2,187 research outputs found

    SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization

    Get PDF
    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field

    GCC-PHAT based head orientation estimation

    Get PDF
    This work presents a novel two-step algorithm to estimate the orientation of speakers in a smart-room environment equipped with microphone arrays. First the position of the speaker is estimated by the SRP-PHAT algorithm, and the time delay of arrival for each microphone pair with respect to the detected position is computed. In the second step, the value of the cross- correlation at the estimated time delay is used as the fundamen- tal characteristic from where to derive the speaker orientation. The proposed method performs consistently better than other state-of-the-art acoustic techniques with a purposely recorded database and the CLEAR head pose database.Peer ReviewedPostprint (author’s final draft

    Underwater 3D positioning on smart devices

    Full text link
    The emergence of water-proof mobile and wearable devices (e.g., Garmin Descent and Apple Watch Ultra) designed for underwater activities like professional scuba diving, opens up opportunities for underwater networking and localization capabilities on these devices. Here, we present the first underwater acoustic positioning system for smart devices. Unlike conventional systems that use floating buoys as anchors at known locations, we design a system where a dive leader can compute the relative positions of all other divers, without any external infrastructure. Our intuition is that in a well-connected network of devices, if we compute the pairwise distances, we can determine the shape of the network topology. By incorporating orientation information about a single diver who is in the visual range of the leader device, we can then estimate the positions of all the remaining divers, even if they are not within sight. We address various practical problems including detecting erroneous distance estimates, addressing rotational and flipping ambiguities as well as designing a distributed timestamp protocol that scales linearly with the number of devices. Our evaluations show that our distributed system running on underwater deployments of 4-5 commodity smart devices can perform pairwise ranging and localization with median errors of 0.5-0.9 m and 0.9-1.6

