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Traditional methods to study sound propagation inside rooms can be divided in
two approaches: geometrical models and wave-based models. In the former, sound
is analyzed as rays, giving a valid approximation for high frequencies while failing
to model certain wave effects such as diffraction or inference. The latter, finds
solutions for the wave equation, providing better accuracy at the cost of much
higher computational complexity.
This thesis presents a proof of concept for a novel machine learning method
to estimate a set of typical room acoustics parameters using only geometrical
information as input features. First, a room acoustics dataset composed of real
world acoustical measurements is analyzed and processed using microphone array
encoding techniques to extract room impulse responses and acoustical absorption
area for multiple directions. The dataset is explored to identify correlation between
features and general properties, including a low dimensionality representation for
visualization.
The proposed method uses geometrical features as input for a neural network
model that estimates room acoustics parameters, such as reverberation time (T60),
and early decay time (EDT). For reverberation time, this model is evaluated
against the Sabine method and the results show much higher accuracy, especially
at low frequencies. The method is then expanded to include input features for
the locations of the source and microphone, where the results also achieve high
performance.
Furthermore, an hyperparameter optimization procedure using random search
reveals three main findings. First, that a large range of neural networks architec-
tures, even with very few trainable parameters, achieve high performance. Second,
the depth of the models has little influence on the results. Third, the benefit of
increasing the amount of training data examples for a single loudspeaker saturates
after around 100 examples.
Keywords: Room acoustics, spatial audio, room impulse response, microphone

array, machine learning, neural networks, data analysis
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Chapter 1

Introduction

1.1 Motivation
Sound propagates across the air as waves. Indoors, these waves travel uncontested
until they reach an obstacle (e.g. surfaces delimiting the space itself or objects inside
the space). The original sound wave will interact with every one of these obstacles,
sometimes in complex ways. From the point of view of a listener located inside the
space, for example, an audience member inside a concert hall listening to an orchestra;
the quality of the auditory experience will depend not only on the performance of
the orchestra, but also on the inherent acoustical properties of the hall, which modify
and alter the perceived sound.

Therefore, the study and analysis of how sound is manipulated inside rooms is
important, as it explains why some venues enhance a listening experience while others
degrade it. In other words, by understanding the physics of sound propagation, it is
possible to, for instance, embellish the music played in a performance venue, or to
optimize the intelligibility of speech in a classroom.

Sound propagation is more or less well understood: it travels as mechanical waves
[3]. However, even if the theory behind this phenomenon is simple, its modeling is
still very computationally costly, which limits either the accuracy or the availability
of results. Traditionally, there are two main approaches to model sound propagation.
The first approach considers sound as rays. Although this approximation is valid
for high frequencies (i.e. when the wavelength is small compared to the dimensions
of the obstacles), this approach fails to model wave effects such as diffraction or
interference [4].

The second approach models sound propagation as waves, and solves the cor-
responding wave equation (with multiple methods for both time and frequency
domains). Here the accuracy is much higher than geometrical acoustics, but at the
expense of increased computational demands [5], [6].

However, recent advances in Artificial Intelligence —and machine learning in
particular —make a third approach now possible [7] [8]. With enough data, a
mathematical model can be trained to emulate all the transformations that any given
input sound may be subjected to under a certain room conditions. This process can
be accounted for without the need to simulate or solve complex equations, as it is
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based purely on imitation, whereby similar input signals will always produce similar
output sounds.

Although full acoustical modelling based on data is quite an ambitious goal, a
more simple case is to start by predicting not the physical propagation itself, but a
set of specific acoustical parameters that are measurable in practice. For example,
the reverberation time T60 , which is perhaps the most basic parameter to describe
how the sound experience inside a room might be, can be modeled as a regression
task. Here, the objective is to predict values for T60 given information inside the room
or the signal itself. In [9], such a system was developed, in which noisy recordings
inside a room were used to train a model and predict the T60 values. A different use
case could be to predict the same values based only on geometrical information or
even pictures.

The main focus of this thesis is the prediction of a full set of room acoustics
parameters using data such : room geometry, acoustical absorption properties, or
spherical photographs. To do so, we present the analysis of a dataset composed of
real life acoustical measurements, explore some of its properties, and then build,
train and evaluate machine learning models based on this data. This project is a
proof of concept, that verifies the validity of a data driven approach for acoustic
modelling.

