce an approximate 20 x 20 meter grid interval (pixel size) to 

match SPOT XS data.

The digitised compartment map is displayed in Figure 4.3, with different colours showing 

5-year age classes of the radiata pine plantation stands ranging from 3 to 42 years of age. 

The area and percentage of each single age level and age classes are given in Table 4.3.

4.4.3 Generation of Digital Terrain Data

Digital terrain data can be produced in several ways, such as by the use of optical- 

mechanical stereo plotters, automatic electro-optical mappers, extraction from satellite 

data and/or mathematical interpolation of irregular data. In this study, the mathematical 

interpolation method was used.
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Table 4.3 The digitised stands at different age levels. Pixel size is 20 x 20 meters (0.04 ha).
Stand
Age

Pixel Numbers 
of Each Single 

Age

Stand Area of 
Each Single Age ha)

Proportions of 
Each Single Age

Proportions of Each 
5-year Age Class

3 813 32.82 1.34
4 3397 137.12 5.58 1-5:  10.11%
5 1944 78.47 3.19

6 694 28.01 1.14 6 -10: 2.42%
9 778 31.40 1.28

11 52 2.10 0.09
12 4644 187.46 7.63
13 504 20.34 0.83 11 -15:24.53%
14 9031 364.54 14.84
15 699 28.22 1.15
16 3069 123.88 5.04
18 401 16.19 0.66 16 - 20: 7.30%
19 246 9.93 0.40
20 730 29.47 1.20
21 2899 117.02 4.76
23 6838 276.02 11.23 21 25: 21.68%
24 3940 159.04 6.47
25 969 39.11 1.59
26 2169 87.55 3.56
27 495 19.98 0.81
28 2347 94.74 3.86 16- 30: 18.60%
29 2694 108.74 4.43
30 3525 142.29 5.79
31 947 38.23 1.56
32 2327 93.93 3.82
33 857 34.59 1.41 31 - 35:7.45%
34 230 9.28 0.38
35 173 6.98 0.28
36 400 16.15 0.66
37 733 29.59 1.20
38 938 37.86 1.54 36 - 40: 4.75%
39 614 24.78 1.01
40 205 8.27 0.34
41 362 14.61 0.59 41 - 45: 0.93%
42 257 8.27 0.34

Total 60921 2457 100%

4.4.3.1 Hardware and Software Used

The hardware system used for digitising was the VAX/VMS Cluster computer with a 

Tektronix 4113 workstation and a digitising tablet 4958 (including a 10-button mouse 

puck) connected in the Computer Service Centre of the Australian National University. In 

addition, a Hewlett Packard (HP) 7586 flat bed plotter was used for map plotting. The 

software system used for input of irregular point and line data was MAPDIG1. The

1,2,3,4,5,6 programs MAPDIG, ANUDEM (original version is SPLIN2H), DIGINV, GRDCON, ANUMAP 
and INTGRD were written by Dr. M. Hutchinson (Centre for Resource and Environmental Studies
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program ANUDEM2 (version 3) was used for grid data interpolation of irregularly spaced 

data. Several FORTRAN programs were written to check the input strings and points data. 

The conversion of coordinates was done with program DIGINV3. The program 

GRDCON4 was used to produce input contour files for running program ANUMAP5 

which produced plot files for HP plotter. The program INTGRD6 was used to interpolate 

and subset the data output from ANUDEM. The slopes and aspects were computed using 

MAP7 on VAX/VMS. MicroBRIAN8 (Version 2.3, MPA 1989), IDRISI9 (Version 3.0, 

Eastman 1991) and ORSER10 were used for geometric correction, editing and 

combination.

4.4.3.2 Data Sources for Digitising

Two 1:25,000 scale mapsheets were used for input of irregular point and line data. The 

first was the topographic series map (Bungendore 8727-II-N; Central Mapping Authority 

of NSW 1980). The other was orthophoto series map (Canberra 8727-III-N). Both maps 

contained relatively detailed information on local relief, main roads and the distribution of 

plantations and compartment boundaries, as these were important for defining ground 

control points (GCPs) for data resampling. The interval of the contour lines is 10 meters. 

The digitised area covered from 149° 12'30" to 149°2r30" E and 35°20,00" to 35° 15'20" 

S). In order to avoid edge effects, the digitised area was expanded 1' in four directions 

(i.e 149° 1 POO" - 149°22'00M E/35o21'00" - 35°15'00" S).

4.4.3.3 Digitising Procedures

The program ANUDEM accepts five data types, i.e. contour, streamline, point, polygon 

and sink point data. The first four data types can be produced from digitising equipment, 

and the sink point data was produced by the program ANUDEM. Contours, streamlines, 

points and polygons were input separately using a digitising tablet. All contour lines in 

sparse contour line areas and every second or third contour line in the dense contour line 

areas were digitised (a total of 12985 points). Streamlines were defined by line segments

(CRES), the Australian National University (ANU). The program MAPDIG was revised by Mr. David 
Moore, Department of Forestry, ANU.

7MAP (Map Analysis Package) is a set of computer programs running on VAXWMS that provide for the 
input, output and transformation of cartographic data (see Tomlin 1987). It is a GIS system and can be 
used to process multilayer satellite data and all kind grid-based data sources

8microBRIAN is a PC-based image processing systems developed by the CSIRO Division of Water 
Resources, Canberra, Australia

9IDRISI is a grid-based geographic information system for running on IBM PC or compitable developed 
by the Graduate School of Geography at Clark University, Worcester, Massachusetts, USA.

10ORSER (Office for Remote Sensing and Earth Resources) is a image processing systems (GIS) running 
on VAX/VMS developed by Turner et al. (1982)
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with the starting point and end point each having an associated elevation label. All 

streamlines were digitised (a total of 3910 points). The point data (a total of 468 points) 

were input from the local maxima (e.g. hilltops), local minima (e.g. saddles or sink points) 

and wherever there were abrupt changes in elevation. Polygons (compartments) were also 

digitised. The polygon data were used to define ground control points for defining the 

GCPs for the purposes of geometric correction of the DTM data.

4.4.3.4 Interpolation

Data preparation for input to ANUDEM included data checking, co-ordinate 

transformation and calculation of grid spacing. The data checking included elimination of 

error labels, wrong strings and repeatedly digitised points. FORTRAN programs were 

written to “close” each polygon. As the program ANUDEM uses a meridian coordinate 

system, the input data from MAPDIG were transformed from a Cartesian coordinate 

system into a meridian coordinate format by means of the program DIGINV.

The interpolation of irregularly spaced elevation points is a process of assigning an 

appropriate elevation value to each grid point at a specified grid spacing. As the linear 

distances of a degree in longitude and latitude are different, that is the linear distance of a 

degree of longitude decreases as the latitude increases (closer to the poles), the grid 

spacings need to be calculated from the global coordinate system and corresponding 

ground distance. The linear distance of a degree of longitude at any place on the earth can 

be calculated from the following formula:

The distance in longitude = 111.2 km / Cos (I latitude I) (4 .9)

where 111.2 km is the distance of a degree of latitude.

In the study area, the latitude and longitude limits of the grid are:

Longitude: 149.18333° - 149.36667°E.

Latitude: -35.25° - -35.35°S.

The central point coordinates of the study area are: 149.275°E / -35.30°S

As the compartment map was used as the base map for data registration, the distance of a 

degree was calculated from the 1:25,000 scale maps. The mean length of a degree of 

latitude is 109.853 km. Using the equation (4.9), the distance of a degree of longitude in 

the digitised area equalled 90.7545 km. Therefore, for 20-metre grid data, the grid 

spacing values were calculated as follows:

Grid spacing in longitude = 20 x 1/90.7545x1000 = 0.0002204°
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Grid spacing in latitude = 20 x 1/109.8536x1000 = 0.0001821°

Unfortunately, the program ANUDEM accepted only one grid spacing value. Therefore, 

the mean value (i.e. 0.0002°) of the two grid spacing values was used. A grid point output 

from ANUDEM therefore represents approximately 18 x 22 meters on the ground, i.e.

0.0002° of longitude = 18.1625 m ( i.e. 0.0002x90.8125x1000)

0.0002° of latitude = 21.9907 m (i.e. 0.0002x109.853571x1000)

The drainage enforcement algorithm used in ANUDEM imposes a global drainage 

condition to automatically remove from all spurious sink points which have not been 

identified in the fitted grid (Hutchinson 1990). The action of the algorithm can be 

modified in practice through the specification of three elevation tolerances. Therefore, the 

degree of sink point removal and DTM accuracy depends, to a great extent, on these three 

specified tolerances. The first tolerance is a measure of the elevation accuracy of the data. 

Elevation differences between data points not exceeding this value are judged to be 

insignificant with respect to drainage. Thus data points which block drainage by no more 

than this tolerance are removed. The second tolerance is a measure of local relief which is 

set to the contour interval when inputting contour line data. And the third tolerance is 

simply used as a final checking of drainage clearances which would entail very large 

changes to the grid (Hutchinson 1990). In this work, these three tolerances were specified 

as 2.5, 10.0 and 50.0 respectively.

The contour line data were input in two formats, i.e. line format and point format. The 

sink point data output from ANUDEM was also re-input into the program for removal of 

the sink points. The final output data were produced from contour line format data, which 

can significantly increase data accuracy.

4.4.3.5 The Calculation of Slope and Aspects

A data subset of 800x500 pixels was obtained with the INTGRD program and input to 

MAP for computing slope and aspects. The slope was calculated in degrees and the 

aspects were in 8 directions clockwise from N with 45 degrees in each direction. Then the 

DTM data (elevation, slope, and aspect) were resampled using microBRIAN. A three- 

dimensional topographical map was produced by overlaying elevation and aspect (Figure 

4.4). Figures 4.5, 4.6 and 4.7 respectively display the elevation, slope and aspect using the 

DTM data of the radiata pine plantation areas.
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4.5 DATA COMBINATION

As shown above, a pixel of DTM data represents an area of 22 x 18 metres of ground 

surface area. Therefore, the DTM data were corrected to match the corresponding base 

map— compartment map. This was performed using the microBRIAN program 

mMAPPR. A total of 37 GCPs was selected. The relationship model of the two coordinate 

systems was established via the AFINE model between common GCPs using program 

mMODEL (The model error was limited to below 1.0). The geometrically-corrected DTM 

data were then combined with other geobiographical data and satellite data, producing a 

new multi-layer data base in a GIS.

4.6 SPECTRAL DATA OF SAMPLING POINTS

After resampling, all data from different sources were combined into a multi-layer data 

set^. All sample points were located on the multi-channel image. Because of the 

difficulties in locating a single pixel onto a 0.1-ha sample point, the mean reflectance value 

of each sample point was calculated from a 3 x 3 pixel window (9 pixels). This is 

equivalent to an area of 60x60 m in ground size (since all images were resampled and 

registered to a 20x20 m pixel size). The mean values of the pixel windows could be seen 

as a reliable estimate of spectral values of the sample points because the status of the 

forests surrounding the sample point did not have much difference in density and 

coverage. The spectral valuesof each sample point were used later for further analysis and 

modelling in the following chapters.
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Figure 4.4 The terrain and geomorphological map of the study area. The map was generated from digital terrain model (DTM).

Elevation (m)

Ä  <750 
751 - 800 

m SOI - 850 
>850

Figure 4.5 The elevation (m) of the radiata pine plantation area.



Figure 4.6 Slope ( 0) of the radiata pine plantation area.-.
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Figure 4.7 Aspect over the radiata pine plantation area. It is displayed in eight directions, each 45° clockwise from north.



Chapter 5

Relationships Between Spectral Characteristics of SPOT 
And TM Data And Age of a Coniferous Forest

5.1 INTRODUCTION

The successful monitoring of forest resources by remote sensing depends on its ability to 

determine forest tree species (or forest types), growth rate, tree size, and other stand 

parameters from canopy reflectance measurements. In forestry, the determination of site 

quality is usually suggested by tree size, yield or volume per unit area, and/or soil type. 

Due to difficulty with measurement and the effects of stand density, volume is not usually 

used as the measure of site quality (see Chapter 2). In practice, foresters generally use top 

height at a designated age as a site index. Therefore, the “height-age” relation becomes the 

basis of site quality evaluation. For forest site productivity evaluation with remote sensing 

techniques, three basic attributes of forest stands need differentiation: density, height 

and/or volume (or yield). Further study is needed to determine whether remotely sensed 

digital data can give meaningful site quality information, either directly or indirectly by 

calculation. Because of the effects of canopy shadows, it is relatively difficult to describe 

site quality from soils using remote sensing techniques. This leads to the question of 

whether the site quality may be indirectly predictable from a “reflectance-canopy-age” 

relationship.

Previous work by numerous authors has shown that remotely sensed data may be used to 

detect subtle changes of vegetation. Most of these studies, however, have concentrated on
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annual or biennial plants, such as winter wheats, cottons and grasses (e.g. Tucker 1979 and 

1980; Liu and Zheng 1990). The details have been discussed by several authors (Colwell 

1983; Guyot 1990; King and Meyer-Roux 1990). A great number of studies in forestry 

have also found that there are significant correlations between spectral reflectance and 

canopy closure expressed by leaf area index or percent canopy coverage (Kharin 1973; 

Lodwick 1979a and 1979b; Horler and Barber 1981; Holmes 1981; Butera 1986; Badhwar 

et al. 1986; Scrafini 1986). Some authors have concluded that high resolution remotely 

sensed data can be used to detect changes in stand structure, with particular emphasis on 

forest canopy parameters (Butera 1986; Dottavio 1981; Franklin et al. 1986; Petersons et 

al. 1986; Danson 1987; Williams et al. 1987; Goel and Reynolds 1989; Palter 1990; 

Walter-Shea and Biehl 1990; Häme 1991).

In studies of the “reflectance-age” relations, Gausman (1974) and Gausman et al. (1970; 

1971; 1973; and 1976) found significant correlations between the age of cotton leaves and 

light reflectance, transmittance and absorption. In investigating the sensitivity of satellite 

remotely sensed imagery data to forest stand age structures, Werte et al. (1986) found that 

multi-date Landsat MSS and TM data could be used to detect up to four forest 

regeneration ages. Leckie (1984) was able to discriminate high and medium conifer 

regrowth using cross-polarised C-band synthetic aperture radar data. Kneppeck and Ahem 

(1987) reported that high spatial resolution ME1S-II pushroom scanner data (1 to 5.5 m 

resolution) were sensitive to juvenile stand conditions (brush, young conifers). These 

studies, however, were mainly concentrated on age-class classification purposes.

Spectral data have been found to be related to tree age by several authors. The 

correlations, however, vary greatly with data sources, species and places. With Landsat 

MSS data, Poso et al. (1984) obtained a correlation coefficient between spectral values 

and stand age for pine (r=  0.39), spruce (r = 0 .36) and broadleaves (r = 0 .34) .  They found 

that the Band 5 ( 0.6 - 0.7 pm) data produced the highest correlations with pine and spruce 

age. Band 7 (NIR) data showed the highest correlation with stand age of broadleaf species. 

Danson (1987) reported the correlation between SPOT XS data and the age of Corsican 

pine (Pinus nigra var. maritima), with only 28 samples and a correlation of -0.42 to -0.67. 

In a recent investigation, Conese and Maseli (1991) also concluded that multi-temporal 

TM data can describe vegetation ’ phenological cycles and had better discrimination 

performances for stand recognition and classification than single date data.

Age is generally considered to be the most important independent variable in growth and 

yield studies (Buchman 1962) and was the only independent variable in many forest growth
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models. Because of its ease of measurement, it is the most commonly used independent 

variable in predicting site quality and stand yield. As the study area provides a relatively 

complete age distribution of even-aged plantation stands (see Chapter 3 and 4), it is 

possible to detect the changes of imagery data with stand ages before studying the 

relationships between site quality and satellite remotely sensed data. The relationships 

between the imagery data and other stand variables is examined in later chapters. The 

major objective of this chapter is to examine the ability of SPOT and Landsat TM data to 

detect the variation of even-aged plantation stands at different growth stages. More 

importantly, the studies also determine the information content of each individual spectral 

band and their combinations and indicate the best bands and optimal age periods for 

detecting changes of stand structure.

5.2. METHODOLOGY

5.2.1 Data Generation

5.2.1.1 Stand Age

The characteristics of the study site and the stands were described in Chapters 3 and 4. The 

study area has a relatively complete age structure, ranging from newly-planted to old 

stands (i.e. 2-51 years old). This complete stand age gradient provided the possibility of 

evaluating the changes of spectral reflectance values with stand age.

The locations of pine stands at different ages had been defined on the digitised 

compartment map by referring to compartment records. The stand age data were assigned 

to corresponding stands based on the 1:10,000 scale compartment maps and compartment 

records and by referring to corresponding air-photographs (black/white and colour) at the 

same scale taken in 1986 and 1987. The stands selected for data analysis ranged from 3 to 

42 years of age.

5.2.1.2 Satellite Data

In order to locate the tree age on the compartment map accurately, all the geometrically- 

corrected images of SPOT and TM were registered onto the grid-based compartment maps 

produced by digitising (see Chapters 3 and 4). The compartment boundary map was 

overlaid onto the images so that the stands could be easily recognised on the screen. The 

pixels of the radiata pine stands aged from 3 to 42 years were respectively extracted and 

used for calculating the mean spectral values. This was undertaken using the grid-based 

GIS IDR1SI program (Eastman 1990). Several FORTRAN programs were written to
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calculate the statistics of imagery data of the stands aged from 3 to 42 years. The stands 

ranging from 3 to 42 years of age are summarised in Table 5.1. The distributions of age 

and age classes are shown in Figure 5.1. The spectral data characteristics of each age or 

age classes are presented in Appendices D-G.

5.2.2 Data Analysis

5.2.2.1 Basic Statistics

Calculating basic statistics helps understanding of the characteristics of the data sets used 

for data analysis. This includes calculating the means, standard deviation (SD), standard 

error (SE), variance and coefficients of variation (CV) of the raw data of each band. These 

parameters were computed respectively for all the pixels of the study area covering the 

stands of interest and the pixels at each age level and/or age class.

5 2 .2 2  Data Combinations and Transformations

SPOT and Landsat TM data from separate dates were superimposed and made into a 

“multi-temporal” data set (18 channels; see Chapter 4). The images of difference and mean 

images were computed from the two separate date TM data, producing a new multi

channel (21 channels) imagery data set. The images of difference and average were 

computed as follows:

Dx = 2TMX - 4TM ,

w 2TM: + ATM:
M , = ------------------------------------------ —

'  2

where D i — difference of two Landsat TM data in ith band;

M- — the mean values of two Landsat TM data in ith band;

2TMX — the ith band of the February-9 TM image; and 

4TMX — the ith band of the April-21 TM image. 

i =  l , 2 , ...»7.

In addition to the “between-image” band combinations for the two TM data sets, 

combinations and transformations among the spectral bands within a single date image 

were also tried. This included logarithmic, reciprocal and principal component 

transformations (see below).



Table 5.1 General statistics of the radiata pine stands selected to calculate spectral values aged from 3 to 42
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-ears.

No.
Stands
Age Symbols

Pixels
Numbers

Area in 
hectare

% of the 
total area

5-year A ze  Classes
Age Classes Pixel No

1 3 a 813 32.52 1.33
2 4 b 3397 135.88 5.58 1-5 6154
3 5 c 1944 77.76 3.19
4 6 d 694 27.76 1.14
5 9 e 778 31.12 1.28 6-10 1472
6 11 f 52 2.08 0.09
7 12 g 4644 185.76 7.62
8 13 h 504 20.16 0.83 11 -15 14930
9 14 i 9031 361.24 14.82
10 15 j 699 27.96 1.15
11 16 k 3069 122.76 5.04
12 18 1 401 16.04 0.66 16-20 4446
13 19 m 246 9.84 0.40
14 20 n 730 29.2 1.20
15 21 0 2899 115.96 4.76
16 23 P 6838 273.52 11.22 21-25 14646
17 24 q 3940 157.6 6.47
18 25 r 969 38.76 1.59
19 26 s 2169 86.76 3.56
20 27 t 495 19.8 0.81
21 28 u 2347 93.88 3.85 26-30 11230
22 29 V 2694 107.76 4.42
23 30 w 3525 141 5.79
24 31 X 947 37.88 1.55
25 32 y 2327 93.08 3.82
26 33 z 857 34.28 1.41 31 -35 4534
27 34 J 230 9.2 0.38
28 35 @ 173 6.92 0.28
29 36 # 400 16 0.66
30 37 $ 733 29.32 1.20
31 38 % 938 37.52 1.54 36-40 2890
32 39 & 614 24.56 1.01
33 40 * 205 8.2 0.34
34 41 9 362 14.48 0.59
35 42 < 257 10.28 0.42 41 -45 619

Total 60921 2457

* the symbols representing stand ages are used in PC plots in Figure 5.6

11 1

fl n | J
i n 1 1 r j i f f T

■ -JL1 JL— .l. isl jsJM njflll
m r*

h h h N N N N N
Stand age in years

»-« cn Vo ^  ^
c*"> cn cn <*■> <t> Tfr

Age c h s te i (S year)

Figure 5.1 Proportions of the radiata pine plantation stands at the different age levels (a ) and 5-year age 
classes (b ).



105

S.2.2.3 The Computation of Vegetation Indices

Due to the differences of spectral bands in their responses to vegetation and the effects of 

terrain on spectral reflectance, the combinations of bands (such as band ratios and 

differences) are usually computed and used to reduce the topographic effects and to give 

some indication of the amount of radiation absorbed or reflected by green vegetation. 

These combinations of bands, usually called vegetation index (VI), have been widely used 

to predict crop yield or forest biomass (Tucker et al. 1980; Tucker 1979 and 1986; Barnett 

and Thompson 1983; Gardner et al. 1985; Prince 1990; Liu and Zheng 1990; Sader et al. 

1989; and Kanemasu et al. 1990). At least fifty such transforms or indices can be found in 

remote sensing literature, but most are functionally related. A concise review of the use of 

the transforms and indices for the estimation of some vegetation parameters can be found 

in Jackson (1983) and Jackson et al. (1983). Among these transforms, ratios or indices, 

normal difference vegetation index (NDVI), agricultural vegetation index (AVI), and 

relative vegetation index (RVI) are the most commonly used indices in estimating 

vegetation parameters. These indices are defined from red and near-infrared (NIR) 

wavebands using the following formulae:

(1) Normal Difference Vegetation Index (NDVI)

NDVI = NIR ~ Red 
N1R+ Red

(2) Agricultural Vegetation Index (AVI)

AVI = NIR -Red

(3) Relative Vegetation Index (RVI)

RVi =J™ L. ioo
Red

These three vegetation indices have been reported to be related to several stand variables 

including leaf-area-index (LAI) (Tucker 1986; Peterson et al. 1987; Spanner et al. 1984b 

and 1990; Running et al. 1986; and Clevers 1989), and biomass (Sader 1987; Sader et al. 

1989). In this study, the above three NER-related band combinations (ratios and 

differences) were used in assessing their relationships with stand age. It is assumed that 

stand ages may have significant effects on these vegetation indices. The inferences that 

might be drawn from this study are that these three vegetation indices may be related to 

stand ages and may be used to estimate stand variables and site quality. The work reported 

in this chapter was to evaluate the relationships between the vegetation indices and stand
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ages. The relationships to other forest growth and site parameters are evaluated in the 

following chapters.

5.2.2.4 Difference Test

The paired spectral reflectance differences of the three data sets recorded from SPOT and 

Landsat TM on different dates were analysed using paired t-test and F-test methods. The 

former method was used to test the differences in mean reflectance, and the latter the 

variances. The methods and procedures of computation can be found in Eaton (1983), 

Nelson (1990), and SAS Institute Inc. (1989).

5.2.2.5 Scatter Plots

The mean spectral reflectance of each band and their combinations were each plotted 

against stand age to view the general trend of change in the spectral reflectance in each 

spectral band. In addition to single age levels from 3 to 42 year of age, the 5-year age 

classes were plotted against the mean spectral values of the stands of the same age classes.

5.2.2.6 Principal Component Analysis

Principal component analysis, also .referred to as principal component transformation, 

eigenvector transformation, the Hotelling transformation and the Karhumen-Lo&ve (K-L) 

transformation, is a commonly used multivariate statistical technique that linearly 

transforms an original set of variables into a substantially smaller set of uncorrelated 

variables that represents most of the information in the original set of variables (Jolliffe 

1986). Its main goal is to reduce the dimensionality of the original data set. A small set of 

uncorrelated variables is much easier to understand and use in further analysis than a large 

set of correlated variables. In remote sensing image analysis and pattern-recognition fields, 

it is used not only for determining the underlying dimensions of multi-channel image data 

(also called data compression or spectral redundancy reduction by some authors) (Ready 

and Wintz 1973; Schowengerdt 1983; Anuta et a l 1984; Poso et al. 1984 and 1987; Peng 

1987; and Häme 1991), but also for image enhancement (Donker and Mulders 1977; 

Gillispie 1980; Canas and Barnett 1985; Walsh et al. 1990; and Lee and Hoppel 1992), for 

digital change detection (Byrne et al. 1980; Ingebritsen and Lyon 1985; Horler and Ahem 

1986; Fung and LeDrew 1987; Richards 1984; Singh 1989; and Fung 1990), classification 

and mapping (Conese et al. 1988; Loughlin 1991; Franklin 1992), separation of ground 

cover information (Crist and Cicone 1984), and for characterising seasonal changes in 

cover types (Lodwick 1979a and 1979b; and Lu 1988). The technique essentially consists 

of choosing uncorrelated linear combinations of the variables in such a way that each
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successively extracted linear combination, called principal component (PC), has a smaller 

variance. If the variables have significant linear inter-correlations, the first few components 

will account for a large part of the total variance. The principal components (PCs) are 

computed by:

P C s  —  a u X j  +  2 “h  * * * "h  a NiX N  ^

where a] = [fli .» an . • • •» «m ] is the transpose of the normalised eigenvectors (i.e a f a  = 1) 

of the variance-covariance matrix of the original data. Principal components have several 

characteristics, some of which are of special interest in remote sensing:

(1) The total variance is preserved in the transformation (Dunteman 1989), i.e.

N N

X«?=2x,
i = l  i = l

where Sf is the variance of jth  original variable, and X( are the eigenvalues of 

variance-covariance or correlation matrix.

(2) The principal component scores are jointly uncorrelated (Rao 1964; and 

Kshirsagar 1972). This is the only transformation that produces uncorrelated 

coefficients (Moik 1980).

(3) The first principal component has the largest variance of any unit-length linear 

combination of the observed variables (bands). The last principal component has 

the smallest variance of any linear combinations of the original variables (Jolliffe 

1986; and SAS Institute Iric. 1989).

A detailed mathematical description and discussion of principal component analysis can be 

found in Rao (1964) and Jolliffe (1986), and statistical treatments can be referred to in 

Kshirsagar (1972) and Mardia et al. (1979).

As there existed strong inter-relations between spectral band data, the principal component 

analysis technique was employed to reduce the dimensionality of multi-band images. The 

principal component images produced were then used for the evaluation of relationships 

with stand age and other stand variables (see the following chapters). This is a relatively 

important technique to overcome multi-collinearity in multiple regression of multi-channel 

imagery data. This will be discussed in more detail in Chapter 7. Principal component 

images can also be used for classifications and detection of changes of the stands but the 

applications are not discussed here. Six principal component analyses were performed on 

the three single dates data sets and their combinations, including calculations of the 

loading, eigenvalues and production of principal component images. In this chapter, the
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principal component transformations are performed using variance-covariance matrices, as 

the images have the similar unit-length of data (i.e. 0-255).

5.2.2.7 Correlation Analysis

Correlation analysis includes computing correlation matrices between the wavebands and 

regression analysis between stand age and the reflectance values in each band. The former 

was used to test the inter-correlations within the images. The latter was used to evaluate 

the relationships between spectral values in each waveband spectral region and stand ages. 

As the change patterns of spectral reflectance with stand age are not simply linear, several 

non-linear functions were employed to examine the changes of spectral reflectance values 

of each band and their combinations with stand age, i.e

Polynomial y  =  a + bx + cx2 (5 .1)

Log Polynomial y = ä + b*log(x) + c*[log{xj]2 (5 .2)

Power y = a <=> log(y) = a + b»log(x) (5 .3)

Exponential y = a*ebx <=> ln{y) = a + bx (5 .4)

Reciprocal y  =  a  +  b ( ^ ) (5.5)

Logarithm y  =  fl +  b-log(x) (5 .6)
reflectance

In fitting these functions, the values of each band of SPOT and TM image data

were used as the dependent variable (y) and stand age as the independent variable (x ). The 

data were fitted for stand ages ranging from 3 to 42 and 5 to 35 years old respectively. The 

single date and the combination of multi-date Landsat TM data (i.e. differences and means 

of the two TM data sets), and logarithmic and reciprocal data transformations were also 

tried. The relationships between the first two principal components (see Section 5.2.2.6) 

and stand ages were also evaluated by simple and polynomial regression analysis.

5.2.2.8 Cluster Analysis

As the imagery data cover stands from 3 to 42 years of age, it was thought likely that the 

reflectance values for some age periods might be the same or similar. Clustering was 

performed to classify the stands into spectral reflectance homogeneous classes (age 

groups) based on the similarities (or distance) between the spectral reflectance values of 

the stands at each single stand age. The similarity between the spectral bands was also 

detected by clustering algorithms. A FORTRAN program was written to calculate distance 

and similarity (e.g. Euclidean distance, Pearson Product Moment Correlation (PPMC), 

Cosine Theta (normalised distance), and standardised Euclidean distance). Several
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clustering algorithms were also tried, including centroid, farthest and nearest neighbour 

(single linkage). The classification process was demonstrated in a dendrogram. The 

theory and methods of cluster analysis can be found from a number of sources (e.g. 

Everitt 1980; Pielou 1977 & 1984; Gordon 1981; Hartigan 1975; Späth 1980; and Fung 

and Pan 1982).

5.3 RESULTS

5.3.1 Data Characteristics

The means, standard deviations (SD), coefficients of variation (CV), minimum and 

maximum and data ranges of the spectral data over the radiata pine plantation stands are 

displayed in Tables 5.2 and 5.3. The two summer images showed higher values in variance, 

standard deviation, and data range than the autumn image. The relative variation for the 

green, red and NIR bands respectively of the three data sets were similar, with the highest 

for the red bands and lowest for the NIR bands. For the TM data, the February-9 image 

(2TM) had higher pixel values than the April-21 image (4TM). Standard deviations, 

variances and data ranges (maximum - minimum) were also higher in the 2TM data. In 

particular, the data ranges in this image were nearly twice as large as those for the 4TM 

data. However, the two TM images showed similar CVs, with the highest in Band 7 (CV > 

63.29 % for 2TM7 and 66.79% for 4TM7) and lowest in Band 6 (CV < 4.2%). In 

comparison, the mean TM images produced higher standard deviations and variance but 

lower CVs than the difference image (Table 5.3).

Table 5.2 The data characteristics of SPOT and Landsat TM imagery data of the radiata pine plantation 
_________ stands aged from 3 to 42 years. The total pixels on radiata pine plantation stands were 60869a.

Bands Mean SD Variance CV Min Max Range

XS1 34.41 6.51 42.43 18.93 21 89 68
XS2 25.80 7.50 56.21 29.06 15 91 76
XS3 52.77 6.42 41.24 12.17 16 92 76

PS 34.36 9.22 85.01 26.83 20 191 171
2TM1 59.69 5.99 35.90 10.04 50 96 46
2TM2 25.07 4.71 22.21 18.79 18 60 42
2TM3 29.26 10.24 104.94 35.01 15 107 92
2TM4 55.18 7.60 57.82 13.78 26 105 79
2TM5 57.39 26.76 716.29 46.64 20 203 183
2TM6 123.02 5.11 ' 26.09 4.15 115 144 29
2TM7 21.66 13.71 188.03 63.29 3 99 96
4TM1 42.99 3.22 10.34 7.48 36 66 30
4TM2 15.42 2.53 6.37 16.37 12 34 22
4TM3 13.62 4.03 16.25 29.60 9 44 35
4TM4 32.06 5.10 25.98 15.90 13 55 42
4TM5 26.23 14.12 199.50 53.84 6 99 93
4TM6 109.63 2.43 5.90 2.22 104 123 19
4TM7 10.33 6.90 47.66 66.79 2 48 46

2TM1 to 2TM7 represent bands 1 to 7 of February-9 TM image, and 4TM1 to 4TM7 represent bands 1 to 7 of the 
April-21 TM image.



