10 research outputs found

    Building extraction for 3D city modelling using airborne laser scanning data and high-resolution aerial photo

    Get PDF
    Light detection and ranging (LiDAR) technology has become a standard tool for three-dimensional mapping because it offers fast rate of data acquisition with unprecedented level of accuracy. This study presents an approach to accurately extract and model building in three-dimensional space from airborne laser scanning data acquired over Universiti Putra Malaysia in 2015. First, the point cloud was classified into ground and non-ground xyz points. The ground points was used to generate digital terrain model (DTM) while digital surface model (DSM) was  produced from the entire point cloud. From DSM and DTM, we obtained normalise DSM (nDSM) representing the height of features above the terrain surface.  Thereafter, the DSM, DTM, nDSM, laser intensity image and orthophoto were  combined as a single data file by layer stacking. After integrating the data, it was segmented into image objects using Object Based Image Analysis (OBIA) and subsequently, the resulting image object classified into four land cover classes: building, road, waterbody and pavement. Assessment of the classification accuracy produced overall accuracy and Kappa coefficient of 94.02% and 0.88 respectively. Then the extracted building footprints from the building class were further processed to generate 3D model. The model provides 3D visual perception of the spatial pattern of the buildings which is useful for simulating disaster scenario for  emergency management

    Improving tree species classification using UAS multispectral images and texture measures

    Get PDF
    This paper focuses on the use of ultra-high resolution Unmanned Aircraft Systems (UAS) imagery to classify tree species. Multispectral surveys were performed on a plant nursery to produce Digital Surface Models and orthophotos with ground sample distance equal to 0.01 m. Different combinations of multispectral images, multi-temporal data, and texture measures were employed to improve classification. The Grey Level Co-occurrence Matrix was used to generate texture images with different window sizes and procedures for optimal texture features and window size selection were investigated. The study evaluates how methods used in Remote Sensing could be applied on ultra-high resolution UAS images. Combinations of original and derived bands were classified with the Maximum Likelihood algorithm, and Principal Component Analysis was conducted in order to understand the correlation between bands. The study proves that the use of texture features produces a significant increase of the Overall Accuracy, whose values change from 58% to 78% or 87%, depending on components reduction. The improvement given by the introduction of texture measures is highlighted even in terms of User's and Producer's Accuracy. For classification purposes, the inclusion of texture can compensate for difficulties of performing multi-temporal surveys

    Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile

    No full text
    New aerial sensors and platforms (e.g., unmanned aerial vehicles (UAVs)) are capable of providing ultra-high resolution remote sensing data (less than a 30-cm ground sampling distance (GSD)). This type of data is an important source for interpreting sub-building level objects; however, it has not yet been explored. The large-scale differences of urban objects, the high spectral variability and the large perspective effect bring difficulties to the design of descriptive features. Therefore, features representing the spatial information of the objects are essential for dealing with the spectral ambiguity. In this paper, we proposed a dual morphology top-hat profile (DMTHP) using both morphology reconstruction and erosion with different granularities. Due to the high dimensional feature space, we have proposed an adaptive scale selection procedure to reduce the feature dimension according to the training samples. The DMTHP is extracted from both images and Digital Surface Models (DSM) to obtain complimentary information. The random forest classifier is used to classify the features hierarchically. Quantitative experimental results on aerial images with 9-cm and UAV images with 5-cm GSD are performed. Under our experiments, improvements of 10% and 2% in overall accuracy are obtained in comparison with the well-known differential morphological profile (DMP) feature, and superior performance is observed over other tested features. Large format data with 20,000 × 20,000 pixels are used to perform a qualitative experiment using the proposed method, which shows its promising potential. The experiments also demonstrate that the DSM information has greatly enhanced the classification accuracy. In the best case in our experiment, it gives rise to a classification accuracy from 63.93% (spectral information only) to 94.48% (the proposed method)

    Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile

    No full text
    New aerial sensors and platforms (e.g., unmanned aerial vehicles (UAVs)) are capable of providing ultra-high resolution remote sensing data (less than a 30-cm ground sampling distance (GSD)). This type of data is an important source for interpreting sub-building level objects; however, it has not yet been explored. The large-scale differences of urban objects, the high spectral variability and the large perspective effect bring difficulties to the design of descriptive features. Therefore, features representing the spatial information of the objects are essential for dealing with the spectral ambiguity. In this paper, we proposed a dual morphology top-hat profile (DMTHP) using both morphology reconstruction and erosion with different granularities. Due to the high dimensional feature space, we have proposed an adaptive scale selection procedure to reduce the feature dimension according to the training samples. The DMTHP is extracted from both images and Digital Surface Models (DSM) to obtain complimentary information. The random forest classifier is used to classify the features hierarchically. Quantitative experimental results on aerial images with 9-cm and UAV images with 5-cm GSD are performed. Under our experiments, improvements of 10% and 2% in overall accuracy are obtained in comparison with the well-known differential morphological profile (DMP) feature, and superior performance is observed over other tested features. Large format data with 20,000 × 20,000 pixels are used to perform a qualitative experiment using the proposed method, which shows its promising potential. The experiments also demonstrate that the DSM information has greatly enhanced the classification accuracy. In the best case in our experiment, it gives rise to a classification accuracy from 63.93% (spectral information only) to 94.48% (the proposed method)

    An automatic building extraction and regularisation technique using LiDAR point cloud data and orthoimage

    Get PDF
    The development of robust and accurate methods for automatic building detection and regularisation using multisource data continues to be a challenge due to point cloud sparsity, high spectral variability, urban objects differences, surrounding complexity, and data misalignment. To address these challenges, constraints on object's size, height, area, and orientation are generally benefited which adversely affect the detection performance. Often the buildings either small in size, under shadows or partly occluded are ousted during elimination of superfluous objects. To overcome the limitations, a methodology is developed to extract and regularise the buildings using features from point cloud and orthoimagery. The building delineation process is carried out by identifying the candidate building regions and segmenting them into grids. Vegetation elimination, building detection and extraction of their partially occluded parts are achieved by synthesising the point cloud and image data. Finally, the detected buildings are regularised by exploiting the image lines in the building regularisation process. Detection and regularisation processes have been evaluated using the ISPRS benchmark and four Australian data sets which differ in point density (1 to 29 points/m2), building sizes, shadows, terrain, and vegetation. Results indicate that there is 83% to 93% per-area completeness with the correctness of above 95%, demonstrating the robustness of the approach. The absence of over- and many-to-many segmentation errors in the ISPRS data set indicate that the technique has higher per-object accuracy. While compared with six existing similar methods, the proposed detection and regularisation approach performs significantly better on more complex data sets (Australian) in contrast to the ISPRS benchmark, where it does better or equal to the counterparts. © 2016 by the authors

    SBE16 Brazil & Portugal - Sustainable Urban Communities towards a Nearly Zero Impact Built Environment

    Get PDF
    Vol. IThe organizers of SBE 16 Brazil & Portugal were challenged to promote discussions and the development of solutions for an important and, at the same time, very ambitious topic ? Sustainable Urban Communities towards a Nearly Zero Impact Built Environment. This is the main focus of the international conference SBE16 Brazil & Portugal; the only event of the SBE16/17 conference series being held in Latin America, more precisely, in Vitória (Espírito Santo), Brazil, from the 7th until the 9th of September 2016. The conference offered a unique opportunity to bring together researchers from all over the world to share evidence-based knowledge in the field and succeeded to achieve its goals since many contributions from various parts of the planet were received, addressing a tiny part of the problem or trying to perform the difficult task of making the sum of the parts a coherent whole.info:eu-repo/semantics/publishedVersio

    SBE16 Brazil & Portugal - Sustainable Urban Communities towards a Nearly Zero Impact Built Environment

    Get PDF
    Vol. IThe organizers of SBE 16 Brazil & Portugal were challenged to promote discussions and the development of solutions for an important and, at the same time, very ambitious topic ? Sustainable Urban Communities towards a Nearly Zero Impact Built Environment. This is the main focus of the international conference SBE16 Brazil & Portugal; the only event of the SBE16/17 conference series being held in Latin America, more precisely, in Vitória (Espírito Santo), Brazil, from the 7th until the 9th of September 2016. The conference offered a unique opportunity to bring together researchers from all over the world to share evidence-based knowledge in the field and succeeded to achieve its goals since many contributions from various parts of the planet were received, addressing a tiny part of the problem or trying to perform the difficult task of making the sum of the parts a coherent whole.info:eu-repo/semantics/publishedVersio
    corecore