1.2 Outline
Chapter 2 begins with an introduction to room acoustics, including some terminology
and definitions for the acoustical parameters which are later used as estimation
targets. It is followed by a brief description of spatial audio and how microphone
array encoding is used to process the recorded signals. The last part of the chapter
has an overview of general machine learning topics, including some terminology,
problem definitions, neural networks essentials, and a short walkthrough over typical
pitfalls and useful tricks that need to be considered in a regular machine learning
problem. Readers with knowledge of acoustics and spatial audio can skip directly to
section 2.3, while machine learning experts should start with sections 2.1 and 2.2
and then continue with the following chapters.

In chapter 3, the data used for the thesis is described and analyzed. First there
is a cursory review of the few public datasets for room acoustics that are available.
Then the raw data is characterized, along with the process used to extract the room
acoustics parameters and a few useful features. There is also an exploratory data
analysis that illustrates some of the properties of the data.

In chapter 4 the methodology used for all the experiments in this thesis is detailed.
It starts enumerating the steps for the data preprocessing, where the data is prepared
for the machine models. It is followed by a definition of the performance metrics
used to evaluate the models, including MSE, MAE, MAPE and accuracy. Lastly, the
actual machine learning models are specified, including characteristics such as neural
networks architecture, input and output layers, and the hyperparameter optimization
procedure employed.
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Chapter 5 shows the results from the experiments realized. First it compares
the proposed method to the Sabine formula, which is used to validate the value of
our model. Afterwards, an unsupervised analysis of the data characterizes the data
further. Finally, the prediction results for the models are listed, including insights
on how some hyperparameters influence the performance.

In chapter 6 the results presented earlier are discussed, where some interesting
findings are noted. Moreover, some thoughts are shared for future research. At last,
chapter 7 summarizes all the findings in this thesis.



Chapter 2

Background

This chapter includes basic concepts and theoretical knowledge required to under-
stand this work. First there is an introduction to room acoustics and acoustical
measurements in general, followed by a brief explanation of spatial audio and topics
related to spherical microphone array processing. Finally, there is a summary of
basic elements of machine learning, neural networks and how to set up a machine
learning project.

2.1 Room Acoustics
In general, for an ideal omnidirectional source, sound waves will propagate evenly in
all directions. Moreover, sound waves interact with obstacles and objects in various
ways. The sound experienced inside a room is the combination of the direct sound
(which travels straight from the source to the listener) and the sound that bounces
and reflects back from the surfaces inside the room. The main sources of reflections
are the architectural elements of the room, such as the walls, floor and ceiling, but
anything some geometrical shape inside the room will affect sound propagation, be
it furniture, or even people. What happens to sound as it hits a surface depends on
the materials of the surface and the angle of incidence. Largely, sound can either
pass through an object, be absorbed by it, or reflect back (in specular or difrracted
way) [3] [10]. In practice, absorption and reflection both happen at the same time,
at different frequencies, and angles.

There are many different types of rooms, which can have different size, shape,
furniture or construction materials. Architectural elements of the room are more or
less fixed after construction, while the elements inside the room are easily changeable.
In the end, the configuration of a room will determine sound propagation and
the listening experience inside it. Furthermore, different activities have different
requirements. For example, a classroom will prioritize speech intelligibility, while a
concert hall should embellish the experience of musical performances.

4
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2.1.1 Absorption
Sound absorption occurs when sound energy collides with a surface and is transformed
into another type of energy, typically heat. How much energy is transformed depends
on the properties of the surface materials, where usually porous materials are used for
sound absorbers. The sound absorption coefficient α measures the fraction of sound
energy that is absorbed by a surface, where α = 1 corresponds to full absorption,
and α = 0 describes a fully reflective surface. That said, it is common for materials
to have different α values for different frequency bands, so these values are commonly
reported by octave bands from 125 to 4000 Hz. The unit for α is called Sabin.

To compute the total absorption in room, it is necessary to consider the different
absorption coefficients and the surfaces they cover. This can be calculated as

A =
n∑
i=1

αiSi = α1S1 + α2S2 + ...+ αnSn, (2.1)

where A is the total absorption area, S1, S2, etc is the area of surface and αi is the
absorption coefficient that corresponds to the ith surface [3] [10].

It is important to note that some materials report absorption coefficients values
larger than 1. In principle, this should not be possible, as α = 1 corresponds to
100% absorption. However, these values can occur due to the test procedure used in
laboratory measurements. In short, the absorption provided by the edges of a test
sample are not considered when determining the surface magnitude [11].