Table 5.3 Summary of the mean (M1 to M7) and difference (Dt to D7) images of the two TM data sets over
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the radiata pine plantation stands ranging from 3 to 42 years of age (see Section 5.2.2.3).
Band

Combinations
Mean SD Variance CV Min Max Range

Difference of Two TM imagery Data
D, 16.62 2.35 5.50 14.12 11.44 23.51 12.07
D, 9.53 1.92 3.68 20.13 5.33 14.82 9.49
D* 15.44 4.90 24.03 31.74 6.88 29.45 22.57
Dd 22.09 3.01 9.04 16.61 15.24 27.81 12.57

30.13 10.46 109.48 34.73 6.42 59.78 53.36
D* 12.96 2.24 5.03 17.30 8.50 18.36 9.86
d 7 10.96 5.59 31.23 50.98 1.00 28.21 27.21

Mean Reflectance of two TM Imagery Data
M, 51.39 3.46 11.94 6.72 48.33 62.83 14.50
Af, 20.32 2.65 7.04 16.06 17.96 28.77 10.81
M, 21.76 5.15 26.52 23.67 17.20 37.70 20.50

41.83 3.82 14.61 9.14 36.29 49.55 13.26
42.12 15.05 226.51 35.73 26.00 91.57 65.58

116.37 2.91 8.44 2.50 112.55 124.875 12.33
m 7 16.35 7.84 61.52 47.99 8.82 43.61 34.79

The two MIR bands of TM data showed higher data ranges, standard deviations and 

variances than the visible bands (Tables 5.2 and 5.3). This result implies that the MIR 

bands may be more sensitive to the stands.

The basic statistics of the spectral values of the stands aged from 3 to 42 years for the three 

data sets are summarised in Appendices D-F. The same statistical parameters of the 

spectral values at 5-year age classes are given in Appendix G. The coefficients of variation 

of spectral values in XS1 and XS2 of the SPOT data and Bands 1, 2, 5, 6 and 7 of the TM 

data were found to be slightly higher in the young stands than in the older stands (> 10-15 

years old), but this was not obvious in XS3 of the SPOT data and Bands 3 and 4 of the 

TM data. The standard deviations in all bands decreased with increased stand ages in 

younger stands (< 15 years old) and fluctuated after 15 years of age. The spectral values of 

the 5-year age classes showed a similar trend of changes, with the standard deviations and 

coefficients of variation being higher for younger stands (i.e. 5, 10 and 15 age classes) (see 

Appendix G).

5.3.2 Comparison of Spectral Data

The results of a two group paired Mest on mean values and F-test on equal variances of 

the images are presented in Table 5.4. All individual bands showed highly significant 

differences in mean spectral values of the corresponding spectral bands between the three 

data sets on the same area but with different recording dates and systems (p < 0.0001). 

Significant differences also existed in variance. The comparison in red, green and NIR 

bands of SPOT and TM images indicated that there were significant difference in variances 

of the SPOT and the April-21 image, with the significance level P = 95% or higher (99%).
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In the comparison of SPOT and the February-9 TM data, the red bands were significantly 

different but the green and NIR bands did not show differences in data variances. The 

results of difference tests between the mean image of the two date TM and SPOT images 

in the corresponding spectral bands showed no significant differences in variances of the 

red and the NIR bands, but significant difference in the green band (p < 0.01).

5.3.3 Change of Spectral Values with Stand Ages

The scatter plots of the original SPOT and TM data against stand age in years are shown in 

Figure 5.2. The images of differences and means of the TM data for two dates were plotted 

against stand age as shown d in Figure 5.3. In Figure 5.4 shows the mean reflectance 

values by 5-year age classes plotted against corresponding age classes. It can be seen that, 

except for the NIR band, the spectral values followed an approximate reverse J-shaped 

data distribution. The spectral values were highest in the youngest stands (age 1-4), and 

sharply decreased from age 3 to 5 years, then gently decreased from age about 5 to age 20. 

Between age 20 and 35, the spectral values were constant after which they increased 

slightly. The difference and mean images of the TM data for the two dates displayed the 

same patterns of change with stand age (Figure 5.3). Smoother changes occurred in the 

plots showing relationships between the 5-year age classes and corresponding reflectance 

values (Figure 5.4).

Table 5.4 Difference significance test on mean reflectance (Mest) and equal variances test (F-test) of the 
_________ three data sets recorded by SPOT and Landsat TM on three dates, n = 36_____________________

Band
Comparison

Paired T-test Variance Homogeneous Test
Mean

Difference
Paired t 
value

Prob. 
(2 Tail)

Paired 
F Values

Prob.

The comparisons between the February-9 and the April-21 TM images
1 - 1 16.58 43.06 0.0001 3.50 0.01
2-2 9.54 29.60 0.0001 3.97 0.01
3 - 3 15.23 18.74 0.0001 6.57 0.01
4-4 21.50 ’ 66.06 0.0001 2.33 0.01
5-5 29.28 19.98 0.0001 3.22 0.01
6-6 13.10 35.35 0.0001 3.91 0.01
7-7 10.67 12.47 0.0001 3.70 0.01

The comparisons of green, red and NIR bands of SPOT and the February-9 TM data
G reen 8.35 40.74 0.0001 1.20 +

Red 4.39 7.59 0.0001 1.66 0.05
NIR 2.31 9.58 0.0001 0.62 +

The comparisons of green, red and NIR bands of SPOT and the April-21 TM data
G reen 17.89 48.01 0.0001 4.75 0.01

Red 10.84 27.95 0.0001 2.40 0.01
NIR 19.19 63.92 0.0001 1.44 0.05

The comparisons of green, red and NIR bands of SPOT and mean TM data
G reen 13.12 51.67 0.0001 2.21 0.01

Red 3.22 11.58 0.0001 0.80 +
NIR 8.44 38.62 0.0001 0.94 +

+ the difference was not significant in variance, i.e. P > 0.1.
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Figure 5.2 Relationships between spectral band data and stand age.
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Figure 5.3 Relationships between the difference and mean spectral values of the two TM data 
sets for two dates and stand age.
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The NIR band showed a different pattern of changes as stand age increased. The 

reflectance values increased from age 2 to about 12, and then showed an approximately 

linear decrease from age 12 to about 32 and stayed constant or slightly increased after 

about age 33.

The changes of three defined vegetation indices (AVI, NDVI, RVI) with increasing stand 

ages are indicated in Figure 5.5. The vegetation indices significantly increased from age 3 

to 5, then gently increased from age 5 to about 20. The peaks of the VI-age curves were 

located at about age 15. All vegetation indices gently decreased with increasing stand ages 

after about 15 years of age.

Figure 5.5 Relationships between stand age and the 
three vegetation indices: AVI (a); RVI 
(b); and NDVI (c).

5.3.4 Principal Component Analysis

Six principal component analyses (PCA) were carried out using the spectral values over 

the radiata pine plantation stands. The data sets used for each PCA included the three 

single date SPOT and TM data, the difference and mean images of the two TM data, and 

all three data sets together. The results of the principal component analysis are presented 

in Tables 5.5 to 5.10. All principal components (PCs) were computed and then correlated 

with stand ages.

In the SPOT data, PCI explained 81.56 % and PC1+PC2 together explained 99.88 % of 

the total variance in the spectral values of the three XS mode bands. XS2 produced the 

highest loading in PCI (0.692), while XS3 showed the highest loading in PC2 (0.909), 

about three times larger than those for XS1 (0.252) and XS2 (0.333) (Table 5.5).
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Table 5.5 Results of PC A for SPOT XS data.

Bands P C I PC 2 PC3

XS1 0.589 -0.252 0.768
XS2 0.692 -0.333 -0.641
XS3 0.417 0.909 -0.022

Eigen Values 46.00 10.34 0.07
Variance Explained (%) 81.56 18.33 0.12
Cumulative (%) 81.56 99.88 100.00
Correlation with Age ’ -0.69** -0.49** 0.04

** significant at 99.9% confidence level. Total variance = 56.40

The PCA results for the two TM data sets are given in Tables 5.6 and 5.7. PCI of the 

February-9 image explained 93.82% of the total variance, and PCI and PC2 together 

explained 97.73% (Table 5.6). The PCI of the April-21 image contained 93.42% of the 

total variance, and the first two PCs together as high as 99.06% (Table 5.7). The PCs 

from the mean image were very close to those of the original TM data, with PCI 

explaining 94.17% of the total variance and PC2 explaining 4.41% (PC1+PC2 = 98.58%) 

(Table 5.9). Since PC3 to PC7 showed very little information content (< 2%), further data 

analysis was concentrated on the first two PCs.

Table 5.6 Results of PCA for the February-9 TM data.

B ands P C I PC 2 PC3 P C 4 PC 5 P C 6 PC 7

2TM 1 0.1819 -0.0137 0.1077 0.3258 0.0231 0.8080 -0.4423

2T M 2 0.1398 0.0132 0.0805 0.3444 -0.0588 0.2988 0.8732

2T M 3 0.2973 -0.0524 0.1919 0.7572 -0.0806 -0.5037 -0.1962

2T M 4 0.0818 0.9731 0.2022 -0.0434 -0.0497 -0.0235 -0.0246

2T M 5 0.8003 -0.1654 0.3466 -0.4437 -0.1165 -0.0351 0.0216

2T M 6 0.1571 0.0365 0.0081 0.0238 0.9843 -0.0480 0.0469

2T M 7 0.4326 0.1460 -0.8854 0.0517 -0.0680 -0.0032 -0.0136
Eigen Values 553.17 23.00 8.84 3.33 1.06 0.17 0.02
Variance Explained (%) 93.82 3.90 1.50 0.57 0.18 0.03 0.00
Cumulative (%) 93.82 97.73 99.22 99.79 99.97 100.00 100.00
Correlation with Age -0.50** -0.64** -0.07 -0.14 0.18 -0.31 -0.09

** significant at 99.9% confidence level. Total variance = 589.58

Table 5.7 Results of PCA for the April-21 TM data.

Bands PCI PC2 PC3 PC4 PC5 PC6 PC7

4TM1 0.1833 -0.0334 0.5132 0.1363 0.4285 0.5883 -0.3920

4TM2 0.1414 -0.0018 0.3382 0.2079 0.0233 0.1868 0.8871

4TM3 0.2307 -0.0720 0.4650 0.3960 -0.6733 -0.2417 -0.2384

4TM4 0.0679 0.9850 0.1216 -0.0530 0.0096 -0.0831 -0.0256

4TM5 0.8344 -0.0204 -0.2821 -0.3591 -0.2057 0.2286 0.0159

4TM6 0.1455 0.1109 -0.5412 0.7998 0.0932 0.1539 -0.0390

4TM7 0.4137 -0.1041 0.1371 0.0994 0.5581 -0.6912 -0.0109

Eigen Values 167.70 10.12 1.06 0.037 0.009 0.006 0.003
Variance Explained (%) 93.42 5.64 0.59 0.18 0.13 0.03 0.01
Cumulative (%) 93.42 99.06 99.65 99.83 99.96 99.99 100.0
Correlation with Age -0.36* -0.44** -0.36* -0.05* -0.58** -0.09 -0.16

* and ** significant at 95% and 99.9% confidence levels. Total variance = 179.50.
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Table 5.8 Results of PC A for the difference image of the two TM data sets.

B an d s P C I P C 2 PC 3 P C 4 PC 5 P C 6 P C 7

D, 0.1710 0.0328 -0.0593 0.2322 0.0068 0.8341 -0.4652
D, 0.1375 0.0417 0.0073 0.2641 -0.1649 0.3781 0.8599

D, 0.3529 0.1278 -0.0551 0.7479 -0.3332 -0 .3896 -0.1845
Dj 0.1310 0.2410 0.9601 -0 .0189 0.0306 0.0166 -0.0364

0.7709 0.3647 -0.2033 -0 .4770 -0.0404 -0.0434 0.0186

D* 0.1585 0.1038 -0.0665 0.2961 0.9258 -0.0800 0.0920

d7 0.4369 - 0.8826 0.1605 -0.0381 0.0447 -0.0303 0.0052
Eigen Values 170.59 10.04 5.22 1.59 0.71 0.17 0.04
Variance Explained (%) 90.57 5.33 2.77 0.85 0.38 0.09 0.02
Cumulative (%) 90.57 95.90 98.67 99.51 99.89 99.98 100.00
Correlation with A ge -0.55* -0.01* -0.59** -0.14 -0.04 0.00 0.08

** significant at 99.9% confidence level. Total variance = 188.36.

Table 5.9 Results of PC A for the mean image of the two TM data sets.

Bands PCI PC2 PC3 PC4 PC5 PC6 P C I

M , 0.1835 -0.0076 0.1907 0.3745 -0.0665 0.7984 -0.3844

M, 0.1405 0.0109 0.1337 0.3448 -0.0257 0.2030 0.8953

M , 0.2723 -0.0643 0.2773 0.6888 0.1551 -0.5457 -0.2204

AC 0.0716 0.9882 0.1093 -0.0112 -0 .0598 -0.0456 -0.0266

AC 0.8131 -0 .1080 0.3080 -0.4615 -0.1293 -0.0495 0.0129

AC 0.1539 0.0660 -0.1168 -0.1060 0.9630 0.1374 0.0298

m 7 0.4271 0.0569 -0.8651 0.2052 -0.1525 -0.0095 -0.0198

Eigen Values 317.75 14.89 2.34 1.77 0.56 0.10 0.01
Variance Explained (%) 94.17 4.41 0.69 0.52 0.17 0.03 0.02
Cumulative (%) 94.17 98.58 99.28 99.80 99.97 100.00 100.00
Correlation with Age -0.46* -0.59** -0.04 -0.24 -0.24 -0.35 0.12

** significant at 99.9% confidence level. Total variance = 337.42.

As shown in Tables 5.5 to 5.9, all spectral bands had positive loading values in PCI. For 

the SPOT data the information in PCI was mainly contributed by the visible bands, with 

more emphasis on the red band (XS2) (Table 5.5). For the TM data, the information in 

PCI was mainly contributed by the two MIR bands (TM5 and TM7), with the TM5 band 

showing the highest loadings (0.8003 for 2TM5; and 0.8344 for 4TM5) (Tables 5.6-5.7). 

All other TM bands contributed very little information to PCI since they all showed 

relatively small PC loadings. NIR had a very high positive loading on PC2 (0.9731 for 

2TM4, and 0.9850 for 4TM4), from 4 to 10 times larger than the loadings of any other 

bands. Similar information contents were found for the PCs of the mean image (Table 

5.9).

The principal components computed from the difference image had different information 

contents, with PCI having less andrPC3 having more than those from the raw TM and 

mean images (Table 5.8). PC2 contained 5.33% of the total variance (188.36), but it had 

no correlation (r = -0.01) with stand age (Table 5.8). As in the original data, the 

differences in Band 5 (D5) and 7 (D7) showed higher positive loadings in PCI. The 

information of PC2 was mainly from the D7 as it produced a very large negative loading
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in PC2 (-0.8826). The difference in Band 4 (D4) contributed the most information to PC3 

as it had a very large positive loading (0.9601). PC4 to PC7 of the difference image 

contained negligible information (< 1%) on the stands.

The final principal component analysis was conducted using the three data sets together 

(18 channels) to compare their contributions to the total variation. As shown in Table 

5.10, the PCI could explain 89.24% and PCI and PC2 taken together accounted for over 

94% of the total variation. The remaining 16 PCs contained less than 6% of the total 

information and had no significant correlations with stand age and can be considered 

negligible.

Table 5.10 Results of PCA for the three data sets together (18 channels).

Bands PCI PC2 PC 3 PC4 PC5 PC6 PC7

XS1 0.1409 0.0498 - 0.0709 0.1805 0.2789 - 0.3022 0.0645
XS2 0.1650 0.0408 - 0.1066 0.2426 0.4083 - 0.3004 0.0907

XS3 0.0675 0.5168 0.0525 0.2557 0.0574 - 0.1056 - 0.3323
PS 0.1959 0.0649 - 0.0844 0.3160 0.3679 - 0.1587 0.2103

2TM1 0.1543 0.0002 - 0.0921 0.0962 0.1107 0.2302 0.0651
2TM2 0.1186 0.0162 - 0.0697 0.0752 0.1287 0.2509 0.0417

2TM3 0.2517 - 0.0290 - 0.1677 0.1442 0.1488 0.6679 0.0649
2TM4 0.0692 0.7032 0.0524 0.0051 - 0.2126 0.1962 - 0.1201

2TM5 0.6782 - 0.0898 - 0.3125 0.1063 - 0.5550 - 0.2035 - 0.0744
2TM6 0.1324 0.0320 - 0.0807 - 0.0738 - 0.1372 0.0977 0.6292
2TM7 03 6 4 8 0.0851 - 0.1548 - 0.7857 0.3881 - 0.0309 - 0.2131
4TM1 0.0829 - 0.0189 0.1227 0.1012 0.1057 0 . 1468 . - 0.1049
4TM2 0.0627 - 0.0136 0.1161 0.0567 0.0821 0.1228 - 0.0123
4TM3 0.0991 - 0.0712 0.2226 0.0797 0.1039 0.2567 0.0178
4TM4 0.0270 0.4092 0.2669 - 0.1897 - 0.0022 - 0.0794 0.4933
4TM5 0.3657 - 0.1681 0.7381 0.0137 - 0.0631 - 0.0832 - 0.0559
4TM6 0.0660 0.0054 0.1107 - 0.1252 - 0.0443 - 0.0923 0.2907

4TM7 0.1842 - 0.1059 0.3082 0.0427 0.0930 0.0713 - 0.1369

Eigen Values 765.31 43.58 24.31 11.92 5.01 3.62 1.74

Variance Explained (%) 89.24 5.08 2.83 1.39 0.58 0.42 0.20

Cumulative (%) 89.24 94.32 97.16 98.55 99.13 99.55 99.76

Correlation with Age - 0 .4 9 * * - 0 . 67 * * 0.14 - 0.12 - 0.18 - 0.20 - 0.16

** significant 99.9% confidence level. Total variance = 857.58

As can be seen from Table 5.10, the 2TM5 band shows the highest contribution to the 

PCI as it has the highest PC loading (0.6782), two to three times larger than any of the 

other 17 channels. 2TM7 (0.3648) and 4TM5 (0.3657) also had higher PCI loadings, but 

they were much lower than 2TM5. This means the information on PCI was mainly 

contributed by the MIR bands. The information of PC2 was mainly contributed by the 

three NIR bands, with the loadings in PC2 being 0.7032 for 2TM4, 0.5168 for XS3 and 

0.4098 for 4TM4. All other spectral bands had very small loadings in PC2 ( < 0.1).

Figure 5.6 displays the plots of PCI against PC2 from the three original data sets. The 

figures show that the young stands from ages 3 to 6 (a, b, c and d respectively in the
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Figure 5.6 Plots of PC2 against PCI calculated from the images of the January-24 SPOT data (a), the 
February-9 TM (b) and the April-21 TM (c). The characters from a to z and several other 
symbols represent the stands aged from 3 to 42 years (see Table 5.1).
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plots (see Table 5.1) are at the extreme right, with higher positive values in PCI and 

lower values in PC2 (in absolute terms). For the stands between 9 and about 15 years old 

(the symbols: e, f, g, h, i, j in the plots), the data show a lower positive loading values in 

both PCI and PC2 than the data of the younger stands (age < 9). From about 16 to 25 

years of age (symbols: k, 1, m, n, p, q, r), the stands have negative loadings in PCI but 

low positive loadings in PC2. The stands from age 25 usually shows negative loadings in 

PCI and PC2 after about 20 years of age (symbols: s, t, u, v, x, y, z, !, @, #, $, %, &, *, ?, 

and <).

5.3.5 Correlations

5.3.5.1 Inter-correlations within and between Images

Correlation matrices of data within the images and between the SPOT and TM images are 

displayed in Table 5.11. The green, red and panchromatic bands of the SPOT data were 

highly inter-correlated across the 60869 pixels covering the radiata pine stands aged from 3 

to 42 years, with a range of correlation coefficients (r) from 0.979-0.997, while the NIR 

band showed a relatively lower correlation with other bands (r = 0.537-0.555).

All TM bands were strongly inter-correlated (r = 0.946-0.996 for 2TM; r -  0.877-0.994 

for 4TM), with the exception of the NIR band which showed a lower correlation with 

other bands (r < 0.43 for 2TM, and r < 0.37 for 4TM). Similar correlation patterns (i.e. 

high correlations between the visible and MIR bands and lower correlations with the NIR 

bands) also occurred between the three data sets (Table 5.11). In comparison, the SPOT 

data in all bands were better correlated with the February-8 TM data than with the April- 

21 TM data. This implies the two summer imagery data may be similar in their correlations 

with the stand parameters.

5.3.5.2 Correlations between Raw Spectral Values and Stand Ages

The correlation coefficients between the raw spectral values and stand ages are presented 

in Table 5.12. The spectral values in all bands were negatively correlated with stand age 

(significant at 95% or larger confidence levels), with a range of correlation coefficients: r = 

-0.57 to -0.83 for the SPOT image, -0.46 to -0.78 for the February-9 TM image and -0.31 

to -0.54 for the April-21 TM image. The visible, MIR and TIR bands showed very close 

correlations with stand ages. The highest correlation coefficients were found in the NIR 

bands (r = -0.82 for XS3, -0.78 for 2TM4 and -0.54 for 4TM4 respectively).
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As can be seen from Figure 5.3, both difference and mean images of TM data showed a 

similar change trend over stand age as did the raw band data. They were therefore used in 

data analysis to check whether or not they could provide any useful information on stand 

variables (attached to Page 122, Paragraph 2).
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When the correlation coefficients were calculated using the values from the stands of aged 

from 5 to 30 years, the correlations were only slightly improved in the visible and MIR 

bands, but the correlations in the NIR were significantly improved, with correlation 

coefficients (r) increasing from -0.82 to -0.87 for the SPOT data, from -0.78 to -0.91 for 

the February-9 TM, and from -0.54 to 0.78 for the April-21 TM data (Table 5.12).

The difference and mean data of the two TM images showed a similar correlation pattern 

as did the original single date TM image. The correlation coefficients with stand age in all 

bands were only slightly higher than those computed from the raw February-9 TM data, 

but much better than those from the April-21 TM data (Table 5.12). However, the 

correlations calculated using the spectral values of stands aged from 5 to 30 years, the 

correlations were lower in the visible, MIR and TIR bands than those in the same bands of 

original February-9 TM data, but much higher in the same bands of the raw April-21 TM 

data, especially in the NIR bands (Table 5.12).

Table 5.12 Correlations between stand ages and the raw spectral values and the combined TM data. The
correlation coefficients were computed with the values from stands aged from 3 to 42 and 5 to 
30 years respectively._______________________________________________________________

Correlations between the Raw Spectral Correlations between the Combined
Band Data and Stand Age TM Imagerv Data and Stand Age

Bands age: 3-42 age: 5-30 Combinations (age: 3-42) (age: 5.30)
XS1 -0.57** -0.58** D , -0.57** -0.45*
XS2 -0.56** -0.55** D 7 -0.59** -0.51*
XS3 -0.82** -0.88** D , -0.59** -0.49*
PS -0.57** -0.53** D d -0.80** -0.85**
2TM1 -0.54** -0.53** D s -0.56** -0.41*
2TM2 -0.54** -0.56** D* -0.57** -0.40
2TM3 -0.50** -0.49** D , -0.54** -0.46*
2TM4 -0.78** -0.91** M| -0.58** -0.55*
2TM5 -0.47** -0.49** M 7 -0.58** -0.57**
2TM6 -0.46** -0.52* M , -0.54** -0.40*
2TM7 -0.51** -0.52** -0.77** -0.87**
4TM1 -0.46** -0.57** -0.51** -0.52*
4TM2 -0.43** -0.58** -0.49** -0.55*
4TM3 -0.31* -0.50** m 7 -0.50** -0.54**
4TM4 -0.54** -0.78** * and **  d e n o te  th e  co r r e la t io n  c o e f f ic ie n t s  are

4TM5 -0.34* -0.56** s ig n if ic a n t  at 95% and 99% l e v e ls ,  n = 35
4TM6 -0.31* -0.57**
4TM7 -0.37* -0.53**

5.3.5.3 Correlations between Principal Component Images and Stand Ages

The correlations between stand ages and the PC images were computed and are shown in 

Tables 5.5-5.10 (see Section 5.3.4). Table 5.13 gives only the correlation coefficients of 

PCI and PC2 with stand ages, as these two PCs were generally strongly correlated with 

the changes of stand ages, with correlation coefficients (r) ranging from 0.36 to 0.67. PCI 

showed higher correlation coefficients with stand age than PC2 in SPOT data, but TM 

images or their combinations showed a reverse pattern, with PC2 showing higher
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correlation coefficients. Other PCs did not show significant correlations with stand ages 

(Tables 5.5-10).

By comparison, PC2 of the February-9 TM data showed the highest correlation (r = 0.67) 

with stand age. The PC images produced from the multi-temporal data, either the two TM 

data sets (14 channels) or three data set (18 channels) together, showed correlations with 

stand age very close to those of the February-21 TM data. These results imply that the 

selection growing season or recording date is most important in detecting the stand 

variation using spectral data.

Table 5.13 Correlations between the first two principal components and stand ages (3 - 42).

Images PCs Correlations with age

PCI -0 66 ***SPOT Image
PC2 -0.54 ***

February-9 TM Image PCI -0.53 ***
PC2 -0.67 ***

April-21 TM Image PCI -0.36 *
PC2 -0.44 **
PCI -0.55 **

TM Difference Image PC2 -0.01
PC3 -0.59 ***
PCI -0.42 *

TM mean Image
PC2 -0.59 ***
PCI -0.49 **

SPOT + 2TM + 4TM (18 Channels) PC2 -0.67 ***
PCI -0.51 **

All TM images (14 bands)
PC2 -0.68 ***

*, ** AND *** - significant at 95%, 99% and 99.9% of confident levels.

Further information on the correlations between the PCs and stand age was given by 

plotting PCI and PC2 images against stand ages (Figure 5.7). It can be seen that PCI 

showed a similar pattern of change -to the original images in visible, middle and thermal 

bands. PC2 also showed a very similar pattern to the NIR raw image data. At young stand 

ages (< 6), PCI values sharply decreased with increasing stand age and then gently reduced 

from age 7 to about 17. After 18 years of age, the PCI became negative, was lowest at 

about 20 years of age, and slightly increased from age 22 to 25. After 25 years of age, the 

PCI values fluctuate around zero (Figure 5.7). The PC2 values showed a reverse change 

pattem with the changes in age, with PC2 values significantly increasing with age from 3 to 

6 years old, then more gently increasing from ages 7 and to about 16. PC2 shows the 

highest value at about age 17 and then shows a gentle decrease with increasing stand age 

to about age 30 after which they fluctuated about zero.
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Figure 5.7 Relationships between stand age and the first two PCs of the January-24 SPOT data (a); the 
February-9 TM data (b); the April-21 TM data (c); and the three data sets together (d).

5.3.5.4 Non-linear Correlations

The simple linear relationships between stand ages and the spectral values and their 

combinations and/or transformations have been shown in the earlier sections. However, the 

relationships between spectral responses of the stands and their ages are not linear. 

Regression analysis was undertaken using the six equations listed in Section 5.22.1. The 

simple linear function was also used for comparison with the non-linear functions. The 

results of regression analysis using the original band data, difference and mean images are 

presented in Table 5.14.

The non-linear regression analysis showed that all bands were strongly correlated with 

stand ages. For the visible, MIR and TIR bands, the lowest correlations were obtained 

from the linear function. The highest correlations were obtained from the polynomial 

function (Eq. 5.2) using logarithmically transformed age variables (significant at 99% 

confidence level), with r2 ranging from 0.73-0.90 for the SPOT image, 0.66-0.86 for the 

February-9 TM image and 0.30-0.78 for the April TM image. The visible and MIR bands 

showed the closest fitting results, with the best fit obtained from the green band for the 

SPOT data (r2 = 0.90), and the second MIR band (TM7) for the two TM data (r2 = 0.86 

and 0.78 respectively). The NIR bands showed the lowest r2in the log polynomial function 

(Eq. 5.2). In comparison, the summer images fitted better than the autumn image.
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The models with the mean images of the TM data for two dates showed better fitting than 

with the difference images (Table 5.14), except for the power function model (Eq. 5.3). 

The correlations obtained from the mean image were nearly equal to those from the 

February-9 TM data.

Table 5.14 Regression models relating spectral values to stand age. The models listed in the table were 
defined in Section 5.22.1. _______  ________

Models Linear Polynom ial Log
Polynom ial

Pow er Exponential R eciproca l Log

Bands r2 T2 r2 T2 r2 r2 r2
XS1 0.33 0.88 0.90 0.67 0.36 0.65 0.84
XS2 0.31 0.86 0.88 0.65 0.34 0.62 0.82
XS3 0.69 0.73 0.73 0.84 0.70 0.64 0.41
PS 0.33 0.85 0.87 0.67 0.32 0.59 0.82

2TM1 0.28 0.77 0.84 0.61 0.33 0.60 0.79
2TM2 0.29 0.77 0.81 0.60 0.33 0.59 0.76
2TM3 0.24 0.71 0.77 0.54 0.26 0.51 0.71
2TM4 0.61 0.61 0.66 0.50 0.60 0.50 0.26
2TM5 0.22 0.76 0.85 0.54 0.20 0.44 0.75
2TM6 0.21 0.70 0.73 0.48 0.24 0.47 0.65
2TM7 0.26 0.74 0.86 0.53 0.17* 0.41 0.76
4TM1 0.21 0.70 0.75 0.49 0.24 0.48 0.67
4TM2 0.18 0.69 0.70 0.45 0.21 0.43 0.62
4TM3 0.09+ 0.62 0.63 0.32 0.13* 0.32 0.50
4TM4 0.28 0.28* 0.30* 0.21 0.25 0.22 0.10+
4TM5 0.12 0.70 0.74 0.37 0.10+ 0.30 0.58
4TM6 0.10+ 0.74 0.69 0.30 0.10+ 0.30 0.50
4TM7 0.13* 0.70 0.78 0.40 0.11 + 0.32 0.63

D1 0.27 0.59 0.67 0.31 0.27 0.48 0.65
D2 0.31 0.58 0.64 0.32 0.29 0.46 0.62
D3 0.30 0.62 0.68 0.32 0.29 0.47 0.66
D4 0.60 0.63 0.67 0.62 0.61 0.51 0.30
D5 0.26 0.56 0.65 0.24 0.21 0.34 0.62
D6 0.25 0.51 0.55 0.29 0.26 0.43 0.54
D7 0.29 0.61 0.71 0.17* 0.13* 0.37 0.67
M l 0.26 0.77 0.84 0.31 0.27 0.58 0.77
M2 0.26 0.77 0.80 0.29 0.26 0.56 0.74
M3 0.20 0.71 0.76 0.21 0.18* 0.46 0.68
M4 0.51 0.51 0.56 0.49 0.45 0.41 0.20
M5 0.19 0.77 0.84 0.16* 0.12+ 0.40 0.71
M6 0.18* 0.74 0.74 0.19* 0.15* 0.43 0.62
M7 0.23 0.75 0.86 0.15* 0.11 + 0.62 0.74

* means the regression models are significant at 95% confidence level; + means the regression is not significant. All 
others are significant at 99% or higher confidence levels..

5.3.5.5 Correlations Between Vegetation Indices and Stand Ages

The changes of the vegetation indices with stand age are displayed in Figure 5.5. Table 

5.15 presents the correlations between the stand ages and the three vegetation indices. The 

linear correlations between vegetation indices and stand ages were very poor (r < 0.23). 

When fitting the regression model using the non-linear functions, the correlations (r2) were 

as high as 0.90. The best results were obtained using the polynomial function-VI = a + 

b*log(age) + c*log2(age). The highest correlation coefficient was found between the normal 

difference vegetation index (NDVI) and stand age. In the comparison of the three data 

sets, the vegetation indices computed from SPOT data showed the best correlations. The
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correlation coefficients calculated from the February-9 TM image were found to be higher 

than those from the April-21 TM image. Many other combinations of the bands and data 

transformations were also tried, but did not improve the correlations.

Table 5.15 Relationships between vegetation indices and stand age. The regression was computed using 
__________equation: VI = a + b*loR(aRe) + c*log2(age), n = 36.________________________________

Data Vegetation Simple Linear Regression analysis with
Sources Induces Correlations (r) log polynomial function (r2)

SPOT Image NDVI 0.22 0.90
(January-24,1987) AVI -0.12 0.82

RVI 0.14 0.85
The February-9 NDVI 0.14 0.82

TM Image AVI 0.10 0.80
RVI 0.03 0.77

The April-21 NDVI 0.03 0.71
TM image AVI 0.20 0.58

RVI 0.01 0.70

5.3.6 Clustering and Grouping of Spectral Values of Stands

The similarity among the mean spectral values of the stands at different stand ages were 

compared and grouped using clustering algorithms. The first cluster analysis was carried 

out to compare the similarity among the spectral bands. The relationships between the 

spectral bands were clustered according to the Pearson Product Moment Correlation 

similarity coefficients and the nearest neighbour (also called single linkage) methods 

(Johnson 1967). It can be seen from Figures 5.8a to 5.8c that: (1) the NIR band showed 

the lowest similarity (i.e. low correlation in Table 5.11) to the other bands and was 

classified as a single group; (2) the visible bands (including Panchromatic band in SPOT 

data) showed the highest similarity and could be classified into a spectral band group; (3) 

the two MIR bands (TM5 and TM7) and the TIR (TM6) were closer to the visible bands 

than to the NIR and could be grouped into the visible band groups. When using the three 

data sets together (18 channels), three spectral band groups could be delineated based on 

their similarity (Figure 5.8d): (1) all the NIR bands, 4TM2, 4TM3, 4TM5, and 4TM7; 

(2) 4TM1 and 4TM6; and (3) the rest of the spectral bands. In comparison, 2TM4 was 

closer to XS3 than to 4TM4, while the rest of the February-9 TM bands were closer to the 

SPOT XS1, XS2 and PS bands.

