6 research outputs found

    A Deep Learning Approach to Diagnosing Schizophrenia

    Get PDF
    In this article, the investigators present a new method using a deep learning approach to diagnose schizophrenia. In the experiment presented, the investigators have used a secondary dataset provided by National Institutes of Health. The aforementioned experimentation involves analyzing this dataset for existence of schizophrenia using traditional machine learning approaches such as logistic regression, support vector machine, and random forest. This is followed by application of deep learning techniques using three hidden layers in the model. The results obtained indicate that deep learning provides state-of-the-art accuracy in diagnosing schizophrenia. Based on these observations, there is a possibility that deep learning may provide a paradigm shift in diagnosing schizophrenia

    Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson's disease and schizophrenia

    Get PDF
    Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided

    Neuroimaging-based Statistical Machine Learning Classification of Schizophrenia

    Get PDF
    Schizophrenia is a chronic mental disorder that affects millions in the US and tens of millions globally. It is largely believed to be caused by structural and functional differences in the brain, but its exact cause is unknown. Due to the complicated structure of the human brain, its functional connections are often represented by networks. In this thesis, we utilize brain networks generated by functional magnetic resonance imaging (fMRI) data to develop machine learning classification models that can accurately make inferences on single subjects to predict the diagnosis of schizophrenia. We look at a number of local and global connectivity measures derived from correlation-based functional connectivity matrices to do so, using a dataset provided by the National Institute of Health Center of Biomedical Research Excellence (COBRE) and 1000 Functional Connectomes project. Preprocessing and analysis of data is done through the CONN functional connectivity toolbox and MATLAB. Using a subset of subjects and global metrics, we first conduct a preliminary group comparison to determine the existence of a significant difference between patient and control groups with respect to the selected metrics. Then, we investigate machine learning classifiers using k-nearest neighbors and support vector machine models on the full dataset using an expanded set of metrics. Using these models, we observe classification accuracy rates of up to approximately 84% on testing sets using 10-fold cross validation, with sensitivity of approximately 91% and specificity of 77% using a polynomial kernel. This rate is fairly consistent with that of other studies, which generally report classification accuracies of 60-90%. As such, the models we have developed demonstrate the potential of networks in determining the nature of schizophrenia and the uses of statistical learning in the diagnosis of neuropsychiatric disorders.Bachelor of Scienc

    An Overview on Artificial Intelligence Techniques for Diagnosis of Schizophrenia Based on Magnetic Resonance Imaging Modalities: Methods, Challenges, and Future Works

    Full text link
    Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed the temporal and anterior lobes of hippocampus regions of brain get affected by SZ. Also, increased volume of cerebrospinal fluid (CSF) and decreased volume of white and gray matter can be observed due to this disease. The magnetic resonance imaging (MRI) is the popular neuroimaging technique used to explore structural/functional brain abnormalities in SZ disorder owing to its high spatial resolution. Various artificial intelligence (AI) techniques have been employed with advanced image/signal processing methods to obtain accurate diagnosis of SZ. This paper presents a comprehensive overview of studies conducted on automated diagnosis of SZ using MRI modalities. Main findings, various challenges, and future works in developing the automated SZ detection are described in this paper

    Machine Learning Methods for Depression Detection Using SMRI and RS-FMRI Images

    Get PDF
    Major Depression Disorder (MDD) is a common disease throughout the world that negatively influences people’s lives. Early diagnosis of MDD is beneficial, so detecting practical biomarkers would aid clinicians in the diagnosis of MDD. Having an automated method to find biomarkers for MDD is helpful even though it is difficult. The main aim of this research is to generate a method for detecting discriminative features for MDD diagnosis based on Magnetic Resonance Imaging (MRI) data. In this research, representational similarity analysis provides a framework to compare distributed patterns and obtain the similarity/dissimilarity of brain regions. Regions are obtained by either data-driven or model-driven methods such as cubes and atlases respectively. For structural MRI (sMRI) similarity of voxels of spatial cubes (data-driven) are explored. For resting-state fMRI (rs-fMRI) images, the similarity of the time series of both cubes (data-driven) and atlases (model-driven) are examined. Moreover, the similarity method of the inverse of Minimum Covariant Determinant is applied that excludes outliers from patterns and finds conditionally independent regions given the rest of regions. Next, a statistical test that is robust to outliers, identifies discriminative similarity features between two groups of MDDs and controls. Therefore, the key contribution is the way to get discriminative features that include obtaining similarity of voxel’s cubes/time series using the inverse of robust covariance along with the statistical test. The experimental results show that obtaining these features along with the Bernoulli Naïve Bayes classifier achieves superior performance compared with other methods. The performance of our method is verified by applying it to three imbalanced datasets. Moreover, the similarity-based methods are compared with deep learning and regional-based approaches for detecting MDD using either sMRI or rs-fMRI. Given that depression is famous to be a connectivity disorder problem, investigating the similarity of the brain’s regions is valuable to understand the behavior of the brain. The combinations of structural and functional brain similarities are explored to investigate the brain’s structural and functional properties together. Moreover, the combination of data-driven (cube) and model-driven (atlas) similarities of rs-fMRI are looked over to evaluate how they affect the performance of the classifier. Besides, discriminative similarities are visualized for both sMRI and rs-fMRI. Also, to measure the informativeness of a cube, the relationship of atlas regions with overlapping cubes and vise versa (cubes with overlapping regions) are explored and visualized. Furthermore, the relationship between brain structure and function has been probed through common similarities between structural and resting-state functional networks
    corecore