2.1.2 Reflection and Diffusion
If a surface does not absorb the sound, it bounces back (or goes through). If the
surface curve/shape is much larger than the wavelength, then the sound is reflected
at the same angle as the incidence, compared to the surface normal. This reflection
behaves much like a mirror and is called specular reflection. These reflections can
be modeled as rays or image sources [4]. If the surface is rough, compared to the
wavelength, the sound will be reflected in multiple directions, as the product of
scattered reflection or diffusion [3].

2.1.3 Diffraction
Diffraction occurs whenever a sound wave encounters an edge, where the direction
of propagation changes. This property allows, for example, to hear sound around
corners in a room. The sound wave bends around the edge, and the amount of
bending depends on the size of the edge compared to the wavelength, such that long
wavelengths bend more than shorter ones [3].

2.1.4 Room impulse response
Sound traveling inside a room will be affected by the phenomena mentioned earlier.
Therefore, the signal captured by a microphone in an arbitrary listening position
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Figure 2.1: Basic concept of sound absorption, reflection and diffusion. Sound
arriving at an absorptive barrier (a) will be absorbed, however, depending on the
properties of the material, a fraction of the sound will be reflected and another
fraction will pass through the barrier. If the surface is rigid and flat compared
to the wavelength of the incident sound (b), the sound will be reflected back.
However, if the accidents of the surface are large compared to the wavelength
of the incident sound (c), sound will be diffused, where reflection will happen in
many directions at the same time. Adapted from [12].

inside the room will be different than the sound emitted by a source at some other
position. All the modifications suffered by the signal can be summarized by the
impulse response if the system is linear and time invariant (LTI) [3] [13].

The impulse response can be split into 3 parts: 1) direct sound, 2) early reflections,
and 3) reverberation. The direct part corresponds to the first few milliseconds and
describes how the signal generated by the source arrives at the listener. In ideal
conditions, this direct component is the same as the transmitted signal, slightly
delayed due to the travel time. The early reflections are the result of the direct sound
bouncing back after hitting obstacles and arriving at the listening position shortly
after the direct sound. These reflections only hit a small number of boundaries
before arriving at the listening position. Finally, the reverberation occurs after many
reflections. Figure 2.2 shows an illustration of a room impulse response and the main
sections.

The room impulse response contains a large amount of information, corresponding
to changes in time, level, spectrum and direction of incidence (for multichannel
impulses). Moreover, the impulse response takes into account the full signal path,
including the characteristics of the source (such as loudspeakers), the room itself,
and the measuring device or microphone. In practice, not all this information is
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Figure 2.2: Theoretical room impulse response showing the 3 sections. Adapted
from [14].

needed to estimate how sound is perceived inside the room [3]. Therefore, several
parameters or statistics are extracted and computed from the raw impulse response.
The most relevant of these parameters are explained in the following section.

2.1.5 Reverberation Time (T60)
Reverberance is one of the most important parameters that characterize a room [3].
It is the product of all the reflections occurring inside a room and can greatly affect
the listening experience. Long reverberation can affect speech intelligibility because
the short consonant sounds get drowned by long, vocal sounds. On the other hand,
music becomes dull and loses power if the reverberation is too short.

The reverberation time T60 is the time period in which a sound is attenuated
enough to not be listenable anymore. Technically, this happens when the sound
level has dropped 60 dB after the sound generation process has stopped. It can be
determined empirically, by measuring the sound pressure level and noting the time it
takes to drop. It can also be extracted from the impulse response using one of the
methods denoted in technical standards [15].

Most calculations for T60 assume certain conditions that might hold for small
rooms, such as the presence of a perfect diffuse field. Given that standing waves
and strong specular reflections can dominate inside small rooms, the results from
estimations need to be interpreted with care.

Additionally, T60 can be approximated using the Sabine formula [16]

T60 = 24× ln (10)V
cA

, (2.2)

where V is the volume of the room [m3], c is the speed of sound in [m/s], and A
is the total absorption area in the room [sabine / m2], computed as described in
equation 2.1. The unit for T60 is seconds, and typical values for small rooms are in
0.3 - 1 s, whereas larger rooms can go up to 2 s or longer.
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2.1.6 Early Decay Time (EDT)
The early decay time (EDT) is similar to T60, in that it measures reverberation. The
difference is that EDT considers the amount of time it takes for sound to drop from
0 dB to -10 dB, scaled so that it corresponds to the decay from 0 dB to -60 dB [17].
Therefore, it measures the time required to drop the sound level by 10 dB after the
sound source has stopped, rather than 60 dB.