The relationships between the mean spectral values from the single date images of the 

stands aged from 3 to 42 years are shown in Figure 5.9a-c. In general, four spectral 

classes can be classified: age 3-6, 7-16, 17-25, and 25-42. Similar classification results 

could also be obtained by using the three data sets together (18 channels: SPOT + 2TM + 

4TM) (Figure 5.9d). These classification results are very similar to the pattern of changes 

of the raw spectral values and principal component values with stand age described in
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Sections 5.3.3 and 5.3.4. Although SPOT data showed a similar classification pattern to 

the TM data sets, they produced some mixed age groups (Figure 5.8c). In comparison, 

TM data showed better classifications. The best classification was obtained using the 

multi-temporal data (Figure 5.9d).
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Figure 5.8 Clustering dendrograms showing the resemblance between the spectral bands of the three single 
date images (a) - (c) and showing the relationships among the three images and corresponding 
spectral bands (d).



128

Stand Ages Stand Ages Stand Ages Stand Age
(February-9 TM) (April-21 TM) (January-24 SPOT) (SPOT+2TM+4TM: 18 bands)

+  29 + 20 + ~  35 4---------- -  5
1 1 4----------1 4------- |
1 36 I 28 1 l+- 31 1 1 + - -  4
1 + 1 1 +1 1 + — 1
1 28 1+ 34 1 + -  37 1 + - -  6

+-I 1 4----------| 4-------------- --------------1
1 1 35 1+ 29 1 1 + - - 3 2 1 4------------------- -  3
1 1 II 1 1 +-I 4------------ |
1 +  31 II 21 1 1 1 + ~  38 1 1 4-— -  13

+  1 II 1 + - I l l 4------- |

1 1+15 II 19 1 4----------41 l l 1 1 12
I+-I II 4--------1 1 1 1 1
1 1 24 1+ 23 I I  +— 39 l 1 1 + — -  9
1 1 +-I 1 1 +-I l 1 4------- |

1 1 33 1 1- 18 I I  1 h—  27 1 1 | 4--------------- —  11
1 1 1 1 1 1 1 | -------------------------1
1 + 25 1 1+ 31 1 1 1---------  42 1 1 4----- — 14

+ | 1 +1 I +-----------------1 l 1 4-----1
II +42 1 + 35 1 +----------40 1 1 1 4----- -  15
II 1 4----------1 H------------ 1 l 4----------|

II 1 40 1 1 + 1 4 I I  +- 23 1 1 4——  19
II +1 1 1 +1 1 1 +-I 1 1 4-1
II II 26 1 1 1+ 15 1 1 1 + -  19 1 1 1 + - —  18
II II 1 +-I I I  +-I -l + - I

II II 32 1 + ~  16 I I  1 l+~ 24 1 4------- -  16
II II —  1 I I  1 +1 l
II II 41 i 1 +  39 1 1 1 + —  18 l 4- 30
II II i 1 +1 1 1 -i---------------1 l 4----- -1
II 1+37 i 1 1+ 27 1 1 1 +------------ 21 1 1 +  38
14— | i 1 1 1 4--------1 1 4------- |
1 1+ 27 i 1 1+ 41 1 1 +------- 26 l 1 1 +  39
1 +1 i 1 II 1 1 +1 1 1 1 1
1 +  39 i 1 1+ 32 1 1 11 + -  28 1 1 1 1 27

4------- | i 1 -i----------1 1 1 I+-I l 1 4----- -1
1 1 + 9 i I I  1+25 1 1 I + -  29 l 1 4- 42
1 1 1 i I I  II 1 1 -i--------1 1 4— |

1 1 1 12 i I I  II 36 1 I 1 +----------36 1 1 1 4-  37
1 1 +1 i I I  II 1 4--------1 1 | 4--------------- 1
1 1 1+ 13 i I I  II 26 | |4 ----------------- 34 1 l 4-  40
1 4-----1 i I I  II . 1 +1 4--------------------------- ----------------1
1 + -  14 i I I  II 33 1 1 i---- 20 l 4- 26

-1 i 1 1 +1 1 4---- | l 1
4----------- 11 i I I  + 24 1 I +- 33 1 1 32

i 4— | 1 +-I l 1
+ 18 i 1 + 13 1 +- 25 1 1 41

+ 1 i 1 1 4------------ 1 l 1
1+ 19 i 1 1 12 I H-------------------------------- 16 l 1 35
1 i 1 +1 4---1 l 1
1+ 23 i 1 1+ 42 1 | 4------  9 1 1 31
II i 1 +1 1 1 + — 1 | 4----- --I
11 21 i 1 l+- 9 1 I 1 -1------13 1 1 1 33
II i +------- 1 | | 4---------------1 1 1 1
II 34 i +— 11 I | | H---------- 12 1 1 1 25
II 4— | 1 1 4----------1 1 1 1
1+ 20 i i + -  5 I I  I I  -1------------ 15 1 1 1 29

----------- 1 1 4----------------------1 —  I I  I I  + —  1 1 1 1
+ -  16 1 1+ 38 I I  I I I  ------------- 11 1 1 1 24

1 II 1 1 1 4------------ 1 1 1 1
+ 30 1 1+ 37 1 | | 4--------------------14 1 1 1 28

+1 1 1 | 4------------------- 1 1 1 1
1+ 38 —  1 + -  30 1 4----------------------------------------------30 1 1 4- 36

4----------------- | 1 1
1 + -  5 1 + -  40 I 4---------------------------------------------------------------  3 1 + 23
1 1 4 - | 4----------| 1 1
1 + ~  6 1 1 + -  6 1 4------------------ 5 1 1 21
+---------1 1 4----------------- | 4--------------------------------1 4----- - 1

4— 4 1 I H----  4 | 4----  6 1 20
4-------- 1 4--------------------| 1

-------------- 3 4----------------  3 4-------- 4 4- 34

(a) (b) (c) (d)

Figure 5.9 Clustering dendrograms of the mean spectral values of stands aged from 3 to 42 years. The 
number at the right of each diagram is the stand age in years. The figures show the 
classifications of the mean spectral values of the stands computed from the February-9 TM data 
(a), the April-21 TM data (b), the January-24 SPOT data (c), and the three data sets together (i.e. 
SPOT+2TM+4TM: 18 channels) (d).
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5.4 DISCUSSION

5.4.1 Variation of Spectral Values

As shown in Tables 5.2 and 5.3, although recorded at the same location, the three data sets 

taken on different dates showed significant differences in mean values, data ranges, and 

variances. Even the two TM data with the same system parameters showed significant 

differences due to different recording dates (75 days interval). These variations in radiance 

have been attributed to the effects on the spectral reflectance of the ground targets, 

atmospheric effects, wavelength and the angular relationships between sensors, target and 

sun (Swain and Davis 1978). Discussion of these sources of variation can be found in 

papers by Hoffer (1978), Duggin (1983); Curran 1985; Guyot 1990; and Boissard et al. 

1990). Milne (1983) also attributed the variations to the effects of 

physiological/phenological and silvicultural conditions on the total spectral reflectance of 

vegetation. Environmental conditions such as moisture and temperature conditions which 

vary between dates could also significantly affect the vegetation reflectance (Knipling 

1970; Jackson 1986).

The differences between the February and April-21 TM images may be mainly ascribed to 

the changes of sun angle and weather conditions. On the other hand, they may also be 

attributed to changes in the ground cover. In general, lower reflectance means higher 

canopy absorption and therefore higher amounts of ground cover as estimated by leaf area 

index. The tree stands may not significantly change in such a short time period, but the 

changes of undergrowth coverage and other factors such as the weather and moisture 

conditions may cause a different spectral reflectance at different growing seasons.

SPOT and Landsat TM are different sensor systems, with great differences in scanning 

angles, wavelength width, scanning times and therefore azimuth angles of the sun in 

Landsat TM and SPOT images. SPOT images (vertical) are approximately two hours later 

than the TM images. These differences become more significant in rugged areas, since 

change in azimuth angle relocates the slope shadows and the penetration distance of sun 

light (Hall-Könyves 1987; Kawata et al., 1988; Thomson and Jones 1990; Conese and 

Maselli 1991).

The differences in spatial resolutions and width of spectral wavelength in SPOT and TM 

systems also cause differences in spectral values (Häme 1991). For instance, a 10x10 meter 

pixel of a SPOT panchromatic image may cover several tree crowns in a normal stand. If 

the forest canopy is not closed, a pixel value will be a combination of the reflectances of
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the undergrowth, possibly bare soils, rocks and/or pruning debris, tree stems and branches 

and leaves.

Besides the variation in the images recorded from different dates, systems and 

wavelengths, the variations of spectral reflectance also occurred at different growth stages. 

As can be seen from Appendices D-G, the younger stands (< 10 years of age) generally 

showed higher values in data ranges, standard deviations and the coefficients of variation 

than the older stands. This is probably because of the very different reflectance properties 

of tree crowns and bare soil within a stand, as bare soil produces higher reflectance, while 

tree crowns show higher absorption and lower reflectance in visible bands.

In fact, because of the existence of various random noise, the variation seems to be 

unavoidable. Häme (1991) listed twelve factors that may affect the spectral reflectance, 

which he defined as pixel intensity and expressed as the function of these twelve factors. 

Indeed, some of the “noise factors” are uncontrollable. If these random “noise factors” are 

not considered, the variations may be attributed to changes of stand conditions at different 

growth seasons (Summer from January-March, and Autumn from April to June), such as 

stand undergrowth, needle amounts (i.e. needle falling) and stand physiological 

characteristics. In predicting forest growth using satellite remotely sensed data, the 

emphasis should be on the description of the variation of the spectral values because of the 

changes of growing seasons and growing periods.

5.4.2 Changes of Spectral Values with Stand Age

In general, the major factors influencing the spectral absorption and reflectance of a stand 

are leaf amount (or perhaps pigment concentration) and canopy shadows (See Häme 1991; 

Tucker 1978). As shown in Figures 5.2 to 5.4, the spectral values in all bands decreased 

with increasing stand age due to the stand growth. The stands in the juvenile growth stage 

(age 1-4) usually produced the highest spectral reflectance, since at this growth stage, the 

canopies of trees are separate and there are large spaces between the trees, causing higher 

ground and lower canopy reflectance. Thus the spectral reflectance in young coniferous 

stands is usually from bare soils, rocks and/or herbs (grass and shrubs), and the trees are 

distinguishable only by canopy shadows (Kneppeck and Ahem 1987). This high variation 

in canopy cover in this stage also results in higher data variation (e.g. higher data range, 

standard deviation). After the juvenile growth stage, stands enter an adolescent stage of 

rapid growth (age 5 to 10), creating a series of changes in stand structure (e.g. less 

understory, denser canopy cover and larger amount of leaf and concentrations of 

chlorophyll, etc) (Ovington 1971), and canopy shadows therefore also increase. This
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significantly increases the canopy absorptions and dramatically reduces reflectance in the 

juvenile growth stage. In the stands between ages 10 and 20, the main changes of a closed 

stand relate to the deeper canopy and sparse understory. In particular, continuing canopy 

growth and increase in amount of leaves during this age stage significantly reduce the 

reflectance of stands.

Generally, the reflectance of the NIR waveband increases with increasing biomass (Tucker 

et al. 1975; Tucker 1978 and 1979). Thus, with stands growing with increasing stand age, 

one would expect that mean reflectance values would increase in the NIR band as occurs 

from age 3 to 10 (Figure 5.2). However, growth with age in coniferous forests is usually 

accompanied by a decrease in spectral reflectance in all bands, including the NIR band. 

This decrease in the NIR reflectance is usually attributed to the effects of canopy shadows 

on spectral reflectance (Danson 1987; Poso et al. 1987; Häme 1991; Brockhaus and 

Khorram 1992). The reasons for a decreasing NIR reflectance in conifers with growth are 

discussed by Danson (1987) and Häme (1991).

A constant reflectance level occurred in visible and MIR bands after about 20 years of 

stand growth and in the NIR band after about 32 years. Mature stands have a high and 

stable total leaf area index and variability in the relationship between leaf area index and 

spectral reflectance is related to short-term changes in chlorophyll concentration (Curran 

and Milton 1983). Therefore, after the coniferous plantations enter the mature and stable 

growth stage, their reflectance may fluctuate within a certain reflectance level. After the 

mature growth stage, continuing stand growth usually results in changes of stand structure 

such as less canopy depth, density, needle amount and therefore less canopy shadows. This 

may possibly be the reason for increased reflectance after the stands entered the mature 

growth stage.

Studies of vegetation index (VI) have shown a strong correlation with leaf area index and 

crop yield. In this study, both the reflectance-age and VI-age relation curves are very close 

to the growth pattern of radiata pine trees described by Jacobs (1937) (Table 5.16). As 

shown in Figure 5.5, the three vegetation indices (NDVI, AVI and RVI) had a reverse 

change pattern as did the raw spectral values (Figure 5.2-4). The vegetation indices 

significantly increased with tree growth from age 3 to about 6 and then gently increased 

from age 7 and reached their peaks at about age 17. Similarly in the reflectance-age curves, 

the spectral values decreased and reached a minimum at about age 20. The similarity can 

also be seen in principal components and age relation curves (Figure 5.7). The PC values
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sharply decreased with age from 3 to 5, gently decreased from 7 to about 15. The PC 

values became negative after 16 years of age and reached the lowest at age 18 to 20.

Table 5.16 Growth patterns of radiata pine plantation stands (from Jacobs 1937)_____________________

Growth Stages Upper Limits 
of Ages Growth Characteristics (Buds and Leaves)

1. Juvenile stage: 1 -4 Most primary leaves photo synthetically active buds all juvenile

2. Adolescent stage: 4 - 8
Primary leaves active on some parts of shoots, modified to 
scarious bracts on other parts. Buds, mixed, leading bud usually 
mature, side buds juvenile

3. Bulbous Stage: 6 - 10* Primary leaves rarely active. Buds mature

4. Mature stage: 2 0 - 4 0 Primary leaves all modified. Foliar duties done by fascicles. Buds 
all mature

5. Senescent stage: ** Primary leaves modified. Buds all mature

* Upper limit of age at the bulbous stage varies with spacing of trees; ** varies with freedom of crown from 
less than 20 where severely restricted to 100 or more where completely free.

5.4.3 Correlation Analysis

The similarity of the changes in pattern with stand age between the visible and MIR and 

bands led to a strong and close inter-correlation between these bands (r > 0.90) (Table 

5.11). These highly inter-correlated bands (i.e. XS1 and XS2, TM1-3 and 5-7) produced 

approximately equal and low linear correlations with stand ages. However, they showed 

relatively high non-linear correlations with stand ages (see Table 5.14).

The spectral values in all bands were strongly negatively correlated to stand age (p < 

0.001). The NIR bands showed a stronger linear correlation with stand age, as they 

showed approximately linear changes over a wider age range than all other bands (see 

Figures 5.2 and 3). As discussed above, the responses for younger stands (age < 5) did not 

reflect the real changes of stands because the reflectance was mainly from bare soils before 

the canopies achieved full ground cover. After 30 years of age, the reflectance values in all 

bands became constant or slightly increasing. Thus it is relatively difficult to describe the 

stand characteristics at juvenile and/or overmature (age > 35) stand growth stages. This is 

presumably because the spectral responses were more significantly affected by stand 

canopy depth, as the canopy depth increased with increasing stand age in the 5-30 age 

period.

As shown in Figures 5.2 to 5.4, the spectral responses to stand age in most wavebands, 

however, were not linear. The linear correlation may not reflect the real changes of 

reflectance of stands from ages 3 to 42 years. In fact, compared with the simple linear 

correlation coefficients, all non-linear transformations significantly improved the 

correlation coefficients, including those for the NIR bands. The best results were obtained 

from the polynomial function using logarithmically transformed age variables (Table 5.14).
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The NIR band was best correlated with radiata pine stand ages. Similar results have been 

reported using TM data by Hord (1982) and SPOT data by Danson (1987) and Turner et 

a l  (1987). Tucker (1978) concluded that the NIR band was especially sensitive to changes 

in vegetation density, biomass and chlorophyll content. Using a SPOT image recorded in 

October, 1986, Turner et a l (1987) reported the NIR band data showed a correlation of 

only 0.5 (r2) with radiata pine stand age, while green and red bands showed no significant 

correlations. This might be due to the representativeness of samples selected and the data 

quality, as some cloud shadows occurred in that scene. The results obtained in this work 

showed that there are significant correlations and that they are also at a higher level than 

those reported by Turner et a l (1987).

A decrease of spectral reflectance values with an increase of stand age corresponds to the 

growth pattern expected for radiata pine forests in south-east Australia. It should be noted 

that the above discussion assumes that all stands grow in the same manner. In practice, 

however, this is not true. Therefore the reflectance values selected from different stands at 

corresponding ages may show different patterns, even at the same age, due to different 

position, terrain and soil background. These factors should be considered when evaluating 

the relationships between spectral reflectance values and stand age and are considered 

later.

As discussed in Chapter 2, green vegetation (chlorophyll a and b) usually shows a low red 

reflectance and a high NIR reflectance, and by contrast bare ground surfaces do not show 

such sharp distinctions. Thus, the indices based on the ratio of NIR to Red reflectance 

gives high values for healthy green vegetation and low for bare area (Harris 1987). The 

three main vegetation indices, NDVI, AVI and RVI, used in this work, were strongly 

correlated (non-linearly) with stand age, with r2 values of 0.82-0.9 in the SPOT image, 

0.77-0.82 in the February-9 TM image and 0.58-0.71 in the April-21 TM image. The 

NDVI showed the highest correlation coefficients (Table 5.15). These three vegetation 

indices are usually believed to be sensitive to coniferous forest leaf area index (Spanner et 

a l  1984a, and Running et a l  1986), and biomass (Sader et a l  1989). Band ratios have 

been used by some researchers to reduce the effects of topography (see Richards 1986; 

Schowengerdt 1983), thus RVI (NIR/Red) may reflect the real changes of canopy depth 

regardless of different topography. The NDVI, however, has to be used with caution in 

rugged terrain, as the variations in NDVI were found by Thomson and Jones (1990) to be 

significantly correlated with slope (but not aspect). Nevertheless, NDVI could be useful for 

reflecting the changes in stand structure parameters, and canopy depth in particular, as it is 

significantly related to radiata pine stand volume growth (see Chapter 6).
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As both of the red and the NIR bands are sensitive to green vegetation, the difference of 

these two bands, AVI, may be useful for identifying vigorous stands. As shown in Figure 

5.10, The ‘gap’ (band difference) between the two curves increased from age 3 , reached 

the peak at about age 9 and then decrease from ages 9 to 30 and became constant after age 

30. Thus the stands at adolescent (ages 4-8) and bulbous (ages 6-10) growth stages may be 

highlight.

Although it has higher spatial resolution (10 m) the SPOT panchromatic band data did not 

have a higher correlation with stand age. Its correlation with stand age was very close to 

that for the green and red band data, and it showed a similar response to green vegetation 

in this wavelength region. Thus, while panchromatic band data may be useful in 

classification and land-cover mapping, it does not necessarily increase the prediction 

accuracy.
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5.4.4 Principal Component Transformation

In remote sensing using multi-bands and/or multi-temporal data, the loadings of the 

eigenvectors are usually used to describe the relative contributions of each original band to 

the transformed components. The bands (visible and MIR) having strong inter-correlations 

showed higher positive loadings of eigenvectors in the first principal component (PCI), 

which explained 90% or larger of the total variations. Experience has indicated that 

loadings in PCI measure the “brightness”, which indicates the overall reflectance of the 

object (Kauth and Thomas 1976), such as the nature of the terrain (Lodwick 1979a). The 

NIR band data, however, showed high positive loadings in PC2 due to the differences 

between the NIR and the other bands in responses to green vegetation. Kauth and Thomas 

(1976) also named PC2 as “greenness” which is a measure of green biomass. Thus it seems 

that PC2 is more important in detecting the structural changes of stands, as it is associated 

with the quantity and quality of vegetation. The first two principal components have 

explained up to 95% or more of the total variance, whereas the remaining principal 

components contained very little variance and were essentially noise (Santisteban and 

Munoz 1978).

The changes of the PCI and PC2 image values showed some interesting results which may 

make PCI in particular useful for stand classification and mapping. As shown in Figures 

5.6 and 5.7, the spectral classes (or age classes) can be classified at the inter-section point 

(about 10 years of age), while from this point to the zero PC values (i.e. 10 to 16 years of 

age) and thereafter can be treated as another two spectral classes. These were very close to 

the results obtained from cluster analysis (Figures 5.8 and 5.9).

In principal component analysis, the contributions of any variables to the total variance are 

usually determined by their PC loadings; that is the higher the PC loadings, the more 

contribution to the total variation. Based on this principle, the importance of the spectral 

bands can be compared and selected. In general, the spectral information of vegetation in 

PC2 was mainly contributed by the NIR band, while in PCI mainly by the visible band for 

SPOT data and the two MIR bands for TM data. The importance of multi-temporal or 

multi-sensor imagery can also be compared by the PC loadings. As shown in Table 5.10, 

The total variance of the three data sets together (18 channels) was mainly contributed by 

the two MIR bands (TM5 and TM7) of the February-9 TM in PCI and the NIR band in 

PC2 for the same image. The SPOT and April-21 TM images contributed very little even 

negligible information to the total variance. These PCA results suggest that the image 

recording time (such as from different growing seasons) significantly influences the results 

when detecting the variations of forest using spectral data. Multitemporal data may not
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necessarily improve the information content on perennial vegetation; furthermore the use 

of multi-temporal image will increase the costs.

5.4.5 The Separability and Sensitivity of Spectral Reflectance of Stands

Spectral separability or divergence indices are often used to indicate which spectral bands 

are contributing to the discrimination of known cover classes, based on relatively large 

amounts of training data (Toll 1984). In this study, the spectral reflectance values did not 

show significant differences between the stands at any adjacent age levels (see Appendices 

D-F). However, the stands at different ages could be grouped into spectral reflectance 

homogeneous classes (age groups) based on the similarities between the spectral values. 

No significant difference could be found after 25 years old, since the spectral reflectance of 

stands becomes constant.

Radiometric resolution may be an important factor affecting the sensitivity of spectral 

reflectance to stand structure. The spectral reflectance values usually concentrated within a 

small data range. In this work, plantations covered from 3 to 42 years of age, but the data 

ranges (the difference between maximum and minimum reflectance) in all bands were 

relatively small (in fact much smaller than the age range) (see Appendices D-G and Figure 

5.11). This means the radiometric resolution of both TM and SPOT data may not be 

sensitive enough to detect subtle changes in stands at short age intervals.

Cluster analysis and principal component analysis also showed that the mean reflectance 

values of the spectral values of the stands can be grouped into three or four spectral classes 

of 5 or larger age groups (Figures 5.7, 5.8, and 5.9). This again indicates that the capability 

of both SPOT and TM data in detecting the subtle variations of radiata pine stands is 

limited.
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5.5 SUMMARY AND CONCLUSION

The basic aims of this chapter were to discover the patterns of change in spectral 

reflectance in pine forest and to evaluate the relationships between spectral reflectance and 

even-age plantation stands at different ages and growth stages. The work covered in this 

chapter included:

1. Testing the variations of spectral reflectance from separate dates and remote 

sensing systems;

2. Determining the separability and sensitivity of spectral reflectance at different stand 

ages and growth stages;

3. Evaluating the relationships between spectral values and stand age;

4. Evaluating and comparing the information content of SPOT and TM data on the 

radiata pine stands using principal component analysis.

As the study area covers stands at different growth stages, the results of the study gave 

information about spectral changes caused by the changes in stands due to age differences. 

Because changes in a stand occur at different times in the life of a stand, information about 

the general pattern of spectral responses to stands was obtained. From the results obtained, 

the conclusions reached in this chapter are as follows:

1. There are significant variations in separate data sets from Landsat TM or SPOT 

systems. The variations appear mainly related to the remote sensing systems’ 

“noise” and the differences in stand undergrowth, as the changes of stands per se in 

a short time interval are slight, while the systems’ “noise” (such as sun angle, 

atmospheric effects, soil types and terrain effects) may show significant differences 

with different recording dates.

2. Differences of spectral reflectance values between the adjacent ages or over short 

age intervals are very small. They could be grouped into spectral classes of 5 years 

or more age intervals.

3. The best age stage for investigating the changes of radiata pine stand structure is 

from 5 to 25 years of age when using SPOT and/or TM data. For the NIR band 

data, this can be extended up to about 30 to 35 years of age.

4. Both TM and SPOT images showed a similar sensitivity to radiata pine stand 

changes. The NIR bands in both images are the best bands for detecting changes in 

stands.
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5. The change behaviour of spectral reflectance is very similar to the change of 

phenological growth with age. This makes TM and SPOT potentially useful in 

predicting forest growth and SQ.

6. The total variance of both SPOT and TM data over the radiata pine stands and all 

three data together can be explained by their first two principal components. The 

first principal component combined the information contained in the visible, MIR 

and TIR bands, whereas the information in the NIR bands was reflected by the 

second principal components. As for the original data, the second principal 

component is more sensitive to changes in stand growth processes.

It should be pointed out that the study described in this chapter did not establish what 

factors other than stand age are affecting the spectral reflectance . Age

is indeed an indirect determinant of stand growth, and its relationships with spectral 

reflectance values are expressed by ecological and biological parameters. In this chapter it 

has been shown that the capability of SPOT and TM data in detecting subtle changes in 

stand growth is limited. This capability may be improved by integrating the spectral data 

with biogeographical variables. This will be further investigated in the following chapters.



Chapter 6

A Correlation, Principal Component and Canonical 
Correlation Analysis of Stand Variables Versus 

SPOT and Landsat TM Images

6.1 INTRODUCTION

Understanding of the relationships between spectral reflectance and various stand attribute 

variables is the prerequisite for estimating, monitoring and predicting forest resources and 

management planning using satellite data. The study in Chapter 5 indicated that spectral 

response was strongly related to radiata pine plantation stand age. It also concluded that 

changes in the pattern of spectral reflectance are similar in timing to the growth changes 

in stands. This gives an indication of the potential of both SPOT and Landsat TM data for 

estimating and monitoring other stand parameters which are closely related to stand age. 

Therefore a further study was needed to test the relationships of the spectral response in 

different wavelength regions with various stand growth parameters. The work in this 

chapter was undertaken to test the capabilities of both SPOT and Landsat TM sensors and 

to develop analytical methods for using satellite remotely sensed imagery data to estimate 

forest stand growth parameters.

As reviewed in Chapter 2, previous work in the analysis of satellite remotely sensed 

imagery data related to forest stand variables is limited. Most investigations have been 

based on single date or single system images and a limited set of stand variables. The 

results reported have been data dependent, usually varying greatly with species, site
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conditions, data types, data quality and even processing methods. Studies on estimating 

forest stand variables for practical management and planning purposes (especially at a 

local scale) are still in the experimental stage. Little has been reported on the relationships 

between spectral values and radiata pine stand variables.

The purposes of this chapter are (1) to examine the relationships between stand and spectral 

variables; (2) to determine what variables (stand and spectral variables) can be selected to 

develop models for estimating stand variables and SQ; and (3) to compare the capability of 

SPOT and TM data in detecting the variations of stand variables. This was done by using 

correlation analysis, principal component transformation (PCT), and canonical correlation 

analysis (CCA) techniques. The spectral variables include the raw band data and various 

band combinations (i.e. “between-image” and “within-image” band combinations and

Drincinal component images).
6.2 DATA COLLECTION
The data used in this study consisted of stand, site and spectral variables collected from 

sixty sample points (see Chapter 4). The stand variables included nine forest stand 

variables, four topographic variables and two soil variables. The stand variables include 

top height (TH), age, basal area (BA), mean diameter (MD) at breast height over bark, 

density (measured as stem number per hectare (SN)), canopy cover (CC), understory 

coverage (UC), canopy depth (CD) and volume (VOL) in cubic meters per hectare. The 

four topographic variables were slope (SLP) in degrees, aspect (ASP) in degrees from N, 

altitude (ALT) in meters, and top position (TP). The soil parameters included the depth of 

soil horizons A and B (AB), content of gravel (GC) larger than 5 mm in diameter. All 

these variables were defined in Chapter 4.

Three data sets of images were used for data analysis. The description of these three data 

sets was given in Chapter 4. The imagery values of each sample plot were calculated from 

a 3 x 3 pixel window. In addition to the individual band data, the data produced from 

principal components transformation were also used for correlation analysis. In addition, 

the “within-image” band combinations of the single date data and “between-image” band 

combinations of multi-temporal data were also used to compute correlation coefficients. 

The former are various band combinations done by addition, subtraction, multiplication 

and division between the spectral bands within a single date image, including the three 

well-defined vegetation indices — normal difference vegetation index (NDVI), 

agricultural vegetation index (AVI), and relative vegetation index (RVI) (see Chapter 5). 

The later “between-image” band combinations were the difference and mean images 

calculated from corresponding spectral bands of the TM data for two dates. Due to the



The words “similar pattern of change” were changed into “a strong inverse curvilinear 

relationship” (Page 141, last paragraph).
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coarse spatial resolution in Band 6 of TM images, the results of this band were for 

comparative purposes,

6.3 DATA ANALYSIS TECHNIQUES

6.3.1 Correlation Analysis

Simple correlation (also called Pearson correlation) analysis was performed to determine 

the degree to which each stand variable was correlated with the imagery data. It was 

evaluated by computing linear correlation coefficients between the variables and by the 

significance test of each correlation coefficient, which measures the strength of the linear 

relation between two variables, i.e

rU

where Sf and Sj are the variances of variables i and j, and Sy is the covariance. The 

correlation coefficient rx- is tested under the null hypothesis H^.r- = 0 . Based on Finn 

(1974), if the statistic

t
r j j j N - 2

> t ( a , N - 2 )

then the variables i and j  can be considered significantly correlated, where t(a, N -2 )  is 

the critical value at the degree of freedom (N - 2) and confidence level a, and N is the 

number of sample points.

6.3.2 Principal Component Transforms

The results obtained in the previous chapter indicated that the first two principal 

components (PCs) could explain 90% or more of the total variation of the data sets. 

Based on Kauth and Thomas (1976), Lodwick (1979b), Ingebritsen and Lyon (1985) and 

Horler and Ahem (1986), the first principal component (PCI) was explained as the 

measure of “brightness” which is related to the form and nature of terrain and in 

particular, its aspect. In Chapter 5, the first principal component (PCI) image showed a 

similar pattern of change with stand age to the raw data in visible, middle and thermal 

bands, i.e. a strong inverse curvilinear correlation (I r I > 0.73-0.93) with stand age. The 

second principal component (PC2) was explained as the measure of “greenness” which is 

associated with the quality and quantity of vegetation and showed a strong linear
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correlation with stand age (I r I > 0.55). These two PCs might be useful for describing 

forest stand growth processes. Principal component analysis, in this chapter, was used to 

reduce the “redundancy” resulting from the strong inter-correlations within the images. 

The basic computation procedures can been found in the previous chapter.

6.3.3 Canonical Correlation Analysis

6.3.3.1 Introduction

Forest remote sensing deals with relationships between spectral reflectance and forest 

cover and their interaction with environmental conditions affecting the reflectance. 

Consequently, many questions of interest to foresters in using remote sensing techniques 

may call for investigation of relationships between variables of two distinct but associated 

kinds. Such relationships may involve those, for example, between stand structure 

parameters and spectral bands data and/or between spectral reflectance and the physical 

environmental variables affecting the reflectance process. They might also involve, as in 

forestry and ecology, the connections between plant communities and their site conditions. 

Thus in testing these relationships between two sets of variables, the following three 

questions may arise and need to be investigated:

• To what extent can one set of two or more variables be predicted or “explained” 

by another set of two or more variables?

• What contribution can a single variable make to the explanatory power of the set 

of variables to which the variable belongs?

• To what extent can a single variable contribute to predicting or “explaining” the 

combination of the variables in the variable set to which the variable does not 

belong?

Simple and/or multiple correlation analysis techniques detect only the relationship of a 

single variable to the set of variables. Principal component analysis or factor analysis 

techniques analyse the inter-relationships within a set of variables. Canonical correlation 

analysis (CCA), also termed canonical variate, canonical transformation, canonical 

discriminant analysis and/or canonical analysis in some literature, is a data analysis 

technique that can quantitatively evaluate not only the relationships between the variables 

but more importantly the relationships between two sets of variables of different kinds. It 

can provide proportion-of-shared-variation measures to describe the relationships of two 

sets of random variables, each set consisting of multiple measures (Finn 1974). In 

addition, like principal component analysis, it can also reduce the redundancy
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(dimensionality or variables) within a set of variables by a linear combination of within- 

set variables and determine the most correlated variables. The technique is useful for 

understanding the overlap of information content in two batteries of tests.

CCA is a good way of determining the best correlated variables between two sets of 

variables. Like PC A, it can be used to reduce the dimensionality of data space, and 

produce new combined variables (see below) which explain most of the variance in the 

variable groups. It can like correlation analysis detect the degree of association existing 

among the variables as well as variable groups. Based on the canonical coefficients 

(loadings) and canonical correlation, the importance (or contribution) of each single 

variable can be determined.

CCA has been widely used in biology, ecology and social science (see Thompson 1984; 

and Gittins 1985). In remote sensing, it has usually been used for classification purposes 

by defining a rotation of axes which give the greatest separation between classes (e.g. 