    A Geometric Deep Learning Approach to Sound Source Localization and Tracking

    Get PDF
    La localización y el tracking de fuentes sonoras mediante agrupaciones de micrófonos es un problema que, pese a llevar décadas siendo estudiado, permanece abierto. En los últimos años, modelos basados en deep learning han superado el estado del arte que había sido establecido por las técnicas clásicas de procesado de señal, pero estos modelos todavía presentan problemas para trabajar en espacios con alta reverberación o para realizar el tracking de varias fuentes sonoras, especialmente cuando no es posible aplicar ningún criterio para clasificarlas u ordenarlas. En esta tesis, se proponen nuevos modelos que, basados en las ideas del Geometric Deep Learning, suponen un avance en el estado del arte para las situaciones mencionadas previamente.Los modelos propuestos utilizan como entrada mapas de potencia acústica calculados con el algoritmo SRP-PHAT, una técnica clásica de procesado de señal que permite estimar la energía acústica recibida desde cualquier dirección del espacio. Además, también proponemos una nueva técnica para suprimir analíticamente el efecto de una fuente en las funciones de correlación cruzada usadas para calcular los mapas SRP-PHAT. Basándonos en técnicas de banda estrecha, se demuestra que es posible proyectar las funciones de correlación cruzada de las señales capturadas por una agrupación de micrófonos a un espacio ortogonal a una dirección dada simplemente usando una combinación lineal de las funciones originales con retardos temporales. La técnica propuesta puede usarse para diseñar sistemas iterativos de localización de múltiples fuentes que, tras localizar la fuente con mayor energía en las funciones de correlación cruzada o en los mapas SRP-PHAT, la cancelen para poder encontrar otras fuentes que estuvieran enmascaradas por ella.Antes de poder entrenar modelos de deep learning necesitamos datos. Esto, en el caso de seguir un esquema de aprendizaje supervisado, supone un dataset de grabaciones de audio multicanal con la posición de las fuentes etiquetada con precisión. Pese a que existen algunos datasets con estas características, estos no son lo suficientemente extensos para entrenar una red neuronal y los entornos acústicos que incluyen no son suficientemente variados. Para solventar el problema de la falta de datos, presentamos una técnica para simular escenas acústicas con una o varias fuentes en movimiento y, para realizar estas simulaciones conforme son necesarias durante el entrenamiento de la red, presentamos la que es, que sepamos, la primera librería de software libre para la simulación de acústica de salas con aceleración por GPU. Tal y como queda demostrado en esta tesis, esta librería es más de dos órdenes de magnitud más rápida que otras librerías del estado del arte.La idea principal del Geometric Deep Learning es que los modelos deberían compartir las simetrías (i.e. las invarianzas y equivarianzas) de los datos y el problema que se quiere resolver. Para la estimación de la dirección de llegada de una única fuente, el uso de mapas SRP-PHAT como entrada de nuestros modelos hace que la equivarianza a las rotaciones sea obvia y, tras presentar una primera aproximación usando redes convolucionales tridimensionales, presentamos un modelo basado en convoluciones icosaédricas que son capaces de aproximar la equivarianza al grupo continuo de rotaciones esféricas por la equivarianza al grupo discreto de las 60 simetrías del icosaedro. En la tesis se demuestra que los mapas SRP-PHAT son una característica de entrada mucho más robusta que los espectrogramas que se usan típicamente en muchos modelos del estado del arte y que el uso de las convoluciones icosaédricas, combinado con una nueva función softargmax que obtiene una salida de regresión a partir del resultado de una red convolucional interpretándolo como una distribución de probabilidad y calculando su valor esperado, permite reducir enormemente el número de parámetros entrenables de los modelos sin reducir la precisión de sus estimaciones.Cuando queremos realizar el tracking de varias fuentes en movimiento y no podemos aplicar ningún criterio para ordenarlas o clasificarlas, el problema se vuelve invariante a las permutaciones de las estimaciones, por lo que no podemos compararlas directamente con las etiquetas de referencia dado que no podemos esperar que sigan el mismo orden. Este tipo de modelos se han entrenado típicamente usando estrategias de entrenamiento invariantes a las permutaciones, pero estas normalmente no penalizan los cambios de identidad por lo que los modelos entrenados con ellas no mantienen la identidad de cada fuente de forma consistente. Para resolver este problema, en esta tesis proponemos una nueva estrategia de entrenamiento, a la que llamamos sliding permutation invariant training (sPIT), que es capaz de optimizar todas las características que podemos esperar de un sistema de tracking de múltiples fuentes: la precisión de sus estimaciones de dirección de llegada, la exactitud de sus detecciones y la consistencia de las identidades asignadas a cada fuente.Finalmente, proponemos un nuevo tipo de red recursiva que usa conjuntos de vectores en lugar de vectores para representar su entrada y su estado y que es invariante a las permutaciones de los elementos del conjunto de entrada y equivariante a las del conjunto de estado. En esta tesis se muestra como este es el comportamiento que deberíamos esperar de un sistema de tracking que toma como entradas las estimaciones de un modelo de localización multifuente y se compara el rendimiento de estas redes recursivas invariantes a las permutaciones con redes recursivas GRU convencionales para aplicaciones de tracking de fuentes sonoras.The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy received from any direction of the space and, therefore, compute arbitrary-shaped power maps. In addition, we also propose a new technique to analytically cancel a source from the generalized cross-correlations used to compute the SRP-PHAT maps. Based on previous narrowband cancellation techniques, we prove that we can project the cross-correlation functions of the signals captured by a microphone array into a space orthogonal to a given direction by just computing a linear combination of time-shifted versions of the original cross-correlations. The proposed cancellation technique can be used to design iterative multi-source localization systems where, after having found the strongest source in the generalized cross-correlation functions or in the SRP-PHAT maps, we can cancel it and find new sources that were previously masked by thefirst source. Before being able to train deep learning models we need data, which, in the case of following a supervised learning approach, means a dataset of multichannel recordings with the position of the sources accurately labeled. Although there exist some datasets like this, they are not large enough to train a neural network and the acoustic environments they include are not diverse enough. To overcome this lack of real data, we present a technique to simulate acoustic scenes with one or several moving sound sources and, to be able to perform these simulations as they are needed during the training, we present what is, to the best of our knowledge, the first free and open source room acoustics simulation library with GPU acceleration. As we prove in this thesis, the presented library is more than two orders of magnitude faster than other state-of-the-art CPU libraries. The main idea of the Geometric Deep Learning philosophy is that the models should fit the symmetries (i.e. the invariances and equivariances) of the data and the problem we want to solve. For single-source direction of arrival estimation, the use of SRP-PHAT maps as inputs of our models makes the rotational equivariance of the problem undeniably clear and, after a first approach using 3D convolutional neural networks, we present a model using icosahedral convolutions that approximate the equivariance to the continuous group of spherical rotations by the discrete group of the 60 icosahedral symmetries. We prove that the SRP-PHAT maps are a much more robust input feature than the spectrograms typically used in many state-of-the-art models and that the use of the icosahedral convolutions, combined with a new soft-argmax function that obtains a regression output from the output of the convolutional neural network by interpreting it as a probability distribution and computing its expected value, allows us to dramatically reduce the number of trainable parameters of the models without losing accuracy in their estimations. When we want to track multiple moving sources and we cannot use any criteria to order or classify them, the problem becomes invariant to the permutations of the estimates, so we cannot directly compare them with the ground truth labels since we cannot expect them to be in the same order. This kind of models has typically been trained using permutation invariant training strategies, but these strategies usually do not penalize the identity switches and the models trained with them do not keep the identity of every source consistent during the tracking. To solve this issue, we propose a new training strategy, which we call sliding permutation invariant training, that is able to optimize all the features that we could expect from a multi-source tracking system: the precision of the direction of arrival estimates, the accuracy of the source detections, and the consistency of the assigned identities. Finally, we propose a new kind of recursive neural network that, instead of using vectors as their input and their state, uses sets of vectors and is invariant to the permutation of the elements of the input set and equivariant to the permutations of the elements of the state set. We show how this is the behavior that we should expect from a tracking model which takes as inputs the estimates of a multi-source localization model and compare these permutation-invariant recursive neural networks with the conventional gated recurrent units for sound source tracking applications.<br /