Because EDT focuses on the early part of reverberation and not the tail, it
describes early reflections better [3]. Moreover, EDT can be a more appropriate
approximation to the perceived reverberation in the room if the whole reverberation
response is uneven [3].

2.1.7 Sound Level (L)
In this work, the sound level L is the maximum value of the energy decay curve
(EDC). This parameter is not commonly measured to describe room acoustics, but
here it is used to compare the relative level of the direct sound of multiple impulse
responses for the same event. In practice, this correlates with the direction of arrival.

The EDC is computed as

EDC(t) =
∫ ∞
t

h2(t)dt, (2.3)

where h is the impulse response [3],[18]. The unit for L is dB.

2.1.8 Clarity (C50)
The clarity parameter (C50) describes how easy it is to distinguish individual sounds,
instead of a blurred combination of different events. The theory behind this parameter
is that reflections arriving within a window of no more than 50-80 ms after the direct
sound will be perceived as a single event, due to temporal integration. These
reflections will increase the perceived amplitude of the sound (and in some cases
modify the timbre).

C50 is measured by calculating the ratio between the energy of the early reflections
and the late responses. The definition for early response can be set at 50 or 80 ms
depending on the application. For this work, 50 ms is used. It is computing as

C50 = 10log10

∫ 50ms
0 p2(t)dt∫∞
50ms

p2(t)dt , (2.4)

where p(t) is the sound pressure level [17]. The unit for C50 is dB, where positive
values corresponds to a strong early response, while negative values follows a strong
late response.
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2.1.9 Direct to Reverberant Ratio (DRR)
The direct to reverberant ratio (DRR) is very similar to the C50, as it also measures
the ratio between the energy of the early and late responses. However, here the
window for the early part is set to 2.5 ms. Consequently, this parameter focuses
only on the impulsive part of the direct sound and does not consider early reflections.
This can be important for percussive sounds such as clicks, were even reflections
arriving at 30 ms can be perceived as distinct events if the level is high enough [19],
[20]. DRR is computed as

DRR = 10log10

∫ 2.5ms
0 p2(t)dt∫∞
2.5ms

p2(t)dt , (2.5)

where p(t) is the sound pressure level. The unit for C50 is dB, where positive values
corresponds to a strong impulsive response, while negative values follows a strong
late response.

2.1.10 Filtering by octave bands
The acoustical response of a room depends on the frequency content of the signal.
For example, high frequencies are usually easily absorbed by most obstacles or
even air, while low frequency components are more difficult to control and suffer
from additional problems such as room modes. Therefore, most of the acoustical
parameters described in this chapter are usually computed at different frequency
bands. To do this, the recorded impulse response is first filtered by octave wide band
pass filters and then the aforementioned parameters are computed. On this work, all
parameters except C50 and DRR are extracted using this process.

2.2 Spatial Audio
The acoustical parameters discussed in the previous section consider the monophonic
case, where there are one or more sources, but only one receiver. However, certain
properties of the full listening experience can only be captured by having multiple
receivers. For example, direction of arrival (DoA) of sound sources and early reflections
may only be established if the sound scene is captured by multiple sensors [21], [22].
For room acoustics, the difference of some acoustical parameters between sensors
can be used to identify unique positions inside the room. The study of audio across
multiple directions is called spatial audio.

To enable spatial analysis, multiple sensors are arranged in an array, where the
specific configuration depends on the application. For audio, compact spherical arrays
with phase-matched microphones are especially popular, due to their portability, and
rotational symmetry [23]. To extract spatial information, the signals recorded by
each individual microphone need to be processed, using microphone array encoding
techniques. Compact spherical arrays are also well suited for analytical spatial
encoding of the microphone array signals into an array independent domain; via
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the spherical harmonic transform (SHT) [24]. This transform essentially abstracts
away the microphone array specifications and allows the ability to generate static
virtual microphones pointing at any arbritary direction, using broadband steering
vectors [25]; with some commercially available spherical arrays providing reasonable
performance at a wide enough frequency range [26], which are suitable for the analysis
performed later in this thesis.