Lachowski et al. 1982, Harrison and Jupp 1988, and Häme 1991). In this study, CCA 

technique was employed to investigate the correlations between:

• stand variables and site variables (including DTM data);

• stand variables and SPOT image; and

• stand variables and TM images.

6.3.3.2 Some Basic Computational Procedures

CCA can be divided into five steps:

• derivation of variance-covariance or correlation matrices;

• computation of the eigenvalues and eigenvectors of matrix D = S^S Ŝ JS ;

• calculation of canonical correlation coefficients (canonical variates and their 

correlations);

• significance tests of canonical correlation coefficients; and

• redundancy analysis and interpretations of canonical variables.

Mathematically, let the partitioned vector G =  [x}, x2, . .. ,  xp i y ]t y2, . .. ,  yq]T represent 

observations on two sets of variables, with each variable being measured about its 

respective mean and q < p. Let X =  [xj, x2, . . . ,  xp] T and Y =  [yp y2, . .. ,  yq] T be jointly 

distributed with sample mean vector m and variance-covariance matrix or other scalar- 

products matrix S (assuming S is positive definite matrix) partitioned as:

m =
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where and Syy are the “within-set” variance-covariance matrices of vectors X and Y 

respectively, and Sxy and (Sxy = Sy,) are the “between-sets” variance-covariance 

matrices between vectors X and Y. These specify the relations between the two sets of 

variables X and Y. All the variance-covariance matrices S^, S^. Sxy and can be 

estimated as:

Sxx = ---- - X (** -mXx* -  m )T <=> cXrY

1 n
Syy = -----  m)(yjt -  m)T <=> c f r

n — i k=l

SXy ~ Sy* = — - m)(yjk - m)T<=>n l k=l
where

T- denotes the transpose of a matrix, 

k -  1, 2,..., n observations (or sample size), 

i = 1, 2, ..., p variables, 

j  = 1, 2, q variables, 

c < 1 and c * 0

Hotelling (1935 and 1936) proposed the following as a measure of the correlation between 

the p-dimensional variable X and the ^-dimensional variable Y. Consider a linear function 

of the Xj, x2, ..., xp, i.e u = a} x} + ... + ap xpy and a linear function of the y]f y2, ..., yq, i.e. v 

= bj y} + ... + bq yq,. Then determine those values of the coefficients vectors a (p x 1) and 

b (q x 1) which maximise the correlation between u and v. More precisely, linear 

combinations of X and Y are usually sought, i.e.

uk = a*x

vu = bjy

with a* and b* scaled so that the linear combinations uk and v* have unit variance, i.e.

a * S » a it =  1,

b!S b. =1,k xx k ’

for which the correlation between u and v 

cor(w*, vk) = rk (say)

is maximised subject to the constraints

E(m*) = E(vj.) = 0, s(uk) =  S(v*) = l,
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cor (w,,«*) = 0, cor (w^v*) = 0, c o r^ v * )  = 0,

where uk, vk and rk can be determined by eigenvalues and their corresponding eigenvectors 

of matrix D = S ^S  S^JS . The statistical significance (or independence) of canonical 

correlation can be tested by making a null hypothesis of no relationships between the 

canonical variables, i.e. assume that the canonical correlation coefficients (rk) equal zero:

H 0: r l =  r 2 =  -  =  0

The test of the H0 is usually done using Bartlett's (1941) Chi-square (x2) test. According 

to Finn (1974), the x2 value of jth  pair of canonical variables can be calculated as follows:

n - \ -  — (p + q + l) • In A •

where n is the number of subjects (observation or sample size, n = 60 in this study), and A 

can be estimated as:

A; = n  (! -  rf ) = (! -  r? )(1--  r l )•■■■-(1 -  r l ) 
j=1

where j  denotes the jth pair of canonical variables (j = 1, 2, ..., k, k < p), and rj is the 

canonical correlation coefficients estimated by the eigenvalues Xj, with Xl >X2 >.. .> Xk >0.

As x 2 obeys the Chi-square distribution at a  level critical value and the degree of freedom 

f  = (p -  j  +1)- (q -  j  + 1), therefore two canonical variables can be considered significantly 

correlated if

x) > Z 2[ a , ( p - ;  +  l ) - (9 - j  +  l)].

Bartlett’s Chi-square (x2) test is discussed by Darlington et al. (1973) and Thompson 

(1984). The canonical correlation coefficients ( r 2) and the coefficients vectors of linear 

combinations (i.e. a* and b j)  were computed using the Statistical Analysis System (SAS) 

package (SAS Institute Inc., 1989).

In canonical correlation analysis, canonical redundancy analysis is usually used for 

interpretation of the variance of canonical variables (also called canonical variates). 

Redundancy is the proportion of the total variance in the variables in one set predictable 

from a linear composite of the other variables (Thompson 1984). The term “redundancy” 

is therefore synonymous with “explained variance’’. According to Gittins (1985), the 

redundancies of the canonical variable u and v can be written as:

, and
f=i
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^  “  '5LSjk I Q
j= 1

where is the correlation between the /th variable of * and the £th canonical variable of 

y, and similarly s2jk the correlation between the yth variable of Y and the ^th canonical 

variable of X.

In general U * y* . The redundancy associated with a canonical variable can be used 

as an index of the predictive or explanatory' power of the canonical variable in relation to 

the other set of variables (Finn 1974). This is helpful in variable selection.

Canonical variables and their correlation coefficients have a number of properties, some 

of which are of considerable interest in remote sensing because they assist in 

understanding the relationships between the multi-band image and vegetation parameters:

• Canonical variables are dimensionless (when computed from correlation

matrices). Consequently, they are invariant under non-singular linear 

transformations of the variables of either or both groups of variables.

• Canonical correlation coefficients can be interpreted as multiple correlation 

coefficients between a particular canonical variable of one domain and the 

complete set of variables of the other.

• The magnitude of rk indicates the degree of linear correlation between the two

canonical variables (i.e.̂  uk and v*). The squared canonical correlation

coefficient, rk , expresses the proportion of the variance of the £th canonical 

variable, uk, say, that is explained by its conjugate, vk, or vice versa. (Bartlett 

1965; and Gittins 1985).

• Like the principal component transformations, the first few canonical

correlation coefficients and their corresponding canonical variables have the 

largest contributions of the original variables.

Canonical correlation analysis was originally proposed by Hotelling (1935 and 1936) as a 

means of identifying the most predictable p -variate criterion. It has since been developed 

more mathematically (McKeon 1962; Mardia et al. 1979) and more intuitively (Seal 1964; 

Horst 1961). Comprehensive discussions of canonical correlation analysis are provided by 

most of the standard works on multivariate analysis (Mardia et al. 1979; Muirhead 1982). 

Practical applications in ecology and forestry can be found in, for example, Goldstein and 

Grigal (1972), Kowal et al. (1976), Pielou (1977), and Gittins (1985).
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6.4 RESULTS

6.4.1 Data Characteristics

Table 6.1 is a summary of the stand variables computed from 60 sampling points. Stand 

age ranged from 9 to 42 years, with most points ranging between 10 and 30 years of age. 

Mean diameter at breast height over bark ranged from 14.3 to 47.0 cm, and the 

corresponding basal area from 9 to 42 mVha. The stand top height was between 9.7 and 

28.9 meters. The stand density ranged from 139 to 1190 trees/ha. Canopy cover was 

estimated at from about 40% to approximately full cover (96%). The stand undergrowth 

cover was highly dependent on upper canopy cover and site conditions, ranging from little 

undergrowth cover (< 7%) in the stands with full upper canopy cover to almost full 

understorey cover (about 97%) in the stands with less tree canopy coverage. The canopy 

depth was between 8 and 25.25 meters, but it was highly dependent upon the stand 

density, stand average height and also the history of pruning. The volume of stands with 

mean diameter 13 cm or larger ranged from 21.5 to 429.9 m3/ha.

Table 6.1 Summary of the forest stand variables of 60 0.01-hectare sample plots.
Stand

Variables Mean SD SE Variance CV Min Max Range

AGE 24.55 7.94 0.99 63.00 32.34 9.00 42.00 33.00
BA 26.56 9.04 1.12 81.68 34.04 7.50 52.00 44.00
TH 20.71 4.32 0.54 18.64 20.86 9.65 28.88 19.23
MD 29.21 6.23 0.81 42.58 21.33 14.29 46.98 32.69
SN 442.05 231.16 28.67 53436.32 52.29 138.45 1189.27 1050.82
cc 0.63 0.14 0.02 0.02 22.22 0.40 0.96 0.56
uc 0.52 0.24 0.03 0.06 46.15 0.07 0.97 0.90
CD 16.60 3.57 0.44 12.76 21.51 8.05 25.25 17.20

VOL 179.91 79.07 9.81 6251.74 43.95 21.47 428.95 407.49

The site characteristics summarised for the 60 sampling points is given in Table 6.2. All 

the points had slopes (SLP) between zero and 21 degrees. The altitude (ALT) was 

between 580 and 875 m above sea level. The aspect (ASP) of the sampling points ranged 

from 0 to 345 degrees. The mean depth (AB) of soil A and B horizons was 55 cm, ranging 

from about 21 to 120 cm. The gravel content (GC) (gravel diameter > 5 mm) of the soil 

was estimated at around 2-50%, with 21% as average. In addition, the topographic 

position (TP), which is not listed in the table, was also used for data analysis, being coded 

as numbers 1, 2, 3, 4, and 5, respectively representing level, downhill, uphill, middle hill 

and top of hill (see Section 4.2.4.2 of Chapter 4).

Table 6.3 shows the basic statistics of the imagery data selected for the same 60 sampling 

points on a 3 x 3 pixel window. Compared with the results summarised in Chapter 4 and 

5, the statistical parameters calculated from 3 x 3  pixel windows of 60 sampling points
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showed lower values in mean, standard deviation, variance, coefficient of variation and 

data range (see Table 5.2), as the sampling points covered a narrower age range (9-42) 

and were selected in the stands with full canopy closure and low disturbance.

Table 6.2 Summary of the site variables of 60 0.01-hectare sample plots.
Site

V ariables M ean SD SE V ariance C V M in M ax R ange

SLP 8.40 5.31 0.66 28.24 63.21 0.00 21.00 21.00
A L T 739.43 56.51 7.01 3192.94 7.64 580.00 875.00 295.00

AB 54.45 22.11 2.74 488.91 40.61 21.00 120.00 99.00
A S P 170.17 105.48 13.08 11126.71 61.99 0.00 345.00 345.00

GC 0.21 0.11 0.01 0.01 52.38 0.02 0.50 0.48

As discussed in Chapter 5, the data range (i.e. the difference of maximum and minimum 

of the spectral reflectance values) may be seen as a measure of spectral sensitivity of the 

stands in different wavelengths, as the brightness gradient (radiometric resolution) from 0 

to 255 shows the changes of spectral reflectance and absorption of an object. A higher 

data range may indicate greater sensitivity to changes within stands. Table 6.3 shows that 

the spectral values in all bands had a lower data range than the age range except for band 

5 of the February-9 TM data. For instance, the data ranges of SPOT XS mode data are 

between 16.5 - 18.8. The February-9 TM images showed a data range of 8 - 50 and April- 

21 TM of 3.4 - 22.0. Green bands in the three data sets showed the lowest range of 

reflectance. In particular, the blue (TM1) and green wavebands of TM images showed a 

relatively low data range (3.4-12). In such cases, it is difficult to differentiate subtle 

changes in the stands as such a harrow data range could not contain all the stand 

information.

Table 6.3 The basic statistics of the 60 sample points of images on 3 x 3 pixel windows.

Variable M ean SD SE V a ria n ce CV M in M ax Range

XS1 31.19 3.11 0.39 9.68 9.98 26.00 42.83 16.83
XS2 22.15 3.30 0.41 10.92 14.92 16.50 33.00 16.50
XS3 49.46 4.73 0.59 22.37 9.56 42 .50 61.33 18.83

PS 30.18 0.50 0.62 24.99 16.60 24.00 52.75 28.75
2TM1 56.96 2.18 0.27 4.75 3.83 52.00 64.00 12.00
2TM2 23.07 1.62 0.20 0.61 7.00 20.00 28.67 8.67
2TM3 24.90 3.80 0.47 14.42 15.25 17.00 37.50 20.50
2TM4 52.11 6.40 0.79 40.94 12.28 42 .00 66.00 24.00
2TM5 46.25 10.63 1.32 112.93 22.98 24.00 74.17 50.17
2TM 6 121.70 2.81 0.35 7.89 2.038 117.00 130.00 13.00
2TM7 16.28 5.01 0.62 25.09 30.77 6.25 27.00 20.75
4TM1 41.27 1.26 0.16 1.58 3.04 38.89 46.00 7.11
4TM 2 14.23 0.89 0.11 0.79 6.24 12.89 16.33 3.44
4TM 3 11.94 1.33 0.17 1.78 11.17 10.00 15.50 5.50
4TM 4 30.80 3.65 0.45 13.33 11.85 23.00 40.00 17.00
4TM5 20.82 5.05 0.63 25.47 24.24 13.00 35.00 22.00
4TM 6 109.06 1.63 0.20 2.66 1.49 106.00 113.00 7.00
4TM 7 7.69 2.11 0.26 4.46 27.46 4.75 14.00 9.25
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6.4.2 Inter-Correlations Between the Stand Variables

Analysis of the ground data showed that several of the stand variables were highly inter- 

correlated (Table 6.4). Basal area, top height, mean diameter, volume and canopy depth 

all increased with stand age as they are related to tree growth. Stand density and canopy 

cover decreased and showed a negative correlation with age due to the management 

practice of thinning which involves the periodic removal of a number of trees. Stand 

density and canopy depth showed a weak negative correlation with stand age. Understorey 

cover showed a low negative correlation with age (r = -0.16) as it is affected by upper 

canopy cover.

Table 6.4 Correlations between stand variables.

Variables AG E BA TH ' M D SN CC UC CD VO L

AGE 1.00
BA 0.37* 1.00
TH 0.79** 0.48** 1.00

MD 0.72** 0.34* 0.85** 1.00
SN -0.40* 0.38* -0.44** -0.65** 1.00
c c -0.35* 0.45** -0.08 -0.22 0.48** 1.00
u c -0.16 -0.27 -0.24 -0.12 0.03 -0.25 1.00
CD 0.62** 0.36* 0.83** 0.76** -0.51** -0.11 -0.18 1.00

VOL 0.61** 0.90** 0.78** 0.62** 0.04 0.33* -0.30 0.60** 1.00

*and ** Significant at 99 and 99.9 per cent confidence levels respectively, n = 60.

Stand volume was strongly correlated with basal area (r = 0.9), top height (r = 0.78) and 

mean diameter (r = 0.60) as they are the main determining factors of volume. Canopy 

depth (CD) increased with increased stand top height (r = 0.83), mean diameter (r = 0.76), 

and stand volume (r = 0.60), but decreased with increased stem number (r = -0.51) due to 

the effects of canopy competition.

6.4.3 Correlations Between Stand and Site Variables

The results of the correlation analyses between stand variables and site variables (i.e. 

topographic and soil) are given in Table 6.5. Basal area, top height, mean diameter, 

canopy depth, and stand volume were significantly negatively correlated with altitude 

(ALT) (significant at 99% confidence level). These five stand variables also showed a 

positive correlation with topographic position (TP) (significant at 95% confidence levels). 

The correlations between stand variables and slope, aspect, soil depth and gravel content 

were not significant. The lack of correlations may be explained by the relatively small 

differences in slope, aspect and soil characteristics in the study site. For example, most of 

the sample points were located on 15 degrees or less of slope.
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Table 6.5 Correlations between stand and site variables.

Variables ALT SLP ASP TP AB GC

BA -0.41** -0.13 -0.08 0.28* 0.01 -0.05
TH -0.46** 0.07 0.13 0.40** 0.06 -0.13
MD -0.55** -0.03 0.14 0.40** 0.25 -0.21
SN 0.26* -0.11 -0.17 -0.14 -0.09 0.04
cc 0.07 -0.22 -0.13 0.35 0.13 -0.08
uc -0.05 -0.22 0.09 -0.10 0.15 -0.18
CD -0.49** -0.01 0.21 0.28* 0.02 -0.07
VOL -0.49** -0.05 0.00 0.41** 0.08 -0.10

♦and ** Significant at 95 and 99 per cent confidence levels respectively, n = 60.

6.4.4 Correlations Between Stand Variable and Raw Imagery Data

The results of correlation analyses between the reflectance values of each individual band 

and eight stand parameters are presented in Table 6.6. The visible, MIR and TIR bands of 

the three data sets showed no correlations with stand age (I r I = 0.01 - 0.23). The NIR 

bands (XS3 and TM4) showed the highest correlation coefficients with stand age (I r I = 

0.51 - 0.79). This result supports the analysis of Chapter 5 which indicated strong negative 

linear relationships between stand age and the NIR band data. The correlation coefficients 

between the NIR bands and stand top height, mean diameter, and canopy cover were 

significant at the 99% confidence level. The correlations of canopy cover with the NIR 

(except TM4 of the April-21 TM image), MIR and TIR bands were significant at 95% or 

higher (99%) confidence levels, but the correlations with the visible bands were relatively 

lower.

Table 6.6 Correlations between raw imagery data and stand variables. 2TM and 4TM represents the 
________ February-9 TM and the April-21 TM images respectively._______________________________

Variables AGE BA TH MD SN CC UC CD VOL

XS1 -0.13 -0.22 -0.42** -0.33** 0.22 -0.16 0.25 -0.40** -0.34**
XS2 -0.01 -0.13 -0.32** -0.29* 0.21 -0.19 0.13 -0.33** -0.23
XS3 -0.67** -0.05 -0.40** -0.37** 0.32* 0.38** 0.15 -0.31* -0.21
PS -0.10 -0.05 -0.36** -0.24 0.16 -0.27* 0.27* -0.30* -0.17
2TM1 -0.09 -0.30* -0.27* -0.14 -0.07 -0.22 0.33** -0.16 -0.30*
2TM2 -0.14 -0.41** -0.32* -0.22 -0.09 -0.29* 0.37** -0.22 -0.41**
2TM3 -0.04 -0.43** -0.22 -0.13 -0.16 -0.36** 0.41** -0.15 -0.37**
2TM4 -0.79** -0.25* -0.52** -0.49** 0.26* 0.38** 0.09 -0.36** -0.39**
2TM5 -0.01 -0.47** -0.27* -0.13 -0.22 -0.48** 0.38** -0.16 -0.43**
2TM6 0.12 -0.16 -0.05 0.08 -0.24 -0.36** 0.22 0.09 -0.14
2TM7 0.03 -0.41** -0.25 -0.10 -0.20 -0.46** 0.35** -0.13 -0.38**
4TM1 -0.08 -0.21 -0.29* -0.16 -0.08 -0.27* 0.13 -0.15 -0.25
4TM2 -0.12 -0.24 -0.29* -0.20 -0.08 -0.30* 0.19 -0.14 -0.28*
4TM3 0.08 -0.14 -0.17 -0.07 -0.14 -0.35** 0.16 -0.04 -0.17
4TM4 -0.51** -0.11 -0.39** -0.35** 0.17 0.23 -0.08 -0.26* -0.24
4TM5 0.02 -0.20 -0.21 -0.11 -0.14 -0.32* 0.38** -0.05 -0.26*
4TM6 0.23 -0.13 -0.08 0.00 -0.16 -0.41** 0.15 0.00 -0.14
4TM7 0.08 -0.15 -0.14 -0.07 -0.15 -0.34** 0.34 0.02 -0.20

* and ** significant at 95 and 99 per cent confidence levels respectively, n = 60

The three data sets showed very similar correlation patterns with other stand parameters. 

The visible bands of the SPOT data (XS1 and XS2) were significantly correlated with
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mean diameter and canopy depth at the 99% confidence level, but these two stand 

variables showed no correlation with the visible bands of the TM images. Stand basal area 

was not significantly correlated with the SPOT image and the April-21 TM image (I r I < 

0.24), but it was significantly correlated with all bands of the February-9 TM image (95% 

or larger confidence levels). Understorey cover also showed a similar correlation pattern. 

Stand volumes were significantly correlated with all the bands (excluding TM6) of the 

February-9 TM image (I r I = 0.30-0.43), but only significantly correlated with TM1, TM2 

and TM5 of the April-21 TM image with lower correlation coefficients (I r I = 0.25 - 

0.28). Of the SPOT bands, only XS1 was significantly correlated with stand volume (I r I 

= 0.34). All bands of SPOT data showed a negative correlation with canopy depth and 

mean diameter (except for the PS band) at a 95% confidence level, but only TM4 of the 

TM images was significantly correlated with canopy depth. Stand density did not show 

significant correlations with the three data sets, with the exception of the NIR bands in the 

SPOT and February-9 TM data.

In comparison, the summer images (i.e. the January-24 SPOT and the February-9 TM 

images) showed close correlations with stand variables, whereas the autumn image (the 

April-21 TM image) showed lower correlations. The correlation differences existing in 

the three data sets may be attributed to changes in the undergrowth and the effects of 

weather conditions and sun angle (see Chapter 5). Undergrowth vegetation cover (such as 

annual plants) could show differences from season to season and therefore influence the 

spectral responses, but the stands pe se could not show major changes in a short period of 

time. The comparison of the data ranges of the three data sets also showed the summer 

images were more sensitive to the variations of stands than the autumn image since the 

former had a wider data range (Table 6.3). These results imply that the time at which data 

are recorded may significantly affect the prediction accuracy. This will be further studied 

in the next chapter.

6.4.5 Correlations Between Stand Variables and “Between-Image” Band 
Combinations

The linear correlation coefficients between the nine stand parameters and the difference 

and mean images were calculated (Table 6.7). Both the difference and mean images of the 

two TM data showed close correlations in the corresponding spectral bands with stand 

variables. Compared with the results calculated from the raw imagery data, they are very 

much closer to the results for the February-9 image and much higher than those for the 

April-21 image. The results suggest that the data combinations of multi-temporal images
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may be a better data source than single-date data for detecting the changes of stand 

structures as the combined images of multitemporal images, in a sense, may be able to 

reduce the effects of some random “noise”.

Table 6.7 Correlations between the difference (Dy, ..., D7) and mean (Afy, M7) imagery data and stand
variables.

Variables AGE BA TH MD SN cc uc CD VOL

D, - 0.06 -0 .24 - 0.15 -0 .07 -0 .04 -0 .1 0 0 .3 1 * - 0 .10 - 0.21

D, - 0.08 - 0 .3 3 * * -0.18 -0 .1 2 -0.05 -0 .14 0 .3 2 * -0.17 - 0 .3 0 *

D, -0.08 - 0 .4 3 * * -0 .17 - 0.12 -0 .12 -0.25 0 .4 0 * * -0.15 - 0 .3 5 * *

d4 - 0 .7 1 * * - 0 .2 7 * - 0 .4 2 * * - 0 .4 1 * * 0.24 0 . 3 6 * * 0.20 - 0 .3 0 * - 0 . 3 6 * *

D, -0 .02 - 0 .4 9 * * -0.21 -0 .10 -0 .19 - 0 .4 1 * * 0.23 -0.18 - 0 .4 0 * *

D* -0.03 -0 .10 -0.01 0 .10 -0.17 -0 .14 0.16 0 .12 -0.07

D7 -0.01 - 0 .4 2 * * -0 .22 -0.08 -0 .16 - 0 .3 7 * * 0.24 -0.18 - 0 . 3 6 * *

M, - 0.10 - 0 .3 1 * - 0 .31 * -0 .16 -0 .08 - 0 .2 7 * 0 .3 0 * * -0.17 - 0 .3 2 *

M ? -0.14 - 0 . 3 9 * * - 0 .3 4 * * -0 .23 -0 .1 0 - 0 .3 2 * 0 .3 4 * * -0.21 - 0 .4 0 * *

M, 0 .00 - 0 .3 9 * * -0.23 -0 .13 -0 .17 - 0 .3 9 * * 0 .3 8 * * -0.13 - 0 . 3 5 * *

K - 0 .7 3 * * - 0.21 - 0 .5 1 * - 0 .4 7 * * 0.25 0 . 35 * * 0.03 - 0 .3 4 * * - 0 . 3 6 * *

0.00 - 0 .4 0 * * - 0 .2 7 * - 0.13 -0.21 - 0 .4 5 * * 0 .4 1 * * - 0.13 - 0 .4 0 * *

0.18 -0 .16 -0.07 0.05 -0.23 - 0 .4 2 * * 0.21 0 .06 -0.15
m7 0.05 - 0 . 3 5 * * -0.23 -0 .10 -0 .20 - 0 .4 6 * * 0 .3 8 * * - 0 .09 - 0 .3 5 * *

* and ** significant at 95 and 99 per cent confidence levels respectively, n = 60

6.4.6 Correlations Between Stand variables and Principal Component Images

PC A was performed using the spectral data on 60 sample points. It was done by using the 

spectral data of the three single-date images and also the combined two date TM images. 

Both the covariance matrix and correlation matrix were used to compute the principal 

components (PCs). The results of principal component analysis (PCA) and their 

correlations with stand variables are summarised in Tables 6.8-11.

The PCA was begun using the SPOT XS mode data (three channels) (Table 6.8). The PCI 

explained 62% of the total variation of the covariance matrix and 68% of the correlation 

matrix, and PC1+PC2 together could explain up to 98%. PCI computed from the 

covariance matrix was significantly correlated with stand age, top height, mean diameter 

and canopy depth (p < 0.01) and volume (p < 0.05), but not correlated with stand basal 

area, canopy cover or understorey cover. PC2 was only correlated with stand age or 

canopy cover. However, PC 1 calculated from the correlation matrix was not significantly 

correlated with stand age, but correlated with top height, mean diameter and canopy depth 

(p < 0.01) and volume (p < 0.05), whereas PC2 showed a higher negative correlation with 

stand age (r = 0.65, p < 0.001) and canopy cover (r = 0.46, p < 0.01) than PC2 from the 

covariance matrix. Except for understorey cover which showed a correlation of 0.3-0.31, 

all other stand parameters showed no correlation with PC3.
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Table 6.8 Results of PCA using SPOT data and correlation analysis between the stand variables and the

A lgorith m s By Covariance Matrix By Correlation Matrix
PCs PCI PC2 PC3 PCI PC2 PC 3
Var. Explained 61.62% 98.44% 100% 67.98% 97.83% 100%
Cumulative 61.62% 36.81% 1.56% 67.98% 29.86% 2.17%

AGE -0.52** 0.44** 0.02 -0.22 -0.65** 0.01
BA -0.13 -0.12 0.25 -0.18 0.03 0.25
TH -0.49** -0.04 0.14 -0.44** -0.23 0.13
MD -0.43** -0.01 0.00 -0.37** -0.23 -0.01
SN 0.35** -0.04 0.07 0.28* 0.22 0.08
c c 0.18 -0.44** 0.10 -0.08 0.46** 0.11
u c 0.21 0.05 -0.31* 0.21 0.07 -0.30*
CD -0.42** -0.10 0.08 -0.41** -0.14 0.08
VOL -0.30* -0.10 0.24 -0.31* -0.08 0.23

* and ** significant at 95 and 99 per cent confidence levels respectively, n -  60

The PCs of the two TM data sets from the variance-covariance matrix made 

approximately equal contributions to the explanation of the total variance (see Tables 6.9 

and 6.10). The first three PCs explain about 97% of the total variance. The correlations 

between PCI of the February-9 TM image and basal area, top height, canopy coverage, 

stand volume and understorey cover were significant at 95% or higher confidence levels, 

but not significant at 95% with stand age, mean diameter, stem number and canopy depth. 

PCI of the April-21 image was significantly correlated with canopy cover, understory 

cover and volume (p < 0.05 only). PC2 of the February-9 TM data was strongly correlated 

with seven stand variables - stand age, top height, mean diameter, density (stem number), 

canopy depth, volume and canopy cover (p < 0.01). PC2 of the April-21 image, however, 

was correlated only with four stand variables - stand age, top height, mean diameter and 

canopy cover at a lower confidence level (95%) (except stand age at 99%). PC3 showed 

no significant correlations with any of these nine stand variables.

Table 6.9 Results of PCA using the February-9 TM data and correlation analysis between the stand
variables and the principal component image.

A lgorithm s By Covariance Matrix By Correlation Matrix

PCs PCI PC2 PC3 PCI PC2 PC 3
Var. Explained 74.19% 20.77% 2.19% 70.29% 15.24% 7.30%
Cumulative 74.19% 94.97% 97.15% 70.29% 85.53% 92.83%

AGE -0.03 -0.79** 0.08 -0.05 -0.76** -0.07
BA -0.46** -0.17 0.20 -0.40** -0.16 0.14
TH -0.28* -0.50** 0.08 -0.27* -0.46** 0.01
MD -0.14 -0.51** 0.15 -0.15 -0.46** 0.07
SN -0.20 0.38** -0.06 -0.14 0.33** -0.05
CC -0.45** 0.48** -0.01 -0.35** 0.49** 0.04
u c 0.39** 0.05 -0.07 0.41** 0.02 -0.10
CD -0.16 -0.38** 0.19 -0.16 -0.35** 0.16
VOL -0.43** -0.33** 0.15 -0.39** -0.29* 0.07

* and ** significant at 95 and 99 per cent confidence levels respectively, n = 60

As shown in Tables 6.9 and 6.10, the results of PCA from the correlation matrices 

differed somewhat from those from the variance-covariance matrices in variance
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contributions of PCs and their correlations with stand variables. That is, the first two PCs 

calculated from the correlation matrices showed lower information content (lower 

explanatory power of total variance), and also lower correlations with stand variables, 

than the same PCs from the variance-covariance matrices. The third PCs, however, 

explained higher percentages of total variance than the same PCs from the variance- 

covariance matrices.

Table 6.10 Results of PCA using the April-21 TM data and correlation analysis between the stand
variables and the principal component image.

A lgorith m s By Covariance Matrix By Correlation Matrix

PCs PCI PC2 PC3 PCI PC2 PC 3
Var. Explained 72.52% 20.92% 3.43% 60.94% 16.30% 11.34%
Cumulative 72.52% 93.44% 96.87% 60.94% 77.23% 88.57%

AGE -0.01 -0.53** 0.16 0.00 -0.42** -0.36**
BA -0.20 -0.05 -0.07 -0.22 -0.07 0.01
TH -0.24 -0.34** -0.03 -0.26* -0.28* -0.18
MD -0.13 -0.33** 0.02 -0.15 -0.25 -0.21
SN -0.13 0.22 -0.10 -0.13 0.17 0.17
c c -0.31* 0.34** -0.25 -0.37 0.23 0.32*
u c 0.34** -0.20 -0.07 0.26* -0.21 -0.06
CD -0.07 -0.25 -0.02 -0.09 -0.23 -0.13
VOL -0.27* -0.16 -0.02 -0.28* -0.12 -0.10

* and ** significant at 95 and 99 per cent confidence levels respectively, n = 60

Table 6.11 Results of PCA using the TM data for two dates (14 channels) and correlation analysis
between the stand variables and the principal component image.

A lgorith m s By Covariance Matrix By Correlation Matrix
PCs PCI PC2 PC3 PCI PC2 PC 3
Var. Explained 66.58% 19.09% 7.62% 55.99% 12.75% 9.92%
Cumulative 66.58% 85.67% 93.30% 55.99% 69.74% 79.67%

AGE -0.03 -0.76** 0.17 -0.03 -0.73** 0.11
BA -0.43** -0.15 0.28* -0.35** -0.13 0.28*
TH -0.29* -0.47** 0.09 -0.29* -0.45** 0.05
MD -0.15 -0.46** 0.08 -0.15 -0.44** 0.04
SN -0.20 0.29* -0.02 -0.17 0.29* 0.01
CC -0.44** 0.45** -0.01 -0.41** 0.45** 0.00
u c 0.40** 0.00 0.02 0.35** -0.07 -0.20
CD -0.15 -0.32* 0.17 -0.13 -0.33** 0.12
VOL -0.42** -0.30* 0.18 -0.36** -0.27* 0.18

* and ** significant at 95 and 99 per cent confidence levels respectively, n = 60

In the PCA of the multi-temporal TM images (14 channels), the variance contributions in 

the first three PCs were lower than those from single date TM images (See Table 6.11). 

Their correlations with stand parameters were close to the results obtained from the 

February-9 TM image. In addition, the PCA was also tried using the difference and mean 

images, but these did not give much higher correlations. The results were very close to 

those from the February-9 TM image. This is because most contributions (loadings of 

PCs) of variance were from the February-TM Image (see Chapter 5). This may further
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indicate that the February-9 image is a better image for detecting the characteristics of 

radiata pine plantation stands.

6.4.7 Correlations Between Stand Variables and “Within-image” Band 
Combinations

As different spectral bands have different optical properties and therefore different 

responses to the stand canopies (see Chapter 2), “within-image” band combinations may 

be useful in evaluating the relationships between stand variables and satellite images. The 

results of correlation analysis between the stand variables and the “within-image” band 

combinations are displayed in Tables 6.12-14. In addition to the three well-defined 

vegetation indices - AVI, RVI and NDVI, many other possible “within-image” band 

combinations (e.g. addition, subtraction and band ratios within images) were also tried. 