    Machine-learning-based estimation of room acoustic parameters

    Get PDF
    Traditional methods to study sound propagation inside rooms can be divided in two approaches: geometrical models and wave-based models. In the former, sound is analyzed as rays, giving a valid approximation for high frequencies while failing to model certain wave effects such as diffraction or inference. The latter, finds solutions for the wave equation, providing better accuracy at the cost of much higher computational complexity. This thesis presents a proof of concept for a novel machine learning method to estimate a set of typical room acoustics parameters using only geometrical information as input features. First, a room acoustics dataset composed of real world acoustical measurements is analyzed and processed using microphone array encoding techniques to extract room impulse responses and acoustical absorption area for multiple directions. The dataset is explored to identify correlation between features and general properties, including a low dimensionality representation for visualization. The proposed method uses geometrical features as input for a neural network model that estimates room acoustics parameters, such as reverberation time (T60), and early decay time (EDT). For reverberation time, this model is evaluated against the Sabine method and the results show much higher accuracy, especially at low frequencies. The method is then expanded to include input features for the locations of the source and microphone, where the results also achieve high performance. Furthermore, an hyperparameter optimization procedure using random search reveals three main findings. First, that a large range of neural networks architectures, even with very few trainable parameters, achieve high performance. Second, the depth of the models has little influence on the results. Third, the benefit of increasing the amount of training data examples for a single loudspeaker saturates after around 100 examples

    Acoustic indoor localization employing code division multiple access

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2010Includes bibliographical references (leaves: 107-108)Text in English; Abstract: Turkish and Englishxvi, 160 69 leavesIndoor localization becomes a demand that comes into prominence day by day. Although extensively used outdoor location systems have been proposed, they can not operate in indoor applications. Hence new investigations have been carried on for accurate indoor localization in the last decade. In this thesis, a new indoor location system, that aims to locate an entity within an accuracy of about 2 cm using ordinary and inexpensive off-the-shelf devices, has been proposed and an implementation has been applied to evaluate the system performance. Therefore, time of arrival measurements of acoustic signals, which are binary phase shift keying modulated Gold code sequences using direct sequence spread spectrum technique, are done. Direct sequence-code division multiple access is applied to perform simultaneous accurate distance measurements and provides immunity to noise and interference. Two methods have been proposed for the location estimation. The first method takes the average of four location estimates obtained by trilateration technique. In the second method, only a single robust position estimate is obtained using three distances while the least reliable fourth distance measurement is not taken into account. The system performance is evaluated at positions from two height levels using two sets of variables determined by experimental results. The precision distributions in the work area and the precision versus accuracy plots depict the system performance for different sets of variables. The proposed system provides location estimates of better than 2 cm accuracy within 99% precision. Eventually, created graphical user interface provides a user friendly environment to adjust the parameters
    • …
    corecore