2.2.1 Microphone Array Encoding
The microphone array signals are first encoded, by transforming them into the
spherical harmonics domain. Spherical harmonics are orthonormal basis functions
over the unit sphere, defined as

Y m
n (θ, φ) ≡

√√√√2n+ 1
4π

(n−m)!
(n+m)!P

m
n (sinθ)eimφ, (2.6)

where n ∈ [0, 1, 2, . . . , N ] is the function order, m ∈ [−n, n] is the function degree,
Pm
n (·) are the orthonormal Legendre polynomials, θ ∈ [−π/2, π/2] denotes the

elevation angle, and φ ∈ [−π, π] is the azimuth angle. The spherical harmonics
functions can be visualized as a color map over the sphere, or as balloon plots where
the magnitude shows the distance to the origin and the colors represent the sign of
the values. An example of these visualizations is shown in figure 2.3. Real spherical
harmonics up to third order are shown in figure 2.4.

A typical spherical microphone array has Q sensors, located at positions Ωq =
(θ, φ, r). The encoding of the microphone signals is estimated up to the maximum
number of expansion N as

s(t, f) = W(f)x(t, f), (2.7)

where s ∈ C(N+1)2×1 are the spherical harmonic signals, x ∈ CQ×1 are the microphone
signals in time-frequency domain 1, and W ∈ C(N+1)2×Q is a frequency dependent
spatial encoding matrix, calculated as

W(f) = WEQ(f)Y†, (2.8)

where WEQ ∈ R(N+1)2×(N+1)2 is an equalization matrix that compensates some of the
effects produced by the sensors arrangement, † denotes the Moore-Penrose pseudo-
inverse operation, and Y ∈ RQ×(N+1)2 is the spherical harmonic encoding matrix,
which contains the spherical harmonic weights for the direction of each sensor [24],
[25].

1Time-frequency domain signals can be obtained using methods such as Short Time Fourier
Transform (STFT) or filterbanks.
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The spherical harmonics in Y are frequency independent and are calculated as

Y(ΩQ) =



Y 0
0 (Ω1) Y 1

−1(Ω1) . . . Y m
n (Ω1)

Y 0
0 (Ω2) Y 1

−1(Ω2) . . . Y m
n (Ω2)

Y 0
0 (Ω3) Y 1

−1(Ω3) . . . Y m
n (Ω3)

... ... ... ...
Y 0

0 (ΩQ) Y 1
−1(ΩQ) . . . Y m

n (ΩQ)

 ,

where Ωq = (θ, φ, r) are the locations of the sensors as mentioned before.

Figure 2.3: (left) Plot of spherical harmonic function of 3rd-order Y 1
3 (θ, φ) =

−
√

21
64π (5cos2θ − 1)sinθeiφ over the surface of the unit sphere. (right) balloon

plot for the real part of the same function with the distance to the origin defined
by |f(θ, φ)|, and with red shades representing positive values and blue shades
representing negative values of f . Adapted from [27] and [24].

2.2.2 Beamforming
After transforming the microphone signals into the spherical harmonic signals it is
possible to define spatial filters in order to extract information from specific directions.
This process is called beamforming, and it is a frequency independent procedure
than corresponds to a weighted sum of the transformed spherical harmonic signals.
Beamforming can be performed as

y(t, f) = wHs(t, f), (2.9)

where w ∈ C(N+1)2×1 is the steering vector, which is defined as

w = y(Ω) ◦ d, (2.10)

where y(Ω) are the spherical harmonic weights for the direction of the beam, ◦ is
the Hadamard product, and d is a vector of weights that defines certain properties
of the beam [28]. In the simplest case, d = [1, 1, ..., 1] ∈ R(N+1)2×1.



12

Figure 2.4: Balloon plots for the spherical harmonics basis functions for order
n = 0 (top row) to n = 3 (bottom row). The colors indicate the sign (phase) of
function, with yellow/green is positive, while blue is negative.

Using this method, beamforming is performed by defining a rotation matrix of
the spherical harmonics. The maximum directivity of the beam will be determined
by the order of the spherical harmonics. Figure 2.5 shows hypercardiod beams for
orders one to three. In this case, higher orders offer better directionality with a
narrower main lobe, but increased pattern complexity for the side lobes [29].

Finally, multiple beams can be used at the same time to cover a larger portion of
the space. For example, in figure 2.6 two 3rd-order hypercardiod beams have been
superimposed in the same plot.

In practice, there is a regularization parameter embedded in the equalization
matrix, that influences the frequency bandwidth of usable components and spatial
selectivity [26], [30], at the cost of amplified sensor noise. For auralization applications,
lower noise is usually preferred as high audio quality is desired. Whereas for other
cases, higher spatial resolution may be more preferrable.