Most of the results obtained showed only marginal differences between the band 

combinations. Tables 6.12-14 list only the results of correlation analysis between stand 

parameters and the NIR-related band combinations as they show higher correlations than 

other band combinations.

Table 6.12 Correlations between stand variables and the “within-image” band combinations of SPOT 
image. XS3/1 and XS3-1 represent the ratio and differences of bands XS3 and XS1.

' — -----_ V I
S t a n d  V a r i a b l e s  — — _ AVI RVI NDVI XS3/1 XS3-1

AGE -0.60** -0.41** -0.41** -0.47** -0.59**
BA 0.04 0.11 0.08 0.17 0.10
TH -0.16 0.05 0.04 0.02 -0.13
MD -0.15 0.03 0.03 -0.03 -0.15
SN 0.16 0.03 0.01 0.11 0.18
CC 0.46** 0.41** 0.40** 0.46** 0.48**
uc 0.05 -0.01 0.00 -0.09 -0.02
CD -0.07 0.13 0.11 0.08 -0.05
VOL -0.04 0.09 0.07 0.12 0.01

Table 6.13 Correlations between stand variables and the “within-image” band combinations of the
February-9 TM image. TM4-2, TM4/5, TM4/2 and TM4-1 denotes the differences and/or 
ratios of the corresponding band numbers.

~ ~  '— VI
S ta n d  V a r ia b le s AVI RVI NDVI TM4-2 TM4/2 TM4/5 TM4-1

AGE -0.72** -0.51** -0.52** -0.78** -0.69** -0.42** -0.79**
BA 0.00 0.24 0.23 -0.15 0.03 0.33** -0.15
TH -0.37** -0.16 -0.17 -0.46** -0.31* -0.05 -0.45**
MD -0.38** -0.21 -0.22 -0.45** -0.34** -0.14 -0.46**
SN 0.33** 0.34** 0.34** 0.30* 0.32* 0.38** 0.30*
CC 0.56** 0.59** , 0.59** 0.47** 0.55** 0.64** 0.47**
uc -0.14 -0.30* -0.29* 0.00 -0.14 -0.28* -0.02
CD -0.25 -0.09 -0.10 -0.31* -0.20 -0.03 -0.31*
VOL -0.16 0.08 0.07 -0.30* -0.12 0.20 -0.30*

* and ** significant at 95 and 99 per cent confidence levels respectively, n = 60

As can be seen from Table 6.12, the band combinations within the SPOT image were 

significantly correlated with stand age (I r I = 0.41 - 0.60) and canopy cover (CC) (I r I =
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0.41 - 0.48) (significant at 99.9% confidence level), but not significantly correlated with 

any other stand variables (I r I = 0.02 - 0.17). AVI and XS3-1 showed the highest 

correlation with stand age (I r I = 0.6) compared with RVI and NDVI (I r I = 0.41). The 

correlations of XS3/1 with the stand age and canopy cover were higher than with the three 

vegetation indices AVI, RVI and NDVI, but lower than with XS3-1.

Table 6.14 Correlations between stand variables and “within-image” band combinations of the April-21 
TM image. For band combinations see Table 6.13.

Stand VariaBleT~-~-~-
A V I R V I N D V I T M 4 -2 T M 4 /2 T M 4 /5 T M 4-1

AGE -0.56** -0.49** -0.47** -0.51** -0.47** -0 .2 4 -0 .5 0 * *
BA -0.05 0.06 0.03 -0.05 0.05 0.29* -0.05
TH -0.33** -0.19 -0.16 -0.34** -0.25 0.08 -0.32*
MD -0.33** -0.23 -0.22 -0.32* -0.26* -0.04 -0.32*
SN 0.24 0.29* 0.26* 0.21 0.25 0.29* 0 .20
cc 0.38** 0.47** 0.47** 0.33** 0.41** 0.48** 0.32*
uc -0.15 -0.20 -0.19 -0.14 -0.19 -0.45** -0.12
CD -0.25 -0.18 - -0.16 -0.24 -0 .19 -0.01 -0.22
VOL -0.18 -0.05 -0.05 -0.18 -0.08 0.25 -0.18

The results of correlation analysis between stand variables and the band combinations 

within the TM images were given in Tables 6.13 and 6.14. In addition to the strong 

associations with stand age and canopy cover, the band combinations were also correlated 

with several other stand variables. In general, the band differences (i.e. AVI, TM4-2 and 

TM4-1) showed better correlations with top height and mean diameter than the band ratios 

(i.e. RVI, NDVI, TM4/2 and TM4/5). Compared with the results from the original band 

data (Tables 6.5 and 6.6), the “within-image” band combinations were better associated 

with stand density (Tables 6.13 and 6.14). These band combinations, however, did not 

improve the correlations with stand volume, basal area, and canopy depth.

6.4.8 Canonical Correlations

Earlier sections have investigated the relationships between single stand variables and 

spectral values. This section focuses on the correlation analysis between two variable 

groups using canonical correlation techniques. Based on the computational procedures 

described in Section 6.3.3, four canonical correlation analyses were performed to test the 

correlations between the stand variables and the three original images and site variables 

(i.e. DTM and soil data). The analyses were undertaken by computing canonical 

correlations and canonical variables, significance tests, redundancy analysis and 

interpretation of corresponding canonical correlations and variables.
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6.4.8.1 Canonical Correlations Between Stand Variables and SPOT Image

Table 6.15a presents the canonical correlation coefficients, eigenvalues and their variance

proportion and the significance tests using SPOT data. The first canonical correlation

(0.85) explained 78.57% of the total variance, and together with the second canonical

correlation (0.58) up to 94.11% (Table 6.15a). The null hypothesis test showed the first

two canonical correlations were significant (p < 0.005 and 0.025 respectively) and no

significant correlation in the third canonical variables. Thus further analysis was

concentrated on the first two canonical variables. Based on the standardised canonical

coefficients obtained, the canonical variables can be written as the linear combinations

(the definition of variables x{ were listed in Table 6.15b):
o

u, = 1.16 jc, -  0 .67jc2 -  0.25jc3 - $ . 4 8 jc4 -  1.08jc5
The first pair of 
canonical variables -  0 .08jc6 + 0.03jc7 + 0 .04x8 -  1.54x9 For Stand Variablei

v, = -0.91y, + 0.23y2 -  1.02y3 for SPOT XS data

The second pair of 
canonical variables

u2 =  - 1. 0 8 -  0.10x2 + 1.02jc3 + 0.87.x 4 -  0.73 x5 
+ 0.16x6 + 0.39x7 + 0.31x8 -  0.26x9 

v2 = 2.00y, -  1.37y2 + 0.17y3

For Stand Variablei 

for SPOT XS data

where x}, ..., x9 are the stand variables defined in Table 6.15b, and y;, ..., y3 represent 

SPOT XS bands 1 to 3.

Table 6.15a Results of CCA between stand variables and the SPOT (XS bands only) data.

Canonical Correlation Significance test
C anonical

C orrelations
Eigen
V alues

Prop.
(% )

C um .
(% )

A/ x 2 D F P D ecision

1 0.845 2.500 78.57 78.57 0.161 97.70 27 <0.005 R eject
2 0.575 0.494 15.54 94.11 0.564 30.68 16 < 0.025 R eject
3 0.397 0.187 5.89 100.0 0.842 9.19 7 <0.400 A ccept

Table 6.15b Standardised canonical coefficients and correlations between the original variables and the 
___________ canonical variables of opposite sets of variables._________________________________________

Stand Variables SPOT Data

Standardised  C anonical 
C oefficients for stand variables

C orr. B etw een Stand 
Var. & 1st tw o C ano. 
Var. o f  SPO T  D ata

S tandardised  C anonical 
C oefficients fo r SPO T  D ata

C orr. B etw een SPO T 
D ata & 1st two C ano. 

Var. o f Stand Var.

X rv, rv y v, r«, r«:
TH  (x , ) 1.158 -1.079 -0.103 -0.464 X S l ( y , ) -0.907 2.002 -0.295 0.457
V O L ( x7) -0.665 -0.098 0.042 -0.397 XS2 ( y 7) 0.233 -1.372 -0.352 0.289
M D  ( x j -0 .246 1.023 -0.142 -0.334 XS3 (y^) 1.024 0.169 0.644 0.339
SN ( x j -0.478 0.872 0 .176 0 .220
B A  (xs) 1.084 -0.733 0.123 -0.268
C D  (Xf) -0 .089 0.160 -0.035 -0.386
UC ( x7) 0.033 0.387 -0 .050 0 .356
CC (xH) 0.037 0.308 0.483 0.012

A G E  (x q ) -1.544 0.259 -0 .576 -0.350

As shown above, the canonical variables are the linear combinations of the original 

variables, therefore the variables with the higher loadings (called canonical coefficients in
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CCA) usually make higher contributions to the total variance. As can be seen from Table 

6.15b, The first canonical variable («,) for the stand variables was mainly contributed by 

stand age (-1.54), top height (1.16) and basal area (1.08), with most emphasis on stand age 

(age also showed the highest correlation with the first canonical variables (-0.58)). The 

first canonical variable for SPOT XS data (v,) was focused on XS3 (1.02) and XS1 (- 

0.91), with more emphasis on XS3. XS3 also had the highest correlation (0.64) with the 

first canonical variable of the stand variables. The second pair of canonical variables (u 2 

and v,) was mainly contributed by top height (-1.08) and mean diameter for the stand 

variables and XS 1 and XS2 for the SPOT image. This result matched the result obtained 

in Section 6.4.4, where XS3 was shown to have a strong correlation with stand age (see 

Chapter 5), and top height was correlated with XS1 (see Table 6.6).

Table 6.15c Canonical redundancy analysis between stand variables and SPOT data.
Standardised Variance of the Stand Variables Explained by

Their Own 
Canonical Variables

The Opposite Canonical 
Variables

DecisionsCanonical
Variables

Proportion
(%)

Cumulative
Proportion

Canonical
R-Squared

Proportion
(%)

Cumulative
Proportion

1 10.06 10.06 0.714 7.25 7.19 None
2 33.69 43.75 0.331 11.18 18.33 *

3 14.24 57.99 0.158 2.30 20.58 None

Standardised Variance of the SPOT XS Images Explained by

1 29.21 29.21 0.714 20.86 20.86 *
2 41.07 70.28 0.331 13.59 34.45 *

3 29.72 100.00 0.158 4.69 39.14 None
* means that the canonical variables are good overall predictors of the opposite set of variables.

The canonical redundancy analysis (Table 6.15c) showed that the second pair of canonical 

variables for the stand variables was a good overall predictor of the opposite set of 

variables, the proportion of the variance explained being highest (11%) and much larger 

than the other two canonical variables (7% and 2%). The first canonical variable for 

SPOT XS data explained the highest proportion of the variance (21%). The results of 

CCA showed that the relationships between the nine stand variables and SPOT data were 

dominated by stand age, top height and basal area for the stand variables and XS3 and 

XS1 bands for the SPOT data, with more emphasis on stand age and the XS3 band. Based 

on the canonical coefficients (loadings), the importance of the variables in both sets of 

variables can be ranked as follows:

Order 1 2 3  4 5 6 7  8 9

Ilf. AGE => TH => BA=>VOL=> SN => MD=> CD => CC => UC 
Vf  XS3 => XS1 =s> XS2

u2: TH => MD => SN => BA => UC => CC => AGE => VOL => CD
v2: XS1 => XS2 => XS3
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6.4.8.2 Canonical Correlations Between Stand Variables and TM Data

With the same analysis procedures, the results of CCA between the stand variables and the 

two date TM data sets are presented in Tables 6.16 and 6.17 respectively. The significance 

test of the canonical correlations for the February-9 TM data (excluding band 6) and stand 

variables showed that only the first two pairs of canonical variables were significantly 

correlated, with the canonical correlations being 0.87 and 0.65 respectively (Tables 

6.16a). They explained 71% and 17% respectively of the total variances and 88% when 

combined. The canonical variables can be written as the following linear combinations:

The first pair of 
canonical variables

The second pair of 
canonical variables

u, = 0.55.x, -0.47x2 +0.09*3 + 0.08x4 +0.33*5
+ 0.09*6 -  0.14*7 + 0.26*8 -1 .16*9

v, =-0.30y, +0.0y2 +0.08y3 + 1.01y4 -0.95y5 + 0.68y6

for stand 
Variables

for TM data

u2 = -0 .93* ,+0.66*2 -0.36*3 -0 .37*4 -0 .59*5 for stand

+ 0.28*6 +0.32*7 -0.30*8 -0.02*9 Variables

v2 = -0.30y, +0.22y2 -0.12y3 + 0.37y4 +1.45ys -0 .43y6 forTM data

where *7, ..., x9 are the stand variables, and y;, ..., y6 represent TM band number.

As shown in Table 6.16b and above linear combinations, stand age (*9) had the highest 

loadings (-1.16) in the first canonical variable of the stand variables and also the highest 

correlation (0.74) with the first canonical variable of the opposite set of variables (i.e. the 

2TM data). 2TM4 (y4) did the same in the first canonical variable of the February-9 TM 

data. Stand age and 2TM4 were therefore seen as the dominant variable in the first pair of 

canonical variables. The second pair of canonical variables were dominated by top height 

(*;, -0.93) and 2TM5 (y5), as they both had the largest loadings (-0.93 and 1.45 

respectively) and as well as the highest correlations with the canonical variables of the 

opposite sets of variables. Based on the canonical coefficients (loadings), the importance 

of the variables in the first two canonical variables may ranked as:

Order 1 2  3 4 5 6 7 8 9
u f  AGE => TH => VOL=> BA => CC => UT => CD => SN => MD
v;: TM4 => TM5 => TM7 => TM1 => TM3 => TM2

U2: TH => VOL => BA => SN => MD => UC => CC => CD => AGE
v2: TM5 => TM7 => TM4 => TM1 => TM2 => TM3

The canonical redundancy analysis (Table 6.16c) indicates that the first two canonical 

variables for stand variables can be explained by the canonical variables for the February- 

9 TM data by 15.67% and 14.71% respectively, whereas the first canonical variables of 

the February-9 TM data could explain 14.64% and 23.93% of the stand variables. The 

emphasis in the stand variables was on stand age and top height, and in the February-9 

TM data was on TM4, TM5 and TM7.
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Table 6.16a Results of CCA between stand variables and Febniary-9 TM data.

Canonical Correlation Significance test
Canonical

Correlations
Eigen
Values

Prop.
(%)

Cum.
(%) A; x 2 DF P Decision

1 0.866 2.999 70.88 70.88 0.094 120.334 54 < 0.005 Reject
2 0.652 0.739 17.46 88.34 0.375 50.077 40 <0.100 Reject
3 0.494 0.322 7.62 95.96 0.643 22.524 28 < 0.450 Accept
4 0.345 0.136 3.20 99.16 0.851 8.256 18 <0.900 ••
5 0.147 0.022 0.52 99.68 0.965 1.793 10 <0.990 "
6 0.115 0.013 0.32 100 0.987 0.679 4 <0.990 "

Table 6.16b Standardised canonical coefficients and correlations between the original variables and the 
__________ canonical variables of opposite sets of variables._______________________________________

Stand Variables The February-9 TM (2TM) Data (6 bands)

Standardised Canonical 
Coefficients for stand variables

Corr. Between Stand 
Var. & 1st two Cano. 
Vars. of 2TM Data

Standardised Canonical 
Coefficients 2TM Data

Corr. Between 2TM 
Data & 1 st two Cano. 

Var. of Stand Var.
X « 1 « 7 r v, r v, y v, v.

TH (x,) 0.552 -0.928 -0.369 -0.445 TM l (y,) -0.298 -0.299 -0.139 0.432
VOL (x7) -0.465 0.664 -0.178 -0.561 TM2 (y7) 0.000 0.215 -0.133 0.520
MD (x9) 0.089 -0.364 -0.401 -0.317 TM3 (y,) 0.077 -0.121 -0.234 0.511
SN (x4) 0.078 -0.366 0.349 -0.118 TM4 ( y j 1.011 0.367 0.757 0.287
BA (xs) 0.331 -0.586 -0.027 -0.538 TM5 (y,) -0.956 1.452 -0.319 0.590
CD (Xf) 0.090 0.277 -0.263 -0.285 TM7 (yÄ) 0.678 -0.430 -0.335 0.536
UC (x7) -0.136 0.322 -0.102 0.370
cc  (xR) 0.264 -0.297 0.568 -0.307

A G E (xQ) -1.160 -0.021 -0.744 -0.308

Table 6.16c Canonical redundancy analysis for February-9 TM data and the stand variables.

Standardised Variance o f the Stand Variables Explained by

Their Own 
Canonical Variables

The Opposite Canonical 
Variables

DecisionsCanonical
Variables

Proportion
(%)

Cumulative
Proportion

Canonical
R-Squared

Proportion Cumulative
Proportion

1 20.89 20.89 0.750 15.67 15.67 *

2 34.63 55.53 0.425 14.71 30.38 *

3 3.44 58.97 0.244 0.84 31.22 negligible
4 2.81 61.78 0.119 0.34 31.56 "
5 14.94 76.72 0.022 0.32 31.88 "
6 2.86 79.58 0.013 0.04 31.91 "

Standardised Variance o f the February-TM Data Explained by

1 19.52 19.52 0.750 14.64 14.64 *
2 56.32 75.84 0.425 23.93 38.56 *
3 1.62 77.46 0.244 0.40 38.96 negligible
4 13.75 91.22 0.119 1.64 40.60 "
5 6.28 97.49 0.022 0.14 40.74 "
6 2.51 100 0.013 0.03 40.77 "

* means that the canonical variables are good overall predictor of the opposite set of variables.

The results of CCA between stand variables and the April-21 TM data were given in 

Tables 6.17a-6.17c. Only the first pair of canonical variables were significantly correlated 

(r = 0.74, p < 0.007), but it explained lower percentage of total variance (55.41%) than 

the same canonical variables of other two data sets (78.57% and 70.88% respectively, see 

Tables 6.15a and 6.16a). Stand age (x9) showed the highest loading (1.01) to the first 

canonical variable. In addition, basal area (x<) (0.86) and stand density (x.) (-0.78) also
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showed higher loadings than other stand variables. The MIR band (TM5) contributed 

most information to the first canonical variables (Table 6.17b). Although the second pair 

of canonical variables was not significantly correlated (r = 0.56, p < 0.34), top height and 

the NIR band produced the highest loadings in stand variables and TM data.

The first pair of 
canonical variables

“ i

. v >

The second pair of cano * 
variables

=  -0. 50x, -  0. 50x2 -  0.65x3 -  0. 78x4 + 0. 86x5 
+ 0.13jc6 + 0.54x7 -0.21xg + 1.01x9 

= -0 .06y, -  0.10y2 + 0.5 ly3 -  0.68y4 + 0.78y5 -  0.12y6

= -L 29x, + 0.89x2 -  0.76x3 -  0.92x4 + 0.35xs 
+ 0. 37x6 -  0.04x7 -  0.54x8 -  0.61x9 

= 0.39y, + 0.42y2 -  0.26y3 + 0.61y4 -  0.09y5 + 0.24 y6

fo r  stand 
Variables

fo r 4TM data

for stand 
Variables

for 4TM7 data

Table 6.17a Results of CCA between stand variables and the April-21 TM data.

Canonical Correlation Significance test
Canonical

Correlations
Eigen
Values

Prop.
(%)

Cum.
{%) A; X2 DF P D ecision

1 0.740 1.207 55.41 55.41 0.194 83.53 54 < 0.007 Reject
2 0.561 0.460 21.11 76.51 0.429 43.16 40 <0.342 Accept
3 0.437 0.236 10.83 87.35 0.626 23.87 28 < 0.691
4 0.402 0.193 8.85 96.20 0.774 13.06 18 <0.789 "

5 0.274 0.081 3.71 99.91 0.923 4.07 10 <0.944 "

6 0.045 0.002 0.09 100 0.998 0.10 4 <0.999 "

Table 6.17b Standardised canonical coefficients and correlations between the original variables and the 
canonical variables of opposite sets of variables.

Stand Variables The February-9 TM (4TM) Data (6 bands)

Standardised Canonical 
C oefficients for stand variables

Corr. B etw een Stand 
Var. & 1st two Cano. 
Vars. o f  4TM  Data

Standardised Canonical 
C oefficients 4TM  Data

Corr. Betw een 4TM  
Data & 1st two Cano. 

Var. o f Stand Var.

X «1 “ 9 rv, rv y Vi v? r*, r‘2
TH (x,) -0.498 -1.290 0.075 -0.440 T M l (y,) -0 .060 0.386 0 .277 0.405
VOL (x7) -0 .496 0.891 -0.056 -0.342 TM 2 (y7) -0.104 0.416 0.293 0.435
M D ( x j -0.647 -0.761 0.158 -0.346 TM 3 (y ,) 0.514 -0.262 0 .446 0.323
SN (x4) -0.776 -0.915 -0.269 0.055 TM 4 ( y j -0.677 0 .606 -0.316 0.453
B A  (xs) 0.861 0.355 -0.098 -0.230 TM5 (y ,) 0.778 -0.095 0.527 0.313
CD (xf) 0.125 0.374 0.134 -0.255 TM 7 (y*) -0.123 0.240 0 .539 0.264

UC (x7) 0.539 -0.038 0.363 0.085
CC (xR) -0 .206 -0.544 -0.495 -0.049

AGE (xQ) 1.009 -0.608 0.409 -0.393

The canonical redundancy analysis showed that the first two canonical variables for both 

sets of variables showed similar contributions to the canonical variables of the opposite

sets of variables (Table 6.17c). Other canonical variables explained only small proportions 

of total variance (< 2.6%). The conclusion is that the dominated variables were stand age 

and top height for the stand variables and the NIR and MIR bands for the 4TM image.

Based on the canonical coefficients (loadings), the importance of the variables in both sets 

of variables were ranked as follows:
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Order 1 2 3 4 5 6 7  8 9

Uj\ AGE => BA =» SN => MD => UC => TH =>VOL => CC => CD
V; : TM5 =» TM4 =» TM3 => TM7 => TM2 => TM1

u 2 : TH => SN =» VOL => MD => AGE => CC => CD => BA => UC
v2: TM4 TM2 => TM1 => TM3 => TM7 => TM5

Table 6.17c Canonical redundancy analysis for April-21 TM data and stand variables.

Standardised Variance o f the Stand Variables Explained by

Their Own 
Canonical Variables

The Opposite Canonical 
Variables

DecisionsCanonical
Variables

Proportion
(% )

Cumulative
Proportion

Canonical
R-Squared

Proportion Cumulative
Proportion

1 13.77 13.77 0.547 7.53 7.53 *

2 25.21 38.98 0.315 7.94 15.57 *

3 03.02 42.00 0.191 0.68 16.05 negligible
4 10.94 52.93 0.162 1.87 17.82 ”
5 07.96 60.89 0.075 0.60 18.41 ••
6 03.36 64.25 0.002 0.01 18.42 "

Standardised Variance o f the April-21 TM Images Explained by

1 31.38 31.38 0.547 17.16 17.16 *

2 43.90 75.28 0.315 13.83 30.99 *

3 13.65 88.92 0.191 2.61 33.59 negligible
4 01.19 90.01 0.162 0.18 33.77 *•

5 02.90 92.91 0.075 0.22 33.99 ••
6 07.19 100.00 0.002 0.01 34.00

* means that the canonical variables are good overall predictor of the opposite set of variables.

6.4.8.3 Canonical Correlations Between Stand and Site Variables

The results of CCA between the eight stand variables (not including age) and six site 

variables are given in Tables 6.18a-c. Stand age is placed in the site variable groups for 

canonical correlation analysis, since it is strongly associated with stand variables but has 

nothing to do with site variables. The results of CCA are given in Table 6.18a-6.18c. The 

linear combinations of the first two pairs of canonical variables for the stand and site 

variable groups were written as:

The first pair of 
canonical variables

The second pair of 
canonical variables

ux = 0.562, + 0.09;t2 -  0.07*3 ~ 0.29*4 + 0.53xs
-  0 .08*6 + 0.032*7 -  0 .40*8

v, = 0.004y, -  0.001y2 -  0.303y3 + 0.14y4 -  0.16y5
-  0.10y6 + 0.82y7

for stand 
Variables

for site variables

u 2 =  - 0 . 65*i + 0.86  x 2 + 1. 92x 3 + 1.02 x 4 + - 1.72 x5
-  0 . 05x 6 -  0 . 20*7 -  0.92  x 8

v2 = - 0 . 18 3»! + 0 . 08^2 + 0 .2  l_y3 + 0 . 59 .y4 + 0 . 58 .y5
-  0.09  _y6 -  0 . 05^7

for stand 
Variables

for site variables

where x}, x2, x8 represent the stand variables (see Table 6.15b), y7 - slope (SLP), y2 - 

aspect (ASP), y3 - altitude (ALT), y4 - topographic positions (TP), y5 - the soil depth of A  

and B horizons (AB), y6 - gravel contents (GC), and y7 - stand age (AGE).
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Table 6.18a Canonical correlation analysis between stand and site variables.

Canonical Correlation Significance test
C a n o n ic a l

C o rre la tio n s
E ig e n

V a lu es
P rop .
(% )

C u m .
(% )

A/ x 2 D F P D e c is io n

1 0.910 4.806 72.70 72.70 0.0424 161.20 56 0.001 R e je c t
2 0.701 0.964 14.58 87.28 0.2461 71.50 42 0.003 R e je c t
3 0.572 0.487 7.36 94.64 0.4833 37.09 30 0.177 A c c e p t
4 0.410 0.202 3.06 97.70 0.7185 16.86 20 0.663 "

0.292 0.094 1.41 99.11 0.8637 7.47 12 0.825 ••

5 0.231 0.056 0.85 99.96 0.9445 2.91 6 0.820 "

6 0.050 0.003 0.04 100.00 0.9975 0.13 2 0.939 "

Table 6.18b Standardised canonical coefficients and correlations between the original variables and the
canonical variables of opposite sets of variables.

Stand Variables Site Variables

S ta n d a rd ise d  C a n o n ic a l
C o rr . B e tw e e n  S tan d  

V ars . &  1 st tw o  
C an o .

S ta n d a rd ise d  C a n o n ic a l
C o rr . B e tw e e n  S ite  

v a rs . &  1st tw o  C an o . 
V a rs . o f  S ta n d  V ar.

C o e ff ic ie n ts  fo r  s ta n d  v a ria b le s C o e ff ic ie n ts  fo r  S ite  V a r ia b le s

V ars . o f  S ite  V ars.

X «1 «9 rv r v, y v i v , r u,

T H  (x j ) 0 .5 6 2 -0 .6 5 4 0 .8 3 8 0 .1 4 5 S L P  ( y j ) 0 .0 0 4 -0 .181 0 .0 8 2 -0 .2 7 9

V O L  (x7) 0 .0 9 6 0 .8 6 3 0 .7 0 0 0 .1 7 3 A S P  ( y 7) 0 .0 0 1 0 .0 8 5 0 .1 0 7 0 .0 3 0

M D  ( x p -0 .0 6 5 1 .919 0 .7 8 5 0 .2 6 9 A L T  Cv ?) -0 .3 0 3 0 .2 1 0 -0 .5 4 9 -0 .1 3 3
SN  (x4 ) -0 .2 8 9 1.021 -0 .4 0 2 -0 .0 5 9 TP (y4) 0 .1 3 6 0 .5 9 2 0 .261 0.525
B A  (x<i) 0 .5 3 0 -1 .7 2 4 0 .4 8 9 0 .0 8 8 A B ( y s ) -0 .1 6 2 0 .5 8 5 0 .0 1 0 0.561
C D  (x6) -0 .0 8 0 -0 .0 4 6 0 .701 0 .0 6 9 G C  (y „ ) -0 .0 9 9 -0 .0 8 8 -0.075 -0.375
U C  (x7) 0 .0 3 2 0 .2 0 2 -0 .1 4 3 0 .0 9 4 A G E_(y7) 0 .8 2 3 -0 .0 5 4 0 .8 5 2 -0.069
C C  (x R) -0 .3 9 9 0 .9 2 2 -0 .2 6 9 0 .3 5 5

Table 6.18c Canonical redundancy analysis for site and stand variables

Standardised Variance o f the Stand Variables Explained by

Their Own 
Canonical Variables

The Opposite Canonical 
Variables

DecisionsCanonical
Variables

Proportion
(% )

Cumulative
Proportion

Canonical
R-Squared

Proportion
(% )

Cumulative
Proportion

1 4 2 .1 9 4 2 .1 9 0 .8 2 8 3 4 .9 3 3 4 .9 3 *

2 6 .97 4 9 .1 6 0.491 3 .42 38 .35 n e g lig ib le

3 4 .0 7 5 3 .2 3 0 .3 2 7 1.33 3 9 .68

4 1 0 .96 6 4 .2 0 0 .1 6 8 1.84 4 1 .5 2 "

5 9 .7 7 7 3 .9 6 0 .0 8 6 0 .8 4 4 2 .3 6

6 8 .2 4 8 2 .2 0 0 .0 5 3 0 .4 4 4 2 .8 0

7 10.25 9 2 .4 5 0 .0 0 3 0 .0 3 4 2 .8 2 "

Standardised Variances of the Site Variables Explained by
1 19.33 19 .33 0 .8 2 8 16 .00 16.00 *

2 24 .21 4 3 .5 3 0 .491 11.88 2 7 .8 8 *

3 10.77 5 4 .3 0 0 .3 2 7 3 .53 3 1 .4 0 n eg lig ib le

4 10.18 64 .48 0 .1 6 8 1.71 33.11

5 12 .09 7 6 .5 8 0 .0 8 6 1.03 34 .15
6 14 .84 9 1 .4 2 0 .0 5 3 0 .7 9 3 4 .9 4 ••

7 8 .58 100 0 .0 0 2 0 .0 2 3 4 .9 6 "

* means that the canonical variables are good overall predictor of the opposite set of variables.

As can be seen from Table 6.18a, the first two canonical correlations exceeded 0.7 and 

were significant at p < 0.001 and p < 0.003 confidence levels respectively. They together 

explained 87% of the total variance. The first canonical variable (linear combination) for
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stand variables was dominated by top height (Xj) (0.56) and basal area (;t5) (0.53), with 

more emphasis on top height. The correlation between top height and the first canonical 

variable of site variables was as high as 0.84. Thus, stand top height can be seen as the 

best indicator of site quality. Stand age has a large positive canonical coefficient (loading 

= 0.82) and large positive correlation with the first canonical variable of the stand variable 

set (r = 0.85). This indicates that the first canonical variables are mainly contributed by 

top height and stand age. Of the other site variables, altitude (y5) showed higher negative 

canonical coefficients (loading = -0.30) and a large negative correlation with the canonical 

variable (r = -0.55) of stand variables, meaning stand growth decreased with increasing 

altitude. The other stand and site variables can be considered negligible as they had 

relatively low loadings and correlations with canonical variables of the opposite variable 

sets (see Table 6.18b).

The second canonical variable was concentrated on mean diameter (MD, x3) and basal 

area (BA, x5) in the stand variable set, the canonical coefficients being 1.92 and -1.72 

respectively, with the emphasis on mean diameter. In the site variable set, topographic 

position (TP, y4) and soil depth (AB, y5) had nearly equal loadings (0.592 and 0.585 

respectively), more than twice as large as the loadings of the other site variables (Table 
6.18b). This indicates that these two variables had most effects on the growth of the 
radiata pine stands.

The canonical redundancy analysis showed neither of the first pair of canonical variables 

was a good overall predictor of the opposite sets of variables, the proportions of variance 

explained being 35% and 16% respectively (Table 6.18c). The other canonical variables 

added virtually nothing to the total variance of stand variables. The second canonical 

variable of site variables also made some contribution to the total variance of the site 

variables (12%). The third and higher canonical variables can be neglected since they 

added almost nothing to explain the total variance of site variables.

Based on their contributions (i.e. loadings of the canonical correlation coefficients) to the 

canonical variables, the variables in both sets can be ranked as follows:

1 2 3 4 5 6 7 8

Ujl TH => BA => CC => SN => VOL => CD => MD => UC
V7: AGE => ALT => AB => TP => GC => SLP => ASP

U2\ MD => BA => SN => CC=>  VOL => TH => UC => CD
v2: TP => AB => ALT => SLP => ASP => GC => AGE

Order
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6.5 DISCUSSION

6.5.1 Sensitivity of SPOT and TM Data

As discussed in the previous chapter, radiometric resolution is an important factor affecting 

the sensitivity of spectral reflectance to the stand structures. The spectral values for 

plantation cover are concentrated within a small data range. As shown in Table 6.3, the 

data ranges for the 60 sample points from age 9 to 42 are 17, 17, 19 for the three XS bands 

of the SPOT data, 12, 8, 20, 24, 50, 13, 21 for the February-9 TM data, and 7, 3, 6, 17, 22, 

7 and 9 for the April-21 TM data. Except for the TM5 band of the February-9 image, all 

the spectral data ranges were less than the age range of the stands (33 years). As shown in 

the previous chapters, the spectral response to the radiata pine plantation stands became 

consistent after 25 years of age, however some of the stand variables continued to increase 

after 25 years old. This means the radiometric resolution of both TM and SPOT data may 

not be sensitive enough to differentiate the subtle variations of forest stand structure.

6.5.2 The Capability of SPOT and TM Data to Estimate Stand Variables

As discussed above, decreasing spectral reflectance with increasing stand age resulted in 

negative correlations with stand variables, most of which are positively correlated with 

stand age.

Although the correlations were highly significant for some stand variables, the correlation 

coefficients were still relatively low. This indicates that there was much unexplained 

variance or non-linearity in using these spectral band data to estimate stand variables. The 

higher correlation between stand age and the NIR band can be helpful in predicting the 

stand variables directly related to stand age, such as mean annual increment and site index. 

This is addressed in the next chapter in estimating site quality by integrating remotely 

sensed and ancillary data.

6.5.3 Comparisons of SPOT and TM DATA

The results of the correlation analyses presented in this chapter showed the two summer 

images to be similar in their relations with stand variables. This indicates that under similar 

data-recording conditions (e.g. same growing season) these two systems can provide 

similar information on vegetation. Therefore, a wide range of applications in forest 

monitoring and stand observation may be approached by using multiple sensor data sets 

which involve TM and SPOT imagery.
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However, there may be significant differences in the information provided by either SPOT 

or TM about stands depending on the time of year in which the imagery data were taken. 

In this study, the correlations from the autumn image were much poorer than with the 

summer images. This difference may be due to effects such as changes in the understorey 

on the reflectance. On the other hand, these differences can also be attributed to the effects 

of factors such as different sun angles, soil and atmospheric conditions, and even external 

disturbances (e.g. thinning, pruning and/or fire-burning). The application of corrections for 

terrain and atmospheric effects may improve the ability of imagery data to detect the 

changes of stand quality and yield.

Nevertheless, the SPOT HRV sensor has fewer spectral bands than the TM sensor. The two 

MIR bands (TM5 and TM7) of TM images can provide useful information on stand 

structure variables. In this study, for example, these two MIR bands were better correlated 

with basal area, volume and canopy closure than the visible and NIR bands.

6.5.4 Selection of Predictable Stand Variables

In general, spectral reflectance values in all bands decreased with stand growth. Several 

stand variables in this work (i.e stand age, top height, mean diameter and canopy cover) 

showed significant correlations with some spectral band data. This indicates that these 

stand variables may be predictable from satellite data with some degree of accuracy. 

However, the accuracies may vary greatly with data type, growing season and data quality. 

As discussed in Chapter 5, after stands achieve full canopy closure at about 5 to 10 years 

old, the spectral values showed a gentle decrease with increasing stand age, and became 

consistent after about 30 years of age. Therefore, the stand variables such as volume, 

height and diameter may be estimated in the stands between age 5 and 30 years old. It 

becomes relatively difficult to estimate stand variables after 30 years old due to these 

consistent or fluctuating reflectance values (see Chapter 5); while stand variables can 

continue increasing after this age stage, the rate of growth is not as fast as the younger 

stands. In particular, less canopy depth, density, needle amount and canopy shadow 

occurring in the mature and over-mature stands lead to higher ground reflectance values 

and therefore a lower estimate of stand variables.

Tree density normally remains virtually unchanged from say age 3 and the first thinning (if 

no significant mortality occurred in the first few years). Thus the change of spectral value 

does not result from tree density but from canopy density and size before thinning. In the 

older stands, the tree density is usually low because of the removal of trees by thinning, 

while the spectral value may change little because the canopy density, size and coverage
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are still at a high level. This indicates that tree density cannot be predicted from spectral 

data. This may explain the poor correlation between density and spectral values in all 

bands in this chapter.

The high correlation between stand age and NIR bands further supports the results obtained 

in Chapter 5. The age variable is the variable described best by spectral data. It showed a 

more consistent correlation with spectral data (in NIR band) than any other stand variables 

which usually showed varied correlations. In addition to stand age, stand top height and 

stand mean diameter also showed good correlation with some spectral bands, the NIR band 

in particular.

Previous studies have indicated that stand volume can be estimated with satisfactory 

accuracy over large areas (region or country level), as stand volume was strongly 

correlated with spectral data (Franklin 1986; Jaakkola 1986b; Peng 1987; and Poso et al. 

1987). However, the accuracy of estimation for small areas is relatively low (Jaakkola 

1986b). In this study, sample point based ( 3 x 3  pixel window) volume was statistically 

significantly related to some spectral bands or band combinations, but the correlation 

coefficients obtained were relatively low.

6.5.5 Principal Component Images

The results of PCA indicate that the spectral information on stand structure can be 

extracted by the first two principal components which encompass 90% or more of the total 

variation in the multi-band data. Their correlations with stand variables were very similar 

to those obtained for the original spectral band data. In general, the “brightness” (PCI) 

image was significantly correlated with stand basal area and canopy cover, while the 

“greenness” (PC2) image was strongly correlated with stand age and top height. This is 

helpful in addressing the relationships between various forest stand variables and spectral 

data from multispectral bands, multisensors and multi-temporal images. The analysis can 

be concentrated on the first two or three principal component images.

The PCA produced different results from correlation and variance-covariance matrices. In 

this study, the first two principal components produced from the variance-covariance 

matrices accounted for more of the total variance of the spectral data than they did from the 

correlation matrices. They also showed higher correlations with stand variables than those 

from the correlation matrices. The data suggested that when using variables with the same 

data units such as with satellite data, the variance-covariance matrix approach is better than 

the correlation matrix approach. This is because variance-covariance allows the variables 

with higher internal variation to make more variance contribution (Jollife 1986). For
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instance, NIR and MIR band data usually make higher variances than any other bands and 

therefore have higher contributions to the total variance. When variable units are different, 

the correlation matrix approach, the so-called “standardised principal component” (Singh 

and Harrison 1985), must be used, as the standardised variables in computing the 

correlation matrix could overcome the effects of variable unit difference on variance 

contribution (Jollife (1986).

6.5.6 Canonical Variables

The results of canonical correlation analysis in this work showed the information existing 

in the multiple spectral data and stand variables could be explained by the first one and/or 

the first two canonical variables. The first pair of canonical variables were mainly related 

to age in the stand variable group and NIR band in the spectral variable group. The second 

canonical variables were mainly contributed by stand top height and the green band (XS1) 

for SPOT and MIR bands (TM5 and TM7) for TM images. These results showed an 

agreement with the results obtained in simple correlation and principal component analysis 

where age was strongly correlated with NIR band; XS1 was better correlated with stand 

variables than XS2 for SPOT data and the MIR band of the TM data showed higher 

correlation with stand variables than did the visible and TIR bands.

6.6 SUMMARY AND CONCLUSION

Methods for determining the relationships between satellite data and stand variables are 

reasonably well developed. Analysis was performed by:

1. Using Pearson correlation analysis techniques to evaluate the relationships of the 

nine stand parameters to the following five data sets:

(1) the reflectance values of single bands of raw SPOT and Landsat TM 

images;

(2) the “between-image” band combinations of the multitemporal images, i.e. 

the difference and mean images of the two dates’ Landsat TM data in the 

corresponding spectral bands;

(3) the “within-image” band combinations (vegetation indices);

(4) the principal component images; and

(5) the site variables (i.e. DTM and soil parameters).



Various bands and their linear combinations were related to stand variables in correlation 

analysis. The best spectral variables were PC2 produced from PCA. The results obtained 

from difference and mean images showed they did not improve the correlations with all 

stand variables, but they did show similar relationships with stand variables to the raw band 

data (insert between Paragraphs 2 and 3 in Page 169).
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2. Using principal component analysis methods to extract information from the 

multiband, multisensor and multitemporal data sets.

3. Using canonical correlation analysis techniques to detect the relationships of the set 

of stand variables to the sets of site variables and the three images.

In this chapter, the relationships of several stand variables to spectral responses of SPOT 

and Landsat TM for a given set of conditions were described. Several of the TM and SPOT 

XS bands were found to be primarily related to stand age and several other stand variables 

in the managed coniferous plantations. Except for stand age, the correlation coefficients 

were not high enough to allow for the development of reliable predictive models of these 

variables using single waveband data. Because of the extreme heterogeneity of forest 

stands at the 30x30 m or 20x20 m resolution and the many abiotic and biotic factors acting 

on a forest ecosystem, a high degree of predictability on small, site-specific areas can not 

reasonably be expected.

Based upon the results from this study it is concluded that the capability of SPOT and TM 

data in differentiating and estimating stand variables is limited. The NIR band is the most 

sensitive single band for detecting the changes of the stand variables, stand age in 

particular.

Under the same stand and environmental conditions, SPOT and TM showed a nearly equal 

capability for detecting changes of stand structure. TM data, however, may be more useful 

in assessing some stand variables which show lower correlation with the NIR band, since 

the MIR band of TM data provided high correlations with volume and basal area.

In summary, the above conclusions give an indication of the potential of satellite remotely 

sensed imagery data with higher spatial and radiometric resolution for monitoring, 

estimating and predicting forest stand growth. The techniques developed and conclusions 

reached may be applicable to the utilisation of SPOT and Landsat TM data for other tree 

species and stands.



Chapter 7

Estimating Forest Site Quality Using Satellite 
and Biogeographical Data

7.1 INTRODUCTION

Addressing the relationship between forests and their environments is difficult because of 

their enormous biogeographical scale in relation to ground-based measures. Satellite 

imagery is the only source of global, synoptic and timely information on physical and 

biological features. Not all of the biogeographical features can be directly measured by 

satellite sensors (see Chapter 2). However, by using the underlying functional 

relationships between the variable under investigation and a secondary variable that can 

be measured by a satellite sensor, a model can be developed to predict the desired 

information on the basis of the satellite sensor data. Such models can be developed using 

correlation, regression or classification techniques.

As reviewed in Chapter 2, current satellite data can be used for a large number of 

ecologically meaningful analyses at various scales. These include the assessment of the 

relationships between satellite data and a variety of forest structure attributes. Forest 

ecologists have been attempting to use satellite data to estimate forest productivity, 

usually expressed as biomass (dry-weight per unit area), in terms of all components of the 

forest ecosystem rather than of the tree boles alone. Some successes have been achieved 

in estimating forest productivity at regional scales (See Chapter 2). However, the 

productivity estimate of all components of the forest ecosystem is not of practical



171

importance for the purpose of forest management and planning which traditionally are 

based on tree bole volume. Very little work has been reported on estimation of site 

quality (SQ) of coniferous forest at a local area scale.

The study in Chapter 5 showed that changes in spectral reflectance over time closely 

matched the changes in the growth of radiata pine plantation stands, and the results 

obtained in Chapter 6 showed that spectral data were significantly correlated with several 

stand variables. The purpose of this chapter is to evaluate the potential of satellite data of 

varying spatial resolution and growing seasons for predicting and mapping forest site 

quality on a local area scale. This potential may be improved by incorporating 

topographic and soil information. Specifically, the objectives are fourfold as follows:

• To evaluate the relationships of site quality, expressed by site index and mean 

annual increment (MAI), with satellite and biogeographical data (with emphasis 

on topographic variables);

• To develop a multivariate model for site quality estimation using readily available 

digital satellite images in conjunction with ancillary data generated by computer 

and hard-to-obtain field measurement variables;

• To test and compare the significance of variables (bands) from multi-spectral 

bands, multi-temporal and multi-sensors and ancillary data; and

• To classify and map the site quality estimates produced from multiple regression 

models of different variable combinations.

7.2 METHODOLOGY

7.2.1 Data Sources

Several data sources are used in this chapter. They include imagery data from SPOT and 

Landsat sensors on three dates and their transformations, and ground ancillary data. The 

ground ancillary data on sample plots were from field measurements. The topographic 

data on compartments were generated from DTM. There follows a brief description of the 

variables used in data analysis. The details have been given in Chapters 3 and 4.

7.2.1.1 Site Variables

According to Scott (1960), Raupach (1967), Ballard (1971), Jackson and Gifford (1974), 

Woods (1976), Turvey (1986 and 1987), the site factors most significantly correlated with
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radiata pine growth are soil chemical and physical properties. In a small area, however, 

soil depth of A horizon, slope position, slope steepness and altitude are the most 

important site factors (Heberle 1968; Kloeden 1969; Byron 1971). Therefore the site 

variables selected for use here are those which reflect the local (micro landform) 

variations which are known to affect the growth of radiata pine (Herbele 1969; Byron 

1971). In this study, the site variables include topographic and soil physical variables, i.e.

• Topographic variables on sample plots were from field measurements, and on 

compartments were computed from digital terrain model (DTM) (see Chapter 4). 

They include slope in degrees (SLP), altitude (ALT) in metres, aspect (ASP) and 

topographic position (TP) by coding (see Chapter 4).

• Soil variables are soil depth of A and B horizons (AB) and the content of gravel 

(GC) ( > 5 mm). The measurement of these two factors is described in Chapter 4.

7.2.1.2 Satellite Data

The imagery data used in this part of the study are as described in Chapter 6. That is, the 

mean reflectance value was extracted from a 3 x 3 pixel window surrounding and 

including the ground sampling point. In addition to the mean original spectral reflectance 

values of each single band, various within-image (vegetation index) and between-image 

band combinations (difference and mean images) and transformations (including 

logarithmic, reciprocal, and principal component transformation) were also used for data 

analysis.

7.2.1.3 Measure of Site Quality

Several parameters have been used to measure site quality of radiata pine plantation 

stands in Australia (see Lewis et al. 1976). These measures include site index (e.g. 

Czamowski et al. 1967 and 1971; Turner et al. 1977; Ferguson 1979; Turvey 1987; 

Candy 1989), green index (Lewis -et al. 1976), volume (Carron 1955), mean annual 

increment (Lewis et al. 1976; and Candy 1989), and indicator species (Ure 1950). Site 

index (SI) is one of the most widely used measures for estimating site quality in radiata 

pine plantations. SI, therefore, was considered to be the most important measure of SQ 

(or productivity) in this study. In addition to SI, several mean annual increment (MAI) 

indices, named HI, DI, CI, BAl and VI respectively, were related to the spectral data. The 

definitions of these measures (called SQ indices in this study) can be found in Chapter 4.
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7.2.2 Data Analysis 

7.2.2.1 Correlation Analysis

Pearson product moment correlation (PPMC) coefficients were computed to test the 

linear relationships between SQ indices and satellite data as well as each single site 

variable. The significance of the correlation coefficients was tested with r-test methods 

(Finn 1974).

12.2.2 Canonical Correlation Analysis

As discussed in Chapter 6, due to the properties of independence (orthogonality) between 

the canonical variates and non-zero correlation (r > 0) between paired canonical variates, 

one of the most common uses of canonical correlation analysis is for ranking (ordination) 

of correlations between variables sets. This is because the first few canonical correlation 

coefficients and their corresponding canonical variables have the largest loading scores of 

the original variables, and therefore the canonical correlations (r.) of all the canonical 

variates could be ranked in the order:

I rx l> I r21 >,..., > \rp\ > 0

The relationships between any two single variables can be evaluated by the simple 

correlation (i.e. PPMC), but emphasis of CCA is on the correlation between the paired 

canonical variates extracted from two separated variable sets, and at the same time on the 

contribution of each individual variable to the total correlation. The importance of the 

individual variable can therefore be ranked on its contribution to the canonical variables. 

The CCA technique was applied in this work (1) reveal the relationships between the 

three distinct data attributes: images, physical site variables (topography and Soil) and SQ 

indices; and (2) to find the most highly correlated variables and spectral bands of the 

variable pools.

1.2.23 Principal Component Transformations

In multiple regression (see next section), one of the major difficulties with the usual least 

squares estimators is the problem of multicollinearity (non-orthogonality), which occurs 

when there are strong correlations between two or more of the predictor or regressor 

variables. This is particularly true in using multiple spectral loand data as there is a 

strong inter-correlation between the spectral bands. This usually leads to difficulty in 

interpreting regression coefficients from such data, and other problems also ensue. For 

instance, r-tests can indicate that neither of two highly correlated regressors is significant
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when, in fact, both are highly correlated with the dependent variable. This is due to the 

fact that multicollinearity causes the standard deviations (or standard errors or variance) 

of the coefficients to be relatively high. This leads to t tests which are not statistically 

significant, as well as to unstable coefficients (Gunst 1983; Jollife 1986; Ryan 1990). 

Principal component transformation (PCT) is one of the most widely used techniques to 

overcome this problem (for example PC regression). As reviewed in Chapter 5, its use in 

multivariate analysis is of value in that it can often reduce the number of variables to be 

considered by transforming the original data set onto an identical number of linearly 

independent (orthogonal) new variables (PCs). The PC images in this study were 

transformed using variance-covariance matrices of the three single-date and multi-date 

imagery data sets. The computation procedure can be found in Chapter 5. The analysis 

was concentrated on the first two or three PCs which explained 90% or more of the total 

variances.

7.2.2.4 Regression Modelling
The regression analysis was carried out under the hypothesis: the site quality is seen as a 

function of the spectral reflectance, topographic and/or soil variables, i.e.

y  = f ( x „ x  , .....x n)

where

y is the measure of site quality;

{i-1, 2, ..., n) are the regressors that may contribute to site quality.

The regression model was fitted in the form of: 

y = ßo + ßi*i + ß*2 +> •••» ß„*„ + E;
where

Xi (i = 1, 2,..., n) are known constants (i.e. imagery data and other observed site 

variables which are controlled by the observer and which are measured with 

negligible error);

ß . (i = 1 , 2 , . .. ,  n) are unknown regression model parameters to be estimated;

Zj are the fluctuation or “error”, (j = 1,2,..., m (sample size)).

The regression parameters ß. were estimated with a least squared algorithm by SAS 

regression (REG) procedures (SAS Institute 1990). The performances of the regression 

models were evaluated with the following model parameters:
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• Correlation Coefficient (r) is used to measure the degrees of the dependence of 

site quality on independent variables. A squared correlation coefficient (r2) (all 

adjusted squared correlation coefficient ra2), also called “coefficient of 

determination” in some articles, is usually used as a measure of explanatory 

power of the total variance.

• Mean Absolute Error (MAE) and/or Root Mean Square Error (RMSE) are used to 

measure the average differences between observed and model-predicted site 

quality. MAE and RMSE are similar, but the latter is more sensitive to extreme 

values than is the MAE (Hardisky et al. 1984).

• F-test is used to determine the significance of the derived regression models. A 

regression model can be considered significant if the value of F is greater than the 

tabulated F-value.

Both simple linear (including non-linear) and multiple regression (including stepwise 

regression) analyses were performed. Simple regression was used to test the effects of a 

single variable on the site quality and yield. Several non-linear functions defined in 

Chapter 5 were also used for regression analysis. Multiple regression was used to evaluate 

the integrated influences of multivariables (multibands) on site quality. The regressors 

(independent variables) included:

• the original spectral reflectance values of each individual band, i.e. XS1, ..., XS2; 

TM1, ..., TM7 (not including TM6).

• “between-image” band combination images, i.e. the difference and mean images 

of the two TM images.

• “Within-image” band combinations (including several vegetation indices defined 

in the previous two chapters).

• Principal component images (Brightness and Greenness).

• DTM data: slope, aspect, altitude and topographic position.

• Soil data, i.e. the depth of A and B horizons (AB) and gravel content (GC).

In addition to the simple and multiple regression analyses using the above variables or 

variable combinations, stepwise regression analysis were performed to determine the 

“best” variable (band) combinations for site quality estimations. As the three images were 

acquired from two different sensor’s systems on different dates (growing seasons) (see 

Chapter 4), the combinations of multi-temporal and multi-sensor images may provide
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useful information on vegetation. Due to the differences in sensor systems and recording 

dates, the images obtained from different growing seasons map compensate each others 

inadequacy in the information they provide about vegetation. The selected bands (or band 

combinations) were then combined with ancillary data.

As qualitative variables (such as topographic positions) can not be used in regression 

analysis directly, they need to be quantified. This has usually been done by classifying 

each qualitative variable attribute into several levels, with each level being coded with 

number 0 or 1. It is coded as “1” if an attribute belongs to a specific level of a certain 

attribute or “0” otherwise (see Table 7.1). In this study, aspect and topographic positions 

were treated as qualitative variables. Based on their effects on tree growth, aspect was 

classified into four levels (named as ASP1, ASP2 ASP3 and ASP4) and topographic 

positions into five levels (called TP1, TP2, TP3, TP4, and TP5). Each levels of the these 

two attributes was defined in Table 4.1 in Chapter 4.

Table 7.1 The coding of the qualitative site variables (topographic position and aspect) for qualitative
analysis (the definition of the variable attributes is given in Table 4.1). n - sample number.

Aspect Topographic Positions
Obs. ASP1 ASP2 ASP3 ASP4 TP1 TP2 TP3 TP4 TP5

1 1 0 0 0 1 0 0 0 0
2 0 1 0 0 0 1 0 0 0
3 0 0 0 1 0 0 1 0 0

n n n n n n n n n n

In quantitative regression analysis (Dong et al. 1979), the rank of the coefficient matrix 
of the normal equation groups, X'X, is

m

Xki
;= i

where:

k} is the number of the levels of }th attribute, 

m is the number of attributes.

This means that one level of each attribute is the linear combination of the rest of the 

levels. Therefore, one of the variables in each qualitative attribute needs to be deleted and 

is treated as 0 constant. For convenience, the first level (column) of each attribute is 

deleted. In this work, ASP1 and TP1 were deleted (i . e . seen as 0 regression coefficients).

7.2.2.5 Site Quality Classification and Mapping

Site quality classification and mapping are an important and extremely valuable aid to 

forest planning and management. They should indeed be the final results of any site
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quality (productivity) studies. With a certain abstraction (or standard) one can define site 

classification (or site quality classes) as a means of grouping forest sites according to their 

capacity for growing trees. In this study, based on the growing conditions in the study 

site, the model-estimated site quality from various combinations of variables has been 

grouped into four site quality classes and presented in false colour map format. The 

accuracy of the SQ classification was evaluated using an error matrix method proposed 

by Kalensky and Scherk (1975).

7.3 RESULTS AND DISCUSSION

7.3.1 Correlations

7.3.1.1 Correlations Between Site Quality and Stand Variables

The correlations between the six SQ indices and original stand variables are given in 

Tables 7.2 and 7.3 respectively. These correlations were computed for the purpose of 

assessing the relationships between SQ and imagery data detailed in the sub-sections that 

follow. As shown in Table 7.2, all SQ indices were strongly inter-correlated (p = 0.01 - 

0.001). The strongest correlation (r = 0.97) was found between HI and SI. This is because 

these two SQ indices were calculated from stand age and top height, both of which were 

strongly significantly correlated with stand age. DI and Cl also showed strong correlation 

with HI and SI as mean diameter and canopy depth were both highly correlated with 

stand age and top height (see Tables 7.3 and Table 6.4). In comparison, BAI and VI 

showed a relatively lower correlation with other SQ indices as they were affected by the 

density and were less well correlated with stand age.

Table 7.2 Correlations between SQ indices.

V a r ia b le s HI SI VI DI BAI Cl

HI 1
SI 0.97*** 1
VI 0.39** 0.51*** 1
DI 0.84*** 0.81*** 0.32* 1

BAI 0.56*** 0.57*** 0.80*** 0.53*** 1
Cl 0.87*** 0.84*** 0.32* 0.83*** 0.56*** 1

* Significant at 95% confidence (p < 0.05) level; ** 99% (p < 0.01) level; and *** 99.9% p< 0.001) level, n = 60.

All SQ indices were strongly negatively correlated with stand age. These negative 

correlations should be attributed to change in growth rate with age, as the mean annual 

increment (MAI) of the stand parameters (such as top height and basal area) usually 

significantly increases with age while the trees are young (1-10 years) and then decreases
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with increasing with age until about 25 year old. Almost all sample points were observed 

from 10 years or older stands.

Table 7.3 Correlations between SQ indices and stand variables.
~^-^Stand Var

AGE BA TH MD SN c c UC VOL

HI -0.82*** -0.12 -0.32* -0.37** 0.23 0.54*** 0.01 -0.19
SI -0.71*** -0.09 -0.21 -0.30* 0.18 0.53*** 0.02 -0.12
VI -0.03 0.80*** 0.37** 0.26* 0.31* 0.65*** -0.27* 0.73***
DI -0.79*** -0.20 -0.38** -0.19 0.03 0.38** 0.10 -0.26*
BAI -0.48*** 0.57*** -0.21 -0.26* 0.68*** 0.69*** -0.11 0.28*
Cl -0.79*** -0.18 -0.40** -0.40** 0.18 0.46*** 0.08 -0.28*

* Significant at 95% confidence (p < 0.05) level; ** 99% (p < 0.01) level; and *** 99.9% (p< 0.001) level, n = 60.

7.3.1.2 Correlations between Site Quality and Raw Spectral Band Data

(1) The correlations between SPOT data and site quality indices

Table 7.4 gives the correlations between SQ indices and raw band data. All six SQ 

indices were strongly positively correlated with the NIR band (XS3) at 95% to 99.9% 

significance levels. The two visible bands (XS1 and XS2) showed a poor correlation with 

HI, SI, DI, BAI, and Cl (r < 0.18), but significantly correlated with VI (r = -0.39 and - 

0.37; p < 0.05). The PS band showed a poor correlation with all site quality indices, with 

the exception of VI which showed a correlation of 0.3 (p < 0.05). HI, SI and DI showed 

strong and approximately equal correlation coefficients with XS3 (r = 0.75 - 0.78, p < 

0 .001) .

Table 7.4 Correlations between SQ indices and raw band data.

Images/Dates Bands HI SI VI DI BAI Cl
XS1 -0.09 -0.05 -0.39** -0.04 -0.07 -0.05

SPOT Data XS2 -0.20 -0.14 -0.37** -0.17 -0.10 -0.16
(24-Jan-87) XS3 0.78*** 0.78*** 0.30* 0.75*** 0.60*** 0.69***

PS -0.15 -0.12 -0.26* -0.07 -0.03 -0.08
2TM1 -0.04 -0.01 -0.38** 0.04 -0.21 0.05
2TM2 -0.03 -0.02 -0.50*** 0.03 -0.29* 0.06
2TM3 -0.11 -0.06 -0.53*** -0.05 -0.38** -0.03

2TM Image 2TM4 0.82*** 0.79*** 0.15 0.77*** 0.49*** 0.79***
(9-Feb-88) 2TM5 -0.22 -0.17* -0.63*** -0.08 -0.46*** -0.10

2TM6 -0.22 -0.20 -0.30* -0.10 -0.28* -0.10
2TM7 -0.26* -0.26* -0.59*** -0.13 -0.45*** -0.14
4TM1 -0.07 -0.06 -0.29* 0.04 -0.15 0.04
4TM2 -0.03 -0.02 -0.30* 0.04 -0.14 0.08

4TM Image 4TM3 -0.23 -0.22 -0.30* -0.14 -0.23 -0.10
(21-Apr-88) 4TM4 0.55*** 0.54*** 0.14 0.54*** 0.39** 0.53***

4TM5 -0.13 -0.07 -0.38** -0.03 -0.22 0.01
4TM6 -0.36** -0.30* -0.42*** -0.28* -0.35** -0.26*
4TM7 -0.16 -0.10 -0.36** -0.10 -0.23 -0.03

* Significant at 95% confidence (p < 0.05) level; ** 99% (p < 0.01) level; and *** 99.9% p< 0.001) level, n = 60.

(2) Correlation between TM data and site quality

As with SPOT data, the NIR band (TM4) of the TM data dominated the significantly 

correlated bands (p < 0.01) (Table 7.4); VI showed a very poor correlation with the NIR
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band (r = 0.15) but was significantly correlated with all other spectral bands (at 95% or 

higher significance levels). In particular, it was strongly correlated with TM5 (r = 0.63 

for 2TM5 and 0.38 for 4TM5) and TM7 (r = 0.59 for 2TM7 and 0.36 for 4TM7). BAI 

showed correlations of 95% or higher significance levels with TM2, TM5 and TM7 of the 

February-9 TM image, but did not correlate at the same significance levels with the same 

bands of the April-21 TM image (r < 0.24).

The correlation analysis (Table 7.4) indicated that all spectral bands but NIR had 

relatively low correlations with SQ indices due to the visible, MIR and TIR bands being 

poorly correlated with stand age and other stand variables (see Chapter 5 and 6). The SQ 

indices strongly correlated with stand top height and age were usually significantly 

correlated with the NIR band due to a strongly negative correlation of NIR with these two 

variables. The best correlations were obtained between HI and SI and the NIR bands. 

However, the NIR band was generally poorly correlated with the mean annual increment 

of stand volume (VI) and stand basal area (BAI). The two MIR bands (TM5 and TM7) 

provided better information on SQ than the visible bands. The summer images were 

comparatively better correlated with site quality than the autumn image.

7.3.1.3 Correlations between Site Quality and Principal Component Images

All the PC images were related to the SQ indices. Table 7.5 displays only the results from 

the first two PCs as they explained most of the total variance and also showed higher 

correlations with SQ indices than those computed from any other PCs. The correlation 

analysis showed that PC2 (termed greenness) was most strongly correlated with SQ 

indices (excluding VI), with correlation coefficients (r) ranging from 0.59 to 0.83 for 

SPOT PC2, 0.55 to 0.85 for 2TM PC2 and 0.46 to 0.60 for 4TM PC2 (p < 0.001). This is 

because the information of PC2 is mainly contributed by the NIR band which is usually 

highly correlated with SQ indices (see Table 7.4) as well as stand variables (see Chapter 

6) .

SPOT PCI showed no correlations with any SQ indices (Table 7.5). This may be 

explained by the fewer spectral bands which were significantly correlated with stand 

variables and SQ indices. PCI of the TM images showed strong correlation with VI and 

BAI, but was poorly correlated with other SQ indices. In PCA, using multispectral 

imagery data, PCI was usually interpreted as “brightness” which indicates the sum of the 

overall reflectance of the object (Everett and Simonett 1976; and Lodwick 1979b). 

Therefore it was believed to be the sum of the overall response levels in all bands, the two 

MIR bands in particular.
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Table 7.5 Correlations between site quality and the principal component images.

S ite  Q u a lity  

in d ic e s

SPOT XS+PS Data February-9 TM Data April-21 TM Data
All Three Images 

(SPOT+2TM+4TM)

PCI PC2 PCI PC2 PCI PC 2 PCI PC2
HI 0.09 0.83*** -0.18 0.85*** -0.09 0.60*** -0.16 0.84***
SI 0.11 0.82*** -0.14 0.82*** -0.04 0.58*** -0.11 0.82***
VI -0.21 0.43*** -0.61*** 0.23 -0.36** 0.27* -0.59*** 0.30*
DI 0.16 0.75*** -0.06 0.78*** 0.00 0.57*** -0.04 0.78***

BAI 0.13 0.59*** -0.43*** 0.55*** -0.19 0.46*** -0.38**’1 0.61***
Cl 0.12 0.71*** -0.07 0.80*** 0.04 0.54*** -0.04 0.78***

* Significant at 95% confidence (p < 0.05) level; ** 99% (p < 0.01) level; and *** 99,9% p< 0.001) level.

In comparison, the PCs of the two summer images showed approximately equal 

information contents on SQ, except for the PCI of 2TM data which showed strong 

correlations with VI and BAI (Table 7.5). The PCI and PC2 from the autumn image 

(April-21 TM data) were strongly correlated with SQ indices, but the correlation 

coefficients were much lower than, those from the two summer images. This may be 

explained by the low correlations between SQ indices and the raw spectral band data of 

the April-21 TM data (see Table 7.4).

The PC images calculated from the multi-temporal images (18 bands) showed similar or 

better correlations with SQ indices than the PCs from the single date images alone (Table 

7.5). As shown in the previous chapters, the PC images usually extract the spectral 

information on vegetation to the first two PCs, while images and/or the bands which have 

higher correlations with stand variables usually show higher PC loadings. These results 

further suggest that principal component transformation is the best way to extract 

maximum information from the multi-temporal images when using the images from 

different growing seasons and different sensors.

Compared with the results from the raw imagery data, the PC images can improve the 

relationships with SQ using only the first two PCs. In particular, PC2, the “greenness”, 

provides better spectral information on SQ. The information of the visible and MIR bands 

on SQ can be extracted in the PCI image. Thus correlation and/or regression analysis 

involving multi-bands and multi-temporal images can be concentrated on the first two PC 

images without losing much information.

7.3.1.4 Correlations between Site Quality and Difference and Mean Images

Correlations of the difference and mean images of the two TM images to SQ indices were 

presented in Table 7.6. Both the difference and mean images showed a similar correlation 

pattern to the original data, with the dominant correlation in the combined near-infrared 

bands. The mean annual increment in volume (VI) was poorly correlated with the
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difference and mean images in the NIR band (r < 0.15), but was well correlated with all 

difference and mean images in other bands (p < 0.05 - 0.01), in particular with the 

combinations in TM5 and TM7 (r > 0.55, p < 0.001).

Table 7.6 Correlations between SQ indices and difference (D . to P 7) and mean (M, to AQ images

Combined Bands
HI SI VI DI BAI Cl

D, -0.01 -0.04 -0.28* 0.03 -0.16 0.04
D , -0.02 -0.03 -0.41** 0.01 -0.26* 0.01

D, -0.03 -0.03 -0.47*** 0.00 -0.33* 0.01
Dj 0.72*** 0.69*** 0.10 0.66*** 0.38** 0.69***

-0.20 -0.18 -0.58*** -0.09 -0.46*** -0.14
0.00 -0.02 -0.05 0.09 -0.08 0.08

d 7 -0.23 -0.22 -0.53*** -0.10 -0.42*** -0.16

M, -0.06 -0.01 -0.40** 0.05 -0.21 0.05
m 7 -0.03 0.05 -0.47*** 0.04 -0.26* 0.07
Af, -0.16 -0.11 -0.51*** -0.08 -0.38** -0.06
AC 0.77*** 0.75*** 0.15 0.73*** 0.48*** 0.74***
AC -0.20 -0.14 -0.58*** -0.07 -0.40** -0.06
AC -0.30* -0.26* -0.38** -0.19 -0.33* -0.18
AC -0.25 -0.2 -0.56*** -0.13 -0.41** -0.11

* Significant at 95% confidence (p < 0.05) level; ** 99% (p < 0.01) level; and *** 99.9% p< 0.001) level, n = 60.

The correlations between the “between-image” combinations and SQ indices fell between 

the two single date TM images, that is, slightly lower than the results from February-9 

TM image and much better than those from the April-21 TM image. In comparison, the 

mean images showed better correlations with SQ indices than difference images. As 

discussed in Chapter 5, these differences could be attributed to a number of factors 

influencing the spectral absorption and reflectance. Some of these are due to actual 

variation in the target areas being investigated while others are due to variations in 

external conditions (such as sun angles). There are several ways to minimise these 

external differences, such as corrections for topography and atmosphere, data 

standardisation etc. The use of difference and mean images did not improve their 

correlations with SQ, but they may be helpful to minimise the variation due to temporal 

changes, with the added advantage that each image contributes equal weight to the 

analysis.

7.3.1.5 Correlations between Site Quality and Vegetation Indices

Strong correlations were observed between the nine forest stand variables and several 

NIR-related band combinations as reported in the previous chapter. In this chapter, the 

relationships between SQ and “within-image” band combinations by addition, subtraction 

and/or ratios were examined. All possible “within-image” band combinations were 

calculated and related to SQ indices, but their correlations with SQ were only slightly 

(functionally) different. Table 7.7 lists only the better correlation results.
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Table 7.7 Correlations between SQ indices and “within-image” band combinations (i.e. vegetation 
__________ index)._______________________________________________________________________

Times SPOT HI SI VI DI BAI Cl
AVI 0.83*** 0.79*** 0.50*** 0.78*** 0.60*** 0.73***

SPOT Data RVI 0.68*** 0.62*** 0.54*** 0.63*** 0.49*** 0.60***
(24-1-87) NDVI 0.66*** 0.61*** 0.50*** 0.62*** 0.45*** 0.58***

XS3/1 0.76*** 0.72*** 0.62*** 0.68*** 0.60*** 0.66***
XS3-1 0.85*** 0.81*** 0.56*** 0.78*** 0.65*** 0.73***
AVI 0.83*** 0.78*** 0.43*** 0.75*** 0.67*** 0.76***
RVI 0.67*** 0.61*** 0.60*** 0.59*** 0.71*** 0.60***

2TM Image NDVI 0.68*** 0.62*** 0.60*** 0.60*** 0.71*** 0.61***
(9-Feb-88) TM3/5 0.35** 0.33* 0.58*** 0.18 0.48*** 0.23

TM7/5 -0.36** -0.36** -0.43*** -0.26* -0.40** -0.24
TM4/2 0.82*** 0.77*** 0.47*** 0.74*** 0.68*** 0.75***
AVI 0.66*** 0.65*** 0.27* 0.61*** 0.49*** 0.58***
RVI 0.64*** 0.62*** 0.39** 0.56*** 0.55*** 0.52***

4TM Image NDVI 0.63*** 0.61*** 0.36** 0.54*** 0.50*** 0.50***
(21-Apr-88) TM3/5 0.07 0.01 0.40** -0.03 0.22 -0.03

TM7/5 -0.19 -0.17 -0.15 -0.25 -0.22 -0.15
TM4/2 0.60*** 0.58*** 0.34** 0.55*** 0.52*** 0.52***

* Significant at 95% confidence (p < 0.05) level; ** 99% (p < 0.01) level; and *** 99.9% p< 0.001) level, n = 60.

The correlation analyses showed that the use of “within-image” band combinations could 

improve the correlations with SQ. The NIR-related band combinations were more 

sensitive to site quality than other band combinations. For the three images the best 

correlation was obtained from AVI. The highest correlation in the SPOT image was from 

the differences of NIR and green band differences (i.e. XS3-1; r = 0.85, p < 0.0001), 

while for TM images, the ratio of these two bands showed an approximately equal 

correlation to AVI.

Previous studies have shown that the vegetation indices computed from NIR and Red 

bands (such as NDVI and RVI) could produce better correlations than original band data 

with biomass (e.g. Deering and Haas 1980; Hardisky et al. 1984; Kanemasu et al. 1990; 

Sader et al. 1989) and LAI (e.g. Tucker 1977 and 1979; Holben et al. 1980; Spanner et 

al. 1984b; Running et al. 1986). In this study, however, the highest correlation was not 

obtained from NIR/Red ratios but NIR-Red and/or NIR-Green band differences. As 

discussed in the previous chapters, in general, the spectral reflectance of the visible and 

NIR bands decreased with stand growth, but the NIR reflectance did not decrease as 

sharply as the visible bands (see Figure 5.2 and 5.10 and Chapter 5). Therefore the values 

of the differences and/or ratios of the visible and NIR bands were usually higher in 

younger stands (5-10 years) and decreased with stand growth. This implies that the band 

combinations of NIR and visible bands (both difference and ratios) may be able to 

highlight the variation of stand structure (see Figure 5.10).
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7.3.1.6 Correlations Between Site Quality and Site Variables

The correlations between SQ and the site variables are given in Table 7.8. Clearly, 

altitude (ALT), topographic positions (TP) and slope (SLP) had more effects on radiata 

pine site quality than did the soil depth, aspect and gravel contents. The correlations, 

although generally poor, were higher for TP and ALT than the other site variables. 

Similar results were reported in earlier work by Kloeden (1969) in an ACT radiata pine 

plantation site study. However, the low correlations with soil depth (AB), aspect (ASP) 

and gravel contents (GC) do not mean that these site variables are not important for 

indicating site quality. The result might be due to the limited sample numbers in a limited 

study area. In fact, the importance of any individual site variable can vary greatly from 

place to place and from species to species. It is in general dependent on the integrated 

effects of all site features.

The correlation analyses above indicate that spectral data are better correlated with site 

quality than are individual biogeographical or physical environmental (site) 

characteristics (e.g. slope, aspect, altitude, and soils). Spectral data are by nature 

integrators of a large number of factors, many of which (e.g. density, green leaf volume 

(leaf area index), moisture, green vegetation biomass) could be expected to relate to site 

quality more than individual site factors (e.g. DTM-derived data). As reviewed in Chapter 

2, site quality (or productivity) is the sum of a large number of environmental (site) 

factors. Nevertheless, this does not mean that all individual site factors have equal 

influences (contribution) on site quality (productivity). However, the use of site variables 

(e.g. DTM-derived and soil data), may enhance the performance of the spectral 

reflectance for site quality and/or yield estimation. This will be further examined below.

Table 7.8 Correlation coefficients between SQ indices and site variables._____________________________
——j>ite Variables

so  - - SLP ALT AB ASP GC TP

HI -0.23 0.16 0.05 -0.17 -0.12 0.24
SI -0.22 0.17 0.05 -0.21 -0.12 0.32*
VI -0.23 -0.38** 0.07 -0.10 -0.11 0.42**
DI -0.32* 0.05 0.18 -0.17 -0.19 0.26*
BAI -0.28* -0.07 0.00 -0.19 -0.07 0.19
Cl -0.26* 0.13' 0.02 -0.09 -0.03 0.12

* Significant at 95% confidence (p < 0.05) level; ** 99% (p < 0.01) level; and *** 99.9% p< 0.001) level, n = 60.

7.3.2 Canonical Correlations

The relationships between individual variables have been discussed above; the emphasis 

here is on the relationships between variable groups. Five canonical correlation analyses 

(CCA) were performed to analyse the relationships of SQ indices to five data sources:
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three single date images, three images together, and site variables. As in Chapter 6, the 

canonical correlations of any two variable groups were evaluated by computing their 

canonical correlation, performing - corresponding significance tests, and calculating 

eigenvalues and percentage of explained total variance of each pair of canonical variables 

(variates). Each single variable (band) was further assessed by its canonical coefficients 

(loadings) and correlations with opposite variables. The results are discussed in the 

following five sections.

7.3.2.1 Canonical Correlations between SPOT Image and Site Quality

The canonical correlation coefficients rk { k -  1,2, and 3) from SPOT data (XS+PS) and 

six SQ indices and their significance test are presented in Table 7.9a. It can be seen that 

the first two correlations exceeded 0.65 (rx = 0.89, r2 = 0.67), were significant at the 

0.0001 and 0.0003 levels and explained 98% of the total variance. The third canonical 

correlation, r3 = 0.357 (r2 = 0.127), was very small and accounted for less than 3% of the 

total variance. Therefore rl and r2 are certainly suggestive of the existence of two linear 

relationships between SQ (x) and SPOT data (y).

Table 7.9a Results of CCA between SQ indices and SPOT data.

Canonical Correlation Significance test (H0: r = 0)
C anonical

C orrelations
E igen

V alues
Prop.
(%)

Cum .
(%) A,- x 2 D F

S ig n ifica n ce
L evels

D ec is io n

1 0 .8 9 5 4 .0 0 3 8 0 .04 80 .0 4 0 .0 9 2 2 127 .54 24 0 .0001 R e je c t
2 0 .6 6 9 0 .8 1 2 16.23 9 6 .2 7 0 .4 6 3 3 4 0 .3 9 15 0 .0 0 0 3 R e je c t
3 0 .3 5 7 0 .1 4 6 0 2 .9 3 9 9 .2 0 0 .8 3 8 7 9 .0 6 8 0 .3 0 8 6 A c c e p t
4 0 .1 9 7 0 .0 4 0 0 .8 0 100 0 .9 6 1 2 2 .0 0 3 0 .5 4 9 8 A c c e p t

Table 7.9b Standardised canonical coefficients and correlations between the original variables and the
canonical variables of opposite sets of variables.

SQ Indices SPOT Data

Standardised C anonical 
c o e ffic ie n ts  for SQ  In d ices

Corr. B etw een  SQ  
& 1st tw o C ano. 

Vars. o f  SPO T  Data

Standardised C an on ica l 
C o effic ien ts  for SP O T  D ata

Corr. B etw een  SPO T  
D ata & 1st tw o  Cano. 
Vars. o f  SQ  Indices

X «1 u2 rv, rv. y V. V2 %
SI 0 .2 8 0 2 .0 3 0 0 .8 4 7 0 .0 5 9 X S l -0 .6 0 7 0 .7 7 8 -0 .1 1 4 0 .6 6 2
HI 0 .5 7 3 -2 .4 1 4 0 .8 6 7 0 .0 1 4 X S 2 0 .1 8 3 0 .1 4 5 -0 .2 0 7 0 .6 1 4
VI 0 .101 -1 .6 1 8 0 .5 1 2 -0 .3 2 4 X S 3 1 .072 0 .1 5 7 0 .7 9 5 0 .3 0 2
DI 0 .2 2 4 0 .341 0 .7 9 7 0 .0 6 1 PS -0 .0 8 6 0 .0 4 6 -0 .131 0 .4 0 0

BAI 0 .1 6 8 1 .599 0 .6 6 3 0 .0 2 8

Cl -0 .241 -0 .1 7 6 0 .7 5 2 0 .0 4 0

Table 7.9b presents the standardised canonical coefficients of the first two canonical 

variables and their correlations with opposite variables. Like PCA, the canonical variables 

are the linear combinations of the original data determined by their canonical coefficients. 

That is, the higher the canonical coefficients (the “loadings”), the more their contributions



185

to the total variance (canonical variables) of the original data set. From the first pair of 

canonical variables, HI and XS3 showed the highest loadings (0.57 and 1.07) and highest 

correlations with opposite canonical variables (0.87 and 0.80) and should be seen as the 

dominant variables. The second pair of canonical variables were mainly contributed by 

VI and XS1, as they had the highest loadings and correlations with the second canonical 

variable of opposite data sets. SI, HI, BAI and XS3 also showed large loadings in the 

second pair of canonical variables, but their correlations with opposite canonical variables 

were very weak (Table 7.9b).

1 3 .2.2 Canonical Correlations between TM Images and Site Quality

The results of CCA between the two TM data sets and the six SQ indices are given in 

Tables 7.10a-7.10b and 7.1 la-7.lib. The two TM images showed a similar correlation 

pattern, with HI and the NIR band (TM4) being good overall predictors of the opposite 

set of variables. However, due to the difference in growing seasons, the canonical 

variables showed some differences in their information content on site quality. As can be 

seen from Table 7.10a, the First two canonical correlations from the February-9 TM 

image exceeded 0.73 and were significant at 0.0001 and 0.0008 levels respectively. They 

explained up to 94% of the total variance. The CCA using the April-21 TM image 

indicated that only the first pair of canonical variables was significantly correlated (r = 

0.79, p < 0.0002) (Table 7.11a). Nevertheless, it explained only about 69% of the total 

variance and, together with the second canonical correlation, only 92%, slightly less than 

71% and 94% respectively from February-9 TM image (Table 7.10a). These results 

further indicate that the summer images contain more information than the autumn image 

on site quality as well as stand structure.

As shown in Tables 7.10b and 7.11b, HI and TM4 had the highest loadings and the 

highest correlations with the canonical variables of their opposite sets of variables, and 

therefore they are definitely the dominant variables in the first pair of canonical variables. 

In the second pair of canonical variables, VI and TM5 can be seen as the dominant 

variables as they both showed the highest loading and correlations, although the second 

correlation coefficient (r2) for the April-21 TM image was not significant at the same 

level as the first correlation coefficient (r,) (Tables 7.10a and 7.11a). SI and HI also 

showed higher loadings in the second pair of canonical variables; their correlations with 

the canonical variables of TM data were very poor. In comparison, the MIR (TM5) and 

TIR (TM7) bands contributed more to the information (canonical variables) on vegetation 

and site quality than did the visible bands.
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Table 7.10a Results of CCA between SQ indices and the February-9 TM Data.

Canonical Correlation Significance test (H0: r = 0)
C anonical

C orrela tions
Eigen
V alues

Prop.

(% )

Cum .
(% ) A, x 2 D F

Significance
Levels D ecision

1 0.895 4.037 70.57 70.57 0.066 145.72 42 0.0001 R eject
2 0.758 1.352 23.63 94.20 0.315 60.62 30 0.0008 R ejec t
3 0.383 0.171 3.00 97.20 0.732 16.10 20 0.7017 A ccep t
4 0.299 0.098 1.72 98.92 0.857 7.80 12 0.7832 "

5 0.216 0.049 0.85 99.77 0.941 3.01 6 0.7884 "

6 0.114 0.013 0.23 100 0.987 0.63 2 0.7116 "

Table 7.10b Standardised canonical coefficients and correlations between the original variables and the
canonical variables of opposite sets of variables.

SQ Indices 2TM Data

S tandardised  C anonical 
C oeffic ien ts fo r SQ Indices

C orr. B etw een SQ 
& 1st tw o C ano. 

V ars. o f 2TM  D ata

S tandardised  C anonical 
C oeffic ien ts fo r 2TM  D ata

C orr. B etw een 2TM  
D ata & 1st tw o C ano. 
V ars. o f SQ Indices

X “ i m2 y V, V2 r«2

SI -0.001 1.659 0.8263 -0.0492 2TM1 -0.1698 0 .1906 0.0268 0.5091
HI 0.890 -2.445 0.8657 -0 .1070 2TM 2 0.1058 0.5351 0.0500 0.5995
VI -0 .419 -1 .189 0.2630 -0 .6376 2TM 3 -0.0932 -0.8571 -0.0523 0.5758
DI 0.014 0.613 0.7852 0.0151 2TM 4 1.0164 -0 .0176 0.8583 0.1391

B A I 0.451 0.485 0.5778 -0.3831 2TM 5 -0.2774 2.0484 -0.1290 0.6913
C l -0.042 0.369 0.8046 -0.0082 2TM 6 -0.1894 -0 .3542 -0.1905 0.3222

2TM 7 0.3030 -0.7498 -0.1804 0 .6210

Table 7.1 la Results of CCA between SQ indices and the April-9 TM Data.

Canonical Correlation Significance test (H0: r  =  0)
C anonical

C orrelations
Eigen
V alues

Prop.
(% )

Cum .
(% ) A, x 2 D F

Significance
Levels D ecision

1 0.789 1.649 69.03 69.03 0.203 82.99 42 0.0002 R eject
2 0.596 0.551 23.06 92.09 0.537 32.33 30 0.3554 A ccep t
3 0.292 0.093 3.89 95.98 0.833 9.51 20 0.9765 "

4 0.242 0.062 2.61 98.60 0.911 4.82 12 0.9622 "

5 0.162 0.027 1.12 99.72 0.967 1.73 6 0.9431 "

6 0.082 0.007 0.28 100.00 0.993 0.35 2 0.8409 f t

Table 7.11b Standardised canonical coefficients and correlations between the original variables and the
canonical variables of opposite sets of variables.

SQ Indices 4TM Data

Standardised  C anonical
C orr. B etw een SQ 

& 1st tw o C ano. 
Var. o f 4T M  D ata

S tandardised  C anonical
C orr. B etw een 4TM  
D ata & 1st two C ano. 

Var. o f SQ  Indices
C oefficien ts for SQ Indices C oefficien ts for 4T M  D ata

X w, u 2 rv, y V, V2
SI 0.158 1.990 0.743 0.008 4TM 1 0.136 0.330 -0.041 0.413
HI 0.568 -3.677 0.772 -0.036 4TM 2 0.108 0.129 -0.013 0.394
VI -0.190 -1.004 0.342 -0.377 4TM 3 -0.500 -0.237 -0.212 0.348
DI 0.210 0.903 0.721 0.087 4TM 4 0.823 -0.053 0.581 0.172

B A I 0.363 0.615 0.563 -0.173 4TM 5 0.418 1.688 -0.097 0.555
Cl -0.082 1.002 0.705 0.096 4TM 6 -0.788 -0.159 -0.332 0.418

4TM 7 0.064 -0.744 -0.144 0.497
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7.3.2.3 Comparisons of the Multi-temporal and Multi-sensor Images

As indicated previously, the SQ information contents of individual spectral bands could 

be detected by the percentage of the total variance explained or by their scores (loadings) 

using PCA and/or CCA (including factor analysis) techniques. In this section, CCA was 

undertaken to compare the spectral information differences of the multi-temporal and 

multi-sensor’s images. The results are presented in Tables 7.12a and 7.12b. Three of the 

correlations exceed 0.64 (i.e. r, = 0.95, r2 = 0.88, and r3 = 0.64), explaining 65.8%, 22.9% 

and 4.8% of the total variance, and the three together, 93.5%. However, the significance 

test showed only the first two canonical correlations were significant (p < 0.0001 and 

0.002 respectively).

As can be seen from Table 12b, in the SQ variable set (*), HI dominated the canonical 

coefficients (1.25) in the first pair of canonical variables («,). The six SQ indices showed 

a close positive correlation with the canonical variables of the three images, with HI 

being the highest (r = 0.88). In fact, other SQ indices (SI, CI, DI, BAI) can be partially 

explained by HI as they showed a high correlation with other SQ indices (see Table 7.2). 

Similarly XS3 of SPOT data dominated the canonical correlation coefficients (0.93) for 

the three images together, and also showed the highest correlation (0.74) with the 

canonical variable of the SQ indices variable set. 2TM5 also showed the highest loading 
for the first canonical variables (0.84), but its correlations (r = -0.42) with the canonical 

variables of the SQ indices were much less than that with the NIR bands (Table 7.12b). 

2TM4 and 4TM4 showed higher correlations with the canonical variables of SQ indices, 

but their canonical correlation coefficients were relatively lower than that of XS3. These 

two variables were not therefore seen as major variables. These results suggest that XS3 

shows the best information on site quality.

Table 7.12a Results of CCA between SQ indices and all three data sets together (XS+PS+2TM+4TM).

Canonical Correlation Significance test (H0: r = 0)
C anonical

C orrelations
E igen

V alues
Prop.

(%)
Cum .

(%) A,- x 2 D F S ig n ifica n ce
L evels

D ec is io n

1 0.951 9.453 65.80 65.80 0.0059 238.72 108 0.0001 R e je c t

2 0.876 3.286 22.87 88.67 0.0617 129.56 85 0.0020 R e je c t
3 0.640 0.695 4.84 93.51 0.2651 61.74 64 0.5774 A c c e p t
4 0.564 0.467 3.25 96.76 0.4489 37.24 45 0.7980 "
5 0.455 0.261 1.81 98.58 0.6584 19.44 28 0.8890 "
6 0.412 0.204 1.42 100.00 0.8303 8.65 13 0.8026 "

As with the single date images, VI also had the highest canonical correlation coefficients 

(-1.46) as well as the highest correlation with the second canonical variables of the three 

images. VI is therefore the dominant variable for the second canonical variable of the SQ
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indices. 2TM4 and 2TM5 showed approximately equal loadings (0.93 and 0.94) in the 

second canonical variables of images, but the correlation (0.53) of 2TM5 with the second 

canonical variable of the opposite set of variables (SQ indices) was slightly higher than 

that of 2TM4. 2TM5 was therefore seen as the dominant variable for the second pair of 

canonical variables (Table 7.12b).

Table 7.12b Standardised canonical coefficients and correlations between the original variables and the 
____________ canonical variables of opposite sets of variables._________________________________________

SQ Indices All Images (XS+PS+2TM+4TM: 18 bands)

Standardised Canonical 
C oefficients for SQ

Corr. Between SQ 
& 1st two Cano. 

Var. o f 4TM  Data

Standardised Canonical 
C oefficients for A ll Three 

Data Sets (18 Channels)

Corr. B etw een Im ages 
& 1st two Cano. Var. 

o f  SQ Indices

X W, «2 rv, rb y v. V2 r‘ ,
SI

HI
VI
DI

BAI
Cl

-0.241

1.254
0.204

0.0006
0 .209

-0.334

1.3126

-1.4244
-1.4586
0.2246
0.9424
0.2632

0.8363

0.8821
0.6481
0.7726
0.7794
0.7451

0.2702

0.2380
-0.5439
0.2799

-0.0840
0.3147

X S l

XS2
XS3
PS

2TM1
2TM2
2TM3
2TM 4
2TM5
2TM 6
2TM7
4TM1
4TM 2
4TM 3
4TM 4
4TM 5
4TM 6
4TM 7

-0.6280

0.3285
0.9285
0.0923

-0.2324
-0.0024

0.1712
0.2108

-0.8407
-0.0255
0.5836
0.0390

-0 .0226
-0.0443
-0.1363
-0.0465
-0.1677
0.1023

0 .6040

-0.0025
-0.5245
-0 .1084
-0 .1073
0 .4376

-0.6915
0.9411
0 .9346

-0 .3576
-0 .1296
0.0753
0.1783

-0.2348
-0.1048
-0 .0420
0.0793
0.1513

-0.1829

-0.2585
0.7432

-0.1647
-0.1925
-0.2253
-0.3050
0.7016

-0.4209
-0.3107
-0.4414
-0.1750
-0.1479
-0.3111
0.4907

-0.2676
-0.4471
-0.2923

0.5637

0 .4696
0.3871
0.3108
0.4497
0.5459
0.4714
0.4986
0.5344
0.1736
0.4539
0.3259
0.3425
0.2048
0.3492
0.4315
0.2726
0.3715

2T M 1 7 are bands 1 to 7 o f the February-9 TM data
4 T M 1 ,..., 7 are bands 1 to 7 o f  the April TM data 
X S1, 2, 3 are channel 1 to 3 o f SPOT data 
PS is the panchromatic m ode o f SPOT data. 
n  = 60

By comparison, XS3 showed the best information on HI (or SI), while 2TM5 contributed 

the most information to VI. The autumn imagery contained negligible information on SQ 

since its canonical coefficients (loading) were very small (Table 7.12b). The data suggests 

that the combinations of SPOT and TM data may compensate each other for inadequacy 

in their information content on stand structure. In the same spectral bands, SPOT data 

provided better information on stand variables than TM data, while the two MIR bands of 

TM data, which SPOT image does not have, could provide useful information on SQ. 

Different growing seasons may significantly influence the correlations of imagery data 

with stand variables and SQ.

1 3 .2 A  Canonical Correlations between Site Quality Indices and Site Variables

The canonical correlation analysis was performed to determine the correlations between 

the six SQ indices and six site variables (four topographic variables and two soil 

variables). As shown in Table 7.13a, the first two canonical correlations were significant 

at 0.02 or smaller significance levels, respectively explaining 49.7% and 31.8% of the
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total variance and 81.5% together. Although the third pair of canonical variables 

explained about 11% of the total variance, their correlation was not significant (p < 0.37). 

The remaining three canonical correlations together explained only 7% or less of the total 

variance and therefore were negligible.

Table 7.13a Results of CCA between SO indices and site variables.

Canonical Correlation Significance test (H0: r = 0)
C anonical

C orrela tions
Eigen
Values

Prop.
(% )

Cum.
(% )

A , t
D F Significance

L evels
D ecision

1 0.6976 0.9481 49.72 49.72 0.2301 77.15 36 0.0001 Reject

2 0.6143 0.6062 31.79 81.50 0.4482 41.33 25 0.0177 R eject
3 0.4177 0.2113 11.08 92.58 0.7198 16.60 16 0.3700 A ccept
4 0.2814 0.0860 4.51 97.09 0.8720 6.78 9 0.6173 "

5 0.1982 0.0409 2.14 99.24 0.9469 2.64 4 0.5812 "

6 0.1198 0.0146 0.76 100 0.9856 0.69 1 0.3836

Table 7.13b Standardised canonical coefficients and correlations between the original variables and the 
____________ canonical variables of opposite sets of variables._________________________________________

SQ Indices Site Variables

Standardised Canonical 
C oefficients for SQ Indices

Corr. Between SQ 
& 1st two Cano. 
Var. o f Site Var.

Standardised Canonical 
C oefficients for Site Variables

Corr. B etw een Site Var. 
& 1st two Cano. 

Var. o f  SQ Indices

X n, «2 rv, rv, y V, V2 %
SI
HI
VI
DI

BAI
Cl

1.1394
-1.6898
1.3761
0.9641

-0.8032
-0.1822

-1.9843
-0.0969
0.6636
0.1074

-0.3785
1.5061

0.1692
0.1228
0.5137
0.1902
0.2115
0.0441

-0.3850
-0.3141
0.0399

-0.2354
-0.0684
-0.1375

SLP
ALT
ASP
TP
AB
GC

-0.0841
-0.5243
-0 .1260
0.6653

-0 .0249
-0.0245

-0.3437
-0.7886
0.4044

-0 .5880
0 .0776
0.4945

-0.2001
-0.5138
-0.0855
0 .6036
0.2449

-0.2092

-0.0219
-0.3634
0.2846

-0.2304
-0.0077
0.1420

HI, SI and VI showed large loadings (> 1 in absolute term) for the first canonical variable 

of the SQ indices, with more emphasis on HI (Table 7.13b). VI showed a slightly lower 

canonical coefficients (1.38) than HI for the first canonical variable, but it had the highest 

correlation (0.51) with the canonical variable of the site variables. This means that VI is 

more sensitive to the first canonical variable contributed mainly by TP (0.67) and ALT (- 

0.52). This is because volume (VOL) and VI was most correlated with ALT and TP (see 

Tables 6.5 and 7.8). HI had the highest loading (-1.69) for the first canonical variable of 

SQ indices, but its correlation with the first canonical variable of SQ indices was 

relatively small. Therefore VI and TP should be seen as the dominant variables for the 

first pair of canonical variables.

In the second pair of canonical variables, SI showed the highest loading (-1.98) and also 

the highest correlation (-0.39) with the second canonical variable of the opposite set of 

variables. ALT did the same in the site variable set, with the canonical coefficient 

(loading) and correlation with the canonical variable of SQ indices being -0.79 and -0.36



190

respectively (Table 7.13b). Therefore SI and ALT can be seen as the dominant variables 

for the second pair of the canonical variables.

The canonical correlation analysis above showed that both SI and VI are the best two 

indicators of SQ in the study area. This agrees with the idea that SI is the best indicator of 

SQ in most studies. The site variables most influencing SQ are altitude (ALT) and 

topographic positions (TP). The soil variables showed the smallest contributions to SQ 

and can be considered of negligible importance in this study.

7.3.3 Estimation of Site Quality 

7.3.3.1 Introduction

The relationships between SQ and imagery data have been comprehensively investigated 

with correlation analysis, PCA and CCA techniques in the above sections. Some of the 

spectral bands and/or combinations have shown strong correlations with SQ indices. 

These results demonstrated that there is some potential for estimating SQ with the bands 

highly correlated with SQ indices. These high correlations lead to the development of the 

following two hypotheses:

(1) SQ can be estimated using SPOT and TM data and their combinations;

(2) the estimation accuracy of SQ may be improved by incorporating ground 

ancillary data.

These two hypothesis will be examined in the following sections and subsections using 

regression analysis techniques, including simple linear and non-linear regression, multiple 

and stepwise regression. The study serves two major purposes: (1) to determine the 

predictor variables (spectral bands) for site quality estimation; and (2) to derive prediction 

models to estimate the site quality from imagery data and ground ancillary data. The 

investigations in the earlier sections demonstrated that the highest correlations were 

associated with HI and SI measures of site quality and infrared bands, thus the emphasis 

of regression analysis will be on the combinations of these two variables. HI and SI are, 

therefore, used as the major indicators (dependent variables) of site quality in the 

regression analysis. Table 7.14 summarises the basic statistics of HI and SI. All variables 

and their combinations (or transformations) used in correlation and canonical correlation 

analysis were entered into the pool of variables to be regressed against SQ. The 

performances of each regression model were evaluated by the model correlations (r and 

r2) and errors (MAE and RMSE) in the following subsections.
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Table 7.14 The basic statistics of SQ indices HI (m/yr) and SI (m).
■——_  S ta n s  m e  s

SQ
M ea su res  — .

M ean SD SE C V M in M ax R ange

SI 19.12 3.35 0.44 17.53 13.88 26.68 12.80
HI 0.89 0.20 0.03 21.99 0.57 1.32 0.75

7.3.3.2 Scatter Plots

The relationships between SQ (HI and SI) and the spectral values of the sixty sample 

points are shown in Figures 7.1 to 7.3. It can be seen that only the NIR bands (XS3 and 

TM4) showed a regular (approximately linear) change with SI and HI. The regular 

change also occurred between the HI and SI and NIR-related band linear combinations 

(such as PC images and vegetation indices) (Figures 7.4 and 7.5). The plots indicate that 

the relationships between SQ and spectral reflectance, the NIR band in particular, can be 

described by linear regression models (see below).

7.3.3.3 Simple Regression

The regression modelling began with simple regression analysis between SQ (HI and HI) 

and NIR and NIR-related band combinations (mainly PC2, AVI, RVI, NIR-Green or 

NIR/Green). In addition to simple regression analysis, several non-linear functions used 

in Chapter 5 were also tried in regression analysis, but the results were not as good as 

those from linear models. The reason is that most of the sample plots were located in the 

stands between 9 to 32 years of age, in which period the spectral reflectance values 

decreased (see Chapter 5 and 6). Therefore the regression analysis was concentrated on 

the linear model. In addition, various band transformations were also regressed against 

SQ indices. The results presented below are those with better performances (i.e. higher 

correlations and lower errors).

As shown in Table 7.15, all models were strongly significant at the 0.001 level. All F- 

values were 4 times larger than the critical value. The coefficients of determination (r2) 

ranged from 0.62 to 0.77 for the summer images and 0.32 to 0.49 for the autumn image. 

The summer images also showed lower estimate errors (MAE and RMSE). NIR and/or 

NIR related band combinations and principal component transformation could improve 

the fitting. The best model (with the highest correlations and the lowest RMSE and MAE) 

was obtained using the PC2 (greenness). This may be attributable to the better 

information content of PC2 which is believed to be associated with the quality and 

quantity of vegetation (Lodwick 1979; and Kauth and Thomas 1976) (see Chapter 5).
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Figure 7.1 Relationships between SQ indices (SI (m) and HI (m/yr)) and SPOT band data.
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Figure 7.2 The relationships between SQ indices (SI (m) and HI (m/yr)) and the February-9 TM band data.
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Figure 7.3 Relationships between SQ indices (SI (m) and HI (m/yr)) and the April-21 TM band data.
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Table 7.15 Evaluation of simple regression model performance for predicting radiata pine plantation site 
___________ quality (HI and SI) using single band data1, n = 60._______________________________________

Dependent
Variables

Independent
Variables

a b MAE RMSE ri2 r ; F-values

The January-24 SPOT Image
XS3 -0.6643 0.0317 ±0.0867 0.1163 0.6466 0.6404 104.270**’

HI AVI 0.0843 0.0302 ±0.0883 0.1043 0.7159 0.7109 143.606**’
XS3-1 0.2840 0.0341 ±0.0780 0.0996 0.7406 0.7361 162.774**’
PC2 0.9068 0.1741 ±0.0724 0.0936 0.7711 0.7671 192.070**’
XS3 -7.3429 0.5370 ±1.6176 2.0732 0.6232 0.6166 94 26***

SI AVI 5.9123 0.4901 ±1.3308 2.0416 0.6346 0.6282 98.98***
XS3-1 9.0641 0.5598 ±1.2504 1.9431 0.6690 0.6632 115.20***
PC2 19.2845 2.8695 ±1.2199 1.8414 0.7027 0.6975 134.74***

The February-9 TM Data
TM4 -0.4236 0.0253 ±0.0827 0.1091 0.7023 0.6971 134.45***

HI AVI 0.2548 0.0237 ±0.0873 0.1080 0.7081 0.7030 138.26***
PC2 0.8970 0.0263 ±0.0763 0.1034 0.7315 0.7268 155.31***
TM4 -2.87826 0.4232 ±1.5277 1.9130 0.6814 0.6760 121.90***

SI AVI 8.8467 0.3816 ±1.4799 2.0423 0.6369 0.6305 99.96***
PC2 19.1746 0.4354 ±1.3499 1.8715 0.6951 0.6897 129.92***

The April-21 TM data
TM4 -0.0113 0.0293 ±0.1225 0.1451 0.3540 0.3425 30.69***

HI AVI 0.2222 0.0353 ±0.1086 0.1347 0.4919 0.4825 54.14***
PC2 0.8964 0.0324 ±0.1157 0.1457 0.4049 0.3943 38.11***
TM4 4.0852 0.4843 ±2.0038 2.6983 0.3223 0.3102 26.64**

SI AVI 7.9468 11.59 ±1.8240 2.6117 0.4480 0.4381 45.45***
PC2 19.1119 0.5204 ±2.0038 2.6504 0.3461 0.3345 38.11***

1 The results listed in this table are only those with better correlations (r2) with HI and SI. RMSE - Root mean 
square error; MAE - mean absolute error; rj - Adjusted r2, *** means that the models are significant at 0.001
significance levels, a - intercept; b - slope (regression coefficient)

The differences between the NIR and visible bands (i.e. NIR-Red (AVI) and NIR-Green) 

provided better SQ estimates than the original reflectance values. As discussed in Chapter 

5, the spectral values in the visible bands (green and red) exhibited a non-linear inverse 

(inverse-J shape) change with stand age, while the NIR band showed a linear relationship 

with stand growth. Due to this difference, the differences between the NIR and visible 

bands may be able to highlight the subtle variations of the stands in different growth 

conditions (site quality). Better site quality usually leads a larger canopy and more 

needles, and therefore higher spectral absorption as well as lower spectral reflectance as 

the reflectance in the red and green waveband regions is inversely proportional to the 

amount of chlorophyll present in the tree canopy (Colwell 1974; Tucker 1977 and 1979; 

and Gausman et al. 1976).

Various “between-image” combinations were regressed against the SQ indices. Table 

7.16 presents the results of simple regression analysis with the better model performances 

from the “between-image” combinations - D4 (2TM4-4TM4), M4 ((2TM4+4TM4)/2), 

MAVI (M4-M2) and the second principal component image of the two seasons’ TM 

data together (14 bands). All these “between-image” combined images showed lower 

correlations, lower accuracy of estimate and larger estimate errors (MAE and RMSE) 

than those from the original band data. In comparison, the difference images showed
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slightly better results than the mean images. Because the difference and mean images 

were computed from only two growing seasons in this work, it can not be concluded that 

the combination of multi-date (growing seasons) images can not improve the ability to 

detect change of stand structure and site quality.

Table 7.16 Results of simple regression analysis between SQ indices (HI and SI) and “between-image” 
combinations. The model parameters are the same as in Table 7.15.

D ependent
Variables

Independent
V ariables

a b M AE RM SE r2 r* F -values

D4 0.1793 0.0338 ±0.1003 0.1251 0.6001 0.5929 84.02***
HI M4 -0.4189 0.0316 ±0.0917 0.1269 0.5885 0.5812 80.09***

MAVI 0.1604 0.0319 ±0.0928 0.1161 0.6555 0.6493 106.54***
PC2 0.8993 0.0233 ±0.0866 0.1086 0.6985 0.6931 i29.74***
D4 7.1896 0.5657 ±1.6692 2.1884 0.5780 0.5704 76.70***

SI M4 -2.9483 0.5323 ±1.7716 2.1982 0.5742 0.5666 75.51***
MAVI 7.1439 0.5268 ±1.5774 2.1205 0.6038 0.5967 85.34***
PC2 19.2234 0.3878 ±1.4875 1.9356 0.6698 0.6639 113.62***

*** means that the models are significant at 0.001 significance levels. MAVI - AVI of mean and difference images

7.3.3.4 Multiple Regression with Spectral Data Alone

Simple regression analyses undertaken in the previous sections showed that NIR and/or 

NIR-related band combinations produced the best estimate of SQ with a single spectral 

variable, explaining about 35% to 77% of the total variances. Further study focussed on 

examining how much greater a contribution to SQ estimation could be obtained when 

more bands and site variables were introduced, and which variables (or band 

combinations) were best for SQ estimation. These questions were addressed in the 

following by using multiple and stepwise regression analysis techniques.

All bands of each single date image were First used in the multiple regression analysis to 

evaluate their multiple contributions to SQ (Table 7.17). For SPOT data, the three bands 

together provided an estimate of 0.90±0.07 (MAE) m/year for HI (RMSE = 0.093, r2 = 

0.78), and 19.12±1.2 m for SI (RMSE = 1.9 m, r2 = 0.73). Elimination of the red band 

(XS2) by stepwise regression analysis did not change the correlations and the error of 

estimates (MAE and RMSE). This indicates that the green and NIR bands provided 

almost all information on SQ.

An approximately equal correlation and estimate were also obtained from the February-9 

TM image (Table 7.17). By stepwise regression analysis significance level, only 2TM4 

and 2TM5 entered into the model, but the results were almost the same as those from all 

seven bands. This showed that the NIR and MIR bands of the TM data provided the most 

information on SQ, while the other five bands provided very little information and their 

elimination could not significantly reduce the estimate of site quality.
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Table 7.17 Results of multiple and stepwise regression analyses between SQ indices (HI and SI) and the
original band data. The significant level (p) selected for entering variables in stepwise 
regression was 0.15.__________________________________________________________

Dependent
Variables

Data Bands D F M AE RM SE r2 ra

SPOT
XS1, XS2, XS3 (3, 57) ±0.0711 0.0929 0.7823 0.7704
XS1, XS3 {p -0 .1 5 ) (2. 58) ±0.0713 0.0921 0 .7823 0.7745

2TM
A ll 2TM  bands 
2TM4, 2TM 5 (p -0 .1 5 )

(7, 53) 
(2, 58)

±0.0697
±0.0711

0.0960
0.0954

0.7893
0.7763

0.7650
0.7684

HI 2TM2, 2TM3, 2TM 4 (3, 57) ±0.0760 0.0975 0.7704 0.7578

4TM
A ll 4TM  bands 
4TM4, 4TM 5 (p= 0 .1 5 )

(7, 53) 
(2, 58)

±0.0963
±0.1086

0.1374
0.1341

0.5181
0.5052

0.4614
0.4872

2TM2, 2TM3, 2TM4 (3, 57) ±0.1072 0.1342 0 .5136 0.4866

SPOT
XS1, XS2, XS3 (3, 57) ±1.3821 1.8005 0.7258 0.7108
XS1, XS3 (P = 0 .1 5 ) (2, 58) ±1.3808 1.7895 0.7242 0.7143

SI
2TM

A ll 2TM  bands 
2TM4, 2TM 7 (p -0 .1 5 )

(7. 53) 
(2, 58)

±1.3297
±1.4016

1.8242
1.7773

0.7357
0.7298

0.7052
0.7202

2TM2, 2TM3, 2TM 4 (3, 57) ±1.4741 1.8211 0.7214 0.7062

4TM
A ll 4TM  bands 
4TM 4.4TM 5 (p -0 .1 5 )

(7, 53) 
(2, 58)

±1.8061
±1.9565

2.4854
2.4292

0.4764
0.4606

0.4148
0.4410

2TM2, 2TM3, 2TM 4 (3. 57) ±1.9444 2.4296 0.4702 0.4407

For the autumn image, all seven bands together explained only about 51% or less of the 

site quality variation. The errors of the estimate were also much larger than those from 

summer images. The best bands entered into the model in stepwise regression were the 

red (4TM3) and the NIR bands (4TM4).

Compared with the results of the simple regression analysis using the NIR band alone 

(Table 7.15), the introduction of the visible and/or middle and thermal bands (for TM 

images) increased the correlations (r2) by about 4 to 14%. In particular, the addition of 

the green band for SPOT data and the MIR band for TM data can significantly improve 

the correlation and model estimate of SQ. Comparing the equivalent spectral bands (i.e. 

XS1, XS2, XS3, TM2, TM3, TM4), SPOT data provided a better estimate of SQ (Table 
7.17).

7.3.3.5 Regression Modelling with Spectral and Site Variables

Topographic variables (i.e. altitude (ALT), slope (SLP), and coded aspect (ASP) and 

topographic positions (TP)) were used in multiple regression analysis for determining 

their contributions to site quality (see Table 7.18). The multiple correlation was relatively 

low (r2 = 0.24 for HI, and 0.29 for SI). The introduction of soil variables (the depth of A 

and B horizons-AB, and gravel content-GC) did not improve the fitting. In comparison, 

the topographic variables showed more contributions to SI than to HI. This confirmed the 

results obtained in correlation analysis (Tables 7.8; Section 7.3.1.6) and canonical 

correlation analysis between SQ and site variables (Table 7.13a-b; Section 7.3.2.4) in 

which SI was more sensitive to site variables, especially ALT and TP, than HI.
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variables (i.e. ALT, SLP, ASP and TP defined in Chapter 4).
Dependent
Variables

Variables entering the 
regression m odels

D F M A E R M S E r2 rl
ALT, SLP, A SP , a n d  T P (4, 56) ±0.1300 0.1815 0.2446 0.1238
ALT, SLP, A SP , TP, AB , a n d  G C (6, 54) ±0.1299 0.1852 0.2450 0.0877

HI XS1, XS3, T o p o g ra p h ic  v a r ia b le s (10, 50) ±0.0655 0.0908 0.8186 0.7809
2T M 4, 2T M 5, to p o g ra p h ic  v a r ia b le s (10. 50) ±0.0583 0.0853 0.8468 0.8158
4T M 4, 4T M 5, to p o g ra p h ic  v a r ia b le s (10, 50) ±0.0882 0.1295 0.6055 0.5216
ALT, SLP, A SP , a n d  T P (4, 56) ±2.2386 3.0300 0.2939 0.1810
ALT, SLP, A SP , TP, AB , a n d  G C (6, 54) ±2.2326 3.0915 0.2944 0.1474

SI XS1, X S3, T o p o g ra p h ic  v a r ia b le s (10, 50) ±1.1733 1.6691 0.7943 0.7515
2TM 4, 2T M 5, to p o g ra p h ic  v a r ia b le s (10. 50) ±1.1054 1.5410 0.8259 0.7896
4TM 4, 4T M 5, to p o g ra p h ic  v a r ia b le s (10, 50) ±1.4765 2.2148 0.6168 0.5353

Further analyses were made to examine the contributions of topographic variables to the 

estimate of SQ when integrating them with the spectral bands. The multiple regression 

analyses were undertaken by adding the topographic variables to the spectral bands with 

better contributions to the SQ estimation (see Table 7.17). As shown in Table 7.18, the 

integration of the topographic variables with XS1 and XS3 of the SPOT image did not 

improve their correlations with HI. This can be explained by the low correlations between 

HI and site variables. However, the errors of the estimates (RMSE) were smaller than that 

from XS1 and XS3 alone. The introduction of topographic variables could significantly 

improve the regression model Fitting for SI, with correlations (ra2) increasing from 0.71 to 

0.79. The errors of estimate (MAE) were also much smaller, reducing from ±1.38 m to 

±1.17 m.

When applying the topographic variables to the TM-derived regression models, the 

estimate of SQ was significantly improved (Table 7.18). For example, the topographic 

variables increased the correlations with HI from 0.77 to 0.82, and with SI from 0.72 to 

0.79 for the February-9 TM image. The same was true for the April-21 TM image. The 

integration of topographic variables with the 4TM3 and 4TM4 increased the explanation 

of the variance (r2) from 48.72% to 52.16% for HI and 44.10% to 53.43% for SI (Table 

7.17 and 18). The addition of topographic variables to the TM data also gave a greater 

reduction of the error of the estimates than to SPOT data.

As reviewed in the previous chapters, spectral radiance measurements of canopies are 

influenced by live biomass, dead biomass, moisture content, canopy geometry, soil 

background, sun angle and many other factors (Hardisky et al. 1984, Häme 1991). The 

introduction of ground ancillary data, topographic variables in particular, may 

compensate for the effects of physical characteristics such as aspect and slope on spectral 

reflectance.
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The differences in variance contributions and errors of the estimates (MAE and RMSE) 

suggest that topographic variables have more effect on the spectral reflectance of the TM 

image than the SPOT image. The ancillary data may not be very important when using 

SPOT images, but may be very helpful in improving estimates of site quality and yield 

when using TM images.

7.3.3.6 Regression Modelling with Multi-temporal and Multi-sensor Data and Site 
Variables

Studies reported in this thesis have shown that the information content of spectral bands 

of imagery data changes over time (e.g. growing seasons). A further assumption is that 

the combined images from multi-temporal data may provide better information on SQ 

and therefore may be able to improve the estimate of SQ. This assumption was tested by 

stepwise regression using all raw spectral bands and various band combinations. The best 

bands and/or band combinations entering the regression models and the results of their 

inclusion are summarised in Table 7.19.

Table 7.19 Performance of several best regression models (a - h ) relating SQ indices (HI and SI) to the
multi-temporal and multi-sensor data and site variables.

Dependent
Variables

Models Variables entering the 
regression models

M A E R M S E r2 r a r 2
op

HI

a XS1, X S3, 2TM 4, 2T M 5, 4T M 4 ±0.0630 0.0823 0.8356 0.8201 0.8105

b
X S1, X S3, 2TM 4, 2TM 5, 4T M 4  
a n d  T o p o g ra p h ic  V a ria b les

±0.0536 0.0756 0.8820 0.8479 0.8820

c
X S1, X S3-1 , 2T M 4-2 , 2T M 3 /5  
4 T M 4/2

±0.0631 0.0806 0.8420 0.8270 0.8420

d
X S1, X S3-1 , 2T M 4-2 , 2T M 3 /5  
4T M 4/2 , & T o p o g ra p h ic  V a ria b les

±0.0532 0.0740 0.8871 0.8545 0.8871

SI

e X S1, X S3, 2T M 4, 2TM 5, 4T M 4 ±1.1343 1.4983 0.8123 0.7943 0.8123

f
XS1, X S3, 2TM 4, 2TM 5, 4T M 4  
a n d  T o p o g ra p h ic  V a ria b les

±0.9914 1.4047 0.8904 0.8192 0.8604

8
X S 3-1 , 2T M 4/2, 2T M 4-2 , 2T M 3 /5  
4T M 4-2

±1.1322 1.4859 0.8154 0.7977 0.8154

h
X S 3-1 , 2T M 4/2 , 2T M 4-2 , 2 T M 3 /5  
4T M 4-2 , & T o p o g ra p h ic  V a ria b les

±0.9551 1.3649 0.8682 0.8293 0.8682

2
T is the correlation between observed and model-predicted values.

Compared with the results from the single date images (Tables 7.15-7.17), the bands 

selected from multi-temporal images provided better estimates. The correlations increased 

by about 5% from summer images and about 30% for the autumn image. The errors of 

the estimates (MAE and RMSE) were also lower than those from the single date images. 

Figure 7.6 shows the relationships between the observed and model-estimated SQ (HI and 

SI). All estimates of SQ showed 81% or higher agreements with the actual values (Table 

7.19).
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Mean Annual Increment in Height (HI, m/yr) Site Index (SI, m)

Model-e

y = 3.5784 + 0.8123x 
R-squared = 0.81

Observed SI (m)

Modei-a

y = 0.1480 + 0.8354x 
R-squared = 0.84

Observed HI (m/yr)

Model-f

y = 3.1655 + 0.834Ox 
R-squared = 0.84

Observed SI (m)

Modei-b

y = 0.1303 + 0.8553x 
R-squared = 0.86

Observed HI (m/yr)

Model-g

y = 3.5193 + 0.8154x 
R-squared = 0.82

Observed SI (ml

Model-c

y = 0.1423 + 0.8420X 
R-squared -  0.84

Observed HI (m/yr)

Modei-h

y = 2.9985 + 0.84275x 
R-squqred = 0.84

Observed SI (m)

y = 0.1212 + 0.8654x 
R-squared = 0.87

Observed HI (m/yr)

Figure 7.6 Relationships between Observed and model-derived SQ Indices (SI (m) and HI (m/yr)). 
Model-a to Model-h were defined in Table 7.19.



The following two regression models were used for predicting MAI in height (H i) and SI 
(i.e. Model-d and M o d e ll in Table 7.19) and SQ mapping (inserted in Page 202).

Model-d

HI= -0.430826 + 0.007596 • XS1 + 0.022023 • (XS3-XS1) + 0.015383 • (2TM4-2TM2) + 0.610794 •
2TM3
2TM5

0 146646 . 4™ i -  + o 000299 • ALT - 0.001192 • SLP + 0.05731 • ASP2 + 0.004319 • ASP2
4TM2

Model-/?

SI = 0.514259 + 0.253049 • (XS3-XS1) -4.965601 •
7TM4
~ ■—  + 0.553111 • (2TM4-2TM2) +12.324635 •
2TM2

2TM3
2TM5

0.188073 • (4TM4-4TM2) + 0.006883 • ALT - 0.009478 • SLP + 1.19971 • ASP2 + 0.300923 • ASP2
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7.3.4 Site Quality Mapping and Assessment of Accuracy

The two SQ indices, HI and SI, which were best related to the independent variables, 

were selected for site classification and mapping. The pixel-based SQ was computed 

using the models listed in Table 7.19 with or without the site variables. The SQ classes 

were then grouped according to the SQ class standard set by Lewis et al. (1976) (see 

Table 3.2). Figure 7.7 shows the pixel (area) distribution (percentage frequency) of the 

model-estimated SQ over the study area (Model-d for HI and Model-/! for SI). It can be 

seen that the site quality of most of the study area was poorer than SQ class V (cf VI: SI 

= 27; and VII: SI = 24). In order to reflect the differences of the site quality in the study 

area, the model-estimated SQ was grouped into four site quality classes K1 to K4 (Table 

7.20). These four site quality classes were displayed as a classification map showing the 

classes in blue, green, red and yellow respectively (see Figures 7.8-15).
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Mean annual Increment of tree height (HI: m/yr)

Figure 7.7 Distribution of site quality of the radiata pine plantation sites in the study area: Mean annual 
increment in height (HI) (b) and site index (SI) (a).

Table 7.20 Site quality classes of the radiata pine plantation sites.

Site Classes Site Index Limits (m) Mean Annual Increment 
Limits (m/yr)

Colours in the SQ maps 
(Figure 7.10-17)

K-l 25: >24 1.30: >1.10 Yellow
K-2 22: 21 - 23 1.10: 0 .90-1.10 Red
K-3 19: 18-20 0.90: 0 .75-0.90 Green
K-4 16: < 17 0.70: < 0.75 Blue
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Figure 7.8 Site quality classes based on HI (m/yr) estimated from model-a (see Table 7.19 for details).

HI (m /yr)

■I < 0 . 7 5
H 0 75 - 0 90
Ü 0.90 - 1.10

>  1.10

Figure 7.9 Site quality classes based on HI (m/yr) estimated from model-/? (see Table 7.19 for details).
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Figure 7.10 Site quality classes based on HI (m/yr) estimated from model-c (see Table 7.19 for details).

H I (m /yr)

■1 < 0 .7 5
■1 0.75 - 0.90
■ 0 90 - 1.10

>  1.10

Figure 7.11 Site quality classes based on HI (m/yr) estimated from model-*/ (see Table 7.19 for details).
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Figure 7.12 Site quality classes based on SI (m) estimated from model-e (see Table 7.19 for details).

Figure 7.13 Site quality classes based on SI (m) estimated from model-/(see Table 7.19 for details).
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Figure 7.14 Site quality classes based on SI (m) estimated from model-g (see Table 7.19 for details).

Figure 7.15 Site quality classes based on SI (m) estimated from model-A (see Table 7.19 for details).



The SQ data predicted from Model h in Table 7.19 were used for accuracy assessment 

because it had the highest r2 and lowest estimation errors (MAE and RMSE) (attached to 

the first sentence of Paragraph 2 in Page 207).
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The false colour maps of SQ classes (Figures 7.8-15) visually show that, in general, the 

pixels with better SQ (i.e. K-l in yellow and K-2 in red) were usually located at the lower 

altitude and topographic positions.. The areas at lower altitudes (Figure 4.4) and with 

southeasterly aspects (see Figure 4.6) tend to show the better site quality. The area located 

on down-slopes (TP3), gully and/or drainage line positions (TP5) (see Table 4.1 in 

Chapter 4) tend to show the better site quality, consistent with indications that 

topographic position and altitude generally have more effect on the growth of radiata pine 

over the study area than other site variables (see Section 7.3.2.4).

The accuracy of the model-estimated SQ classes were further evaluated by comparing 

them with the SQ classes calculated from recently-measured (1993 and 1994) stand top 

height of ninety-eight plots in some compartments1. This was done by entering the 

model-estimated (i.e. Model-ft) and actual SQ classes into a confusion table (error matrix) 

for the four SQ classes considered (see Table 7.21). The overall plot-based mapping 

accuracy for the four SQ classes was 68%. In general, areas with the stands of 15 years or 

older showed better estimates, while the SQ in younger stands (<10 years of age in 

particular) were usually under-estimated. For instance, the SQ class K4 (in blue colour of 

Figures 10 to 17) was usually located in the recently-planted stands (< 10 years of age). 

This does not mean that SQ of these stands (compartments) are poor.

Table 7.21 Error matrix for actual and model-derived (Model-h) SQ classes.

Overall mapping accuracy: 68.37%

7.3.5 Selection of Variables for Site Quality Estimation

The correlation and regression analyses between SQ and spectral data in this chapter 

further indicate that, under similar data-recording conditions (such as in the same growing 

seasons), SPOT and TM data have a similar capability in SQ estimation. Using the NIR 

band and/or the NIR-related band combinations alone, the simple regression models could 

explain about 62% to 77% of total variation in site quality (Table 7.15). The NIR is 

therefore the first choice for SQ evaluation. For SPOT data, XS2 (red) and PS bands 

contributed almost nothing to the SQ estimate and can be considered negligible. For TM

1 The stand top height data were provided by Mr D. Johnston, the Stromlo Forests, ACT.



This study achieved an accuracy of 68% for the four subclasses of SQ and 82% when 

combined into two actual SQ classes (SQ VI and SQ VII). Although these accuracies are 

under the 85% standard of Anderson level II, they should be acceptable for SQ class 

mapping on such a small scale and covering a very restricted range of SQ classes (mainly 

SQ VI and VII). Anderson’s standard itself is also very arbitrary. More accurate results 

may be expected from this methodology if it were applied to large areas covering a wide 

range of SQ classes (attached to Page 208, Paragraph 1).
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data, in addition to the NIR band, the MIR bands can provide good information on stand 

variables and can be considered as the second band choice. In addition, the green and red 

bands can be useful in improving SQ estimates as their combinations with the NIR band 

(such as various vegetation indices) can usually improve correlations with stand variables 

and SQ indices. The Blue (TM1) and TIR (TM6) bands of TM data can be considered of 

negligible value as they did not show any significant correlation with SQ.

7.4 SUMMARY AND CONCLUSION

This chapter has focused on deriving numerous models for combining the satellite 

remotely sensed images acquired from different sensor systems in different growth 

seasons with ground ancillary data to estimate site quality. The relationships of the site 

quality and spectral data have also been evaluated. The investigations served (1) to clarify 

the empirical relationships between the images and site quality through the analysis 

techniques of correlation, canonical correlation, principal component transformations and 

regression; (2) to verify the best variable combinations for estimating site quality and 

yield expressed by site index and/or mean annual increment by these analysis techniques; 

and (3) to develop a methodology for evaluating forest productivity on a local forest area 

scale. The methodology and procedures developed in this chapter may be appropriate for 

other forest ecological studies. The results obtained in this study suggest that forest site 

quality can be predicted by means of geographic information systems because site 

variables can be generated by computer or from satellite remote sensors.

The major conclusions are summarised as follows:

• Localised site quality can be estimated with reasonable accuracy with both SPOT 

and TM data. The accuracy can be significantly improved when integrating 

spectral bands with site variables.

• The second principal component (greenness) provides better information on site 

quality than the raw single band data, while the first principal component 

(brightness) is better correlated with mean annual increment of volume (VI).

• The “between-image” band combinations do not necessarily improve the 

information content of site quality, but the “within-image” band combinations do 

provide better estimates of site quality than the raw individual bands. In particular, 

the difference images between NIR and Red or Green bands are superior to other 

linear combinations for estimating site quality.
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• The time images are recorded significantly affects the amount of information 

about SQ. Images obtained in the summer growth season may be better predictors 

of site quality. When recording in the same growing seasons, both SPOT and 

Landsat TM systems provide similar accuracy of SQ estimate.

• The integration of multi-temporal and/or multi-sensor images provides better 

information on forest stand structure and SQ than the data from single date or 

single sensor system.

As stated in Chapter 6, because of the extreme heterogeneity of forest stands at the 30x30 

m or 20x20 m resolution and the many abiotic and biotic factors acting on a forest 

ecosystem, a high degree of predictability for a single pixel probably can not be expected. 

In addition, low data ranges also limit the sensitivity of spectral data to the subtle 

variations of SQ in the complex terrain. Higher resolution data (such as AVIRIS) may be 

helpful to improve the accuracy of SQ estimate for future localised SQ studies.



Chapter 8

Summary and Conclusion

The basic objectives of this study were to determine whether remotely-sensed imagery, either 

directly or indirectly by modelling, can give meaningful site quality information, and to 

develop ways of using satellite remotely-sensed imagery and ancillary data to estimate forest 

growth and site quality at a local scale. The study was concerned with the methodology and 

precision of integrating satellite imagery from different growing seasons and remote sensors 

with ground-collected and computer-generated biogeographical data for a localised pine 

plantation forest site.

The study has extensively explored relationships between satellite data and stand variables 

and SQ with several statistical analysis techniques including correlation, clustering, PCA, 

CCA and regression modelling. To evaluate the sensitivity of spectral data to stand growth, 

the study tested the relationships between spectral characteristics and stand ages using 

statistical tests, correlation and regression analyses (Chapter 5). The information content of 

spectral bands on forest stands was determined by PCA. The ability of the spectral data to 

differentiate variation in stand characteristics due to differences in stand age was evaluated 

using cluster analysis. The capability of spectral data in differentiating stand age classes was 

determined by clustering analysis. The information content of spectral data on stand variables 

and SQ transformed to the first two PCs by PCA. CCA was successfully used to examine the 

relationships between variable sets. Like PCA, it could reduce the redundancy within a set of



211

variables by a linear combination of within-set variables and determine the most correlated
Ou

variables. CCA could be seen asjjuseful technique in understanding the overlap of information

content in two or more variable groups. For example, by this procedure, TH and Age were
ip-

found to be most correlated with^NIR band, while stand volume and BA were found to be 

most correlated with MIR bands. In practice, CCA could be used directly for determining the 

most important variables or spectral bands. The several SQ prediction models could then be 

built with the variables determined by CCA. Finally, the SQ prediction models were 

developed with regression analysis (simple, multiple and stepwise regression analysis) by 

combining spectral and ancillary data.

The main conclusions drawn from the thesis can be summarised as follows:

1. The change of spectral reflectance values of radiata pine plantation stands over age 

in all bands followed an approximate reverse J-shaped data distribution. For the 

visible and MIR bands, the general change trend was: a sharp decrease between ages 

3 and 5 years; a gentle decrease from ages 5 to 20 years; constant between ages 20 

and 30 years; and a slightly increase after age 30 years. For the NIR band, the 

spectral values increased from age 3 to about 10 years, and then showed an 

approximately linear decrease from age 10 to about 32 years and became constant or 

slightly increased after about age 32 years (see Chapter 5). This means that NIR 

showed a higher correlation with stand age than other bands because it could detect 

the variation of stands in a wider age range.

2. Cluster analysis showed that the spectral values for different ages could be grouped 

into 5-year (or larger) age classes (see Chapter 5).

3. Several bands of TM and SPOT data were found to be statistically significantly 

correlated with stand variables, but the degree of significance of correlation 

coefficients varied from band to band. Due to highly significant correlations between 

spectral data and stand age and top height, based on r2 (see Chapter 6), SI derived 

from a height-age relation could be seen as an appropriate measure to express SQ 

with satellite data, while both SPOT and TM data can be used to develop models for 

estimating SQ (see Chapter 7).

4. The SQ at a local scale cannot be confidently predicted either from topographic and 

soil variables or satellite data alone (adjusted r < 15% in Tables 7.18). However the 

correlations (r ) can be considerably improved to about 85% by incorporating
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satellite data with the site variables (Table 7.19). This result suggests that in areas 

with highly variable terrain and/or soil conditions, the integration of satellite data 

with site variables is essential for the improvement of estimation accuracy o f SQ.

5. Based on the results of correlation analysis, the NIR and/or the NIR related band 

combinations were the best predictors of top height and site quality, while the MIR 

bands were better predictors of stand volume than of other stand variables. The best 

band combinations for estimating radiata pine site quality were the NIR and green 

bands for SPOT data, and the NIR and the MIR bands for TM data. The 

panchromatic (PS) band of SPOT data and the blue (TM1) and the TIR (TM6) 

bands of TM data were less useful for estimating stand variables.

6. Based on correlation coefficients (r) r2, MAE and/or RMSE (see Tables 6.6, 7.4, 

7.17), for the same stand and environmental conditions as well as similar data 

recording conditions (for instance, recorded in the same growing season), SPOT and 

TM data showed nearly equal capability of estimating stand variables and SQ. TM 

data, however, may be more useful in assessing some stand variables which show 

lower correlation with the NIR band, since the MIR bands of TM data provided 

useful information on volume and basal area. The spectral data taken from different 

growing seasons showed very different accuracy of estimates of stand variables and 

site quality. For radiata pine, the summer images showed better results than the 

autumn image because they were more correlated with stand variables and SQ.

7. When multi-images are available, the band combinations from the multi-images can 

improve the correlations (r2) between spectral values and site quality (see Table 

7.19).

8. The information on stand structure and site quality of all spectral bands can be 

extracted by the first two PCs (see Chapter 5). The PC2 (greenness) was found to 

be a better predictor of stand variables and SQ than the raw band data.

The narrow range of the reflectance values of satellite data over the forest stands limited the 

sensitivity of the data to the subtle differences in stand data. Because there is a high 

heterogeneity of forest stands at the 30 x 30m or 20 x 20m pixel size, higher spatial and 

radiometric resolution data may be necessary to improve the accuracy of the estimate . In 

addition, when available, the introduction of more site variables such as geological, climatic,
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and vegetation factors to estimating models of site quality may be worthy of farther 

investigation.

No attempts were made to normalise the image because it was not considered that this would 

significantly improve the results since the data analyses in this study

were mainly on a single date image basis. Further study, especially in a regional scale, may be 

needed to confirm whether or not the normalisation of multiple images can improve the 

results.

The techniques applied and conclusions reached are applicable to the utilisation of both 

SPOT and TM data, especially for forest ecological studies. In using the methodology 

developed in this study to evaluate forest site productivity, the bands in Red, NIR and MIR 

bands of TM or SPOT images could be the optimal option of spectral bands as they contain 

most information on vegetation. CCA can be directly used to determine their association 

with stand variables, while regression analysis can be used to develop models for SQ 

estimate. By incorporating some ancillary data such as topography, the accuracy of estimate 

can be improved.

The investigation was conducted at a local scale; no attempt was made to separate the tree 

height or SQ into classes in data analysis. The reason is that the study area covered only a 

small range of SQ classes (i.e. SQ VI - VII). For future study in a regional scale, it might be 

better to develop SQ models by separating height or SQ into classes to improve the accuracy 

o f the SQ estimate.
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Appendix B

Point Sampling Data Sheet I: Stand variables

Point No: CPTNo.: Sign. Class: Date / /

Vegetation Type: Age: Coverage (%):

Slope: Elevation:
Point Location:

Aspect: Microrelief:

Understory : Coverage (%):
Condition of Top so il:

Field Assessment of point:

Band used: BAF:

No.
Diameter (cm)

No.
Diameter (cm)

IN B/L IN B/L

1 13

2 14

3 15

4 16

5 17

6 18

7 19

8 20

9 21

10 22

11 23

12 24
* Sign. Class - signature classes prodi from SPOT data

classification 
BAF - Basal Area Factor

No.
Top

Height
(m)

1

2

3

4

5

6

Mean

Basal Area / ha: 

Dominant Height: 

BA Per Tree:

Stem NoTha: 

Mean Diameter : 

Volume (cu m/ha):
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