2.3 Machine Learning
The main idea behind machine learning is to let machines learn how to solve a task,
without having to explicitly explain the method behind the solution. This concept
is similar to how humans learn, where for example, infants develop language skills
not by reading grammatical rules but by imitation and practice. Thus, instead of
defining rules, data is fed into a computer, so that patterns can be extracted, and
the rules that define task are learned implicitly.

More formally, machine learning are algorithms that utilize experience E, to
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Figure 2.5: Balloon plots for hypercardiod beams of order n = 1 (left), n = 2
(middle), and n = 3 (right). The colors indicate the sign (phase) of the function,
with yellow/green is positive, while blue is negative.

Figure 2.6: Balloon plot for two super imposed 3rd order hypercardiod beams
pointing at (θ1 = 0◦, φ1 = 0◦) and (θ2 = 90◦, φ2 = −45◦). The colors indicate the
sign (phase) of function, with yellow/green is positive, while blue is negative.

improve performance measure P , for task T [31]. The task should be clearly defined:
translating a text between two languages, finding faces in a photograph, or transcrib-
ing audio into sheet music, are all examples of tasks. Furthermore, each task should
include a performance measure, such as classification accuracy, prediction error, or
distance to an objective. Lastly, the experience will be conformed of data, where
multiple observations that are relevant to the tasks are collected to form a dataset.

This definition of machine learning is remarkably different from a general artificial
intelligence, as the goal is not to create a sentient, autonomous program than can
think and understand the world as a human being; rather, the goal is simply to
maximize an objective parameter, for a particular application. Therefore, machine
learning can be explained as applied statistics to approximate functions and solve
optimization problems. This distinction becomes more blurry as tasks get more
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involved.
The basic workflow of a machine learning solution is to first use raw data to

extract meaningful features; relevant numerical or categorical values that describe
the problem 2. Then process these features to extract patterns, finding relationships
between inputs and outputs. Complex systems can build complex features from
simple ones, and then find more intricate patterns.

Although there are many different types of tasks that can be solved with machine
learning, most can be generally explained as either supervised learning, where
each data sample has features (input variables) and labels (output variables), or
unsupervised learning where there are only features, and no labels.

2.3.1 Supervised Learning
In supervised learning, each data sample has features and targets (also know as
labels). Features are independent variables that characterize each sample, whereas
the targets define some property that can be interpreted as dependent variables
that are the output of a function, when the features are used as input. Thus, on
most tasks of this type, the goal is to let the machine learning algorithm learn the
underlying function. To do this, a dataset containing both features and targets is
used to train a model, so that it can then predict targets for inputs that it has not
seen before [32].

The input features can be real valued numbers, integers, categorical or nominal
values. Additionally, these features can be arranged in various ways: as a single
vector concatenating all of them, as 2D matrix (such as images), or as more complex
tensors, such as multichannel 2D matrices. On the other hand, output targets are
usually numerical or categorical, and there can be either a single target or multiple.
Problems with numerical targets are regression tasks, while categorical targets are
classification problems.

As a general rule, problems with a large number of features (high dimensionality)
require more complex models to solve them. Also, the main drawback of supervised
learning is that annotating the data, which means defining the labels, is usually
costly as it requires human input [33].

Regression

A regression task is one where the goal is to predict one or many numerical, continuous
values, given some input. More formally, the goal is to build a model than can
approximate a function f , such that with some inputs x it is possible to obtain
outputs ŷ, so ŷ = f(x). Ideally, the prediction equals the true target, ŷ = y.
Additionally, it is possible to predict multiple values at once, so that f : Rd → Rm,
where d is the dimensionality of the input data (the number of features for each
observation), and m is the dimensionality of the outputs.

2It should be noted that the feature extraction process can be part of the automatic learning,
which means that the ML algorithm learns how to extract relevant features at the same it learns
how to process them. This is know as end-to-end learning
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As an example, it is possible to predict the house prices based on features such
as size, location (coordinates), number of rooms, etc. In this case, the prediction is a
single value (price) and the input features are numbers or categories that describe
houses [33]. For this thesis, we define the problem of predicting room acoustics
parameters as a regression task. So that the input x is the input signal, e.g. an
impulse, while f(·) is the room and everything inside it, which transforms the input
x into the output y, which are the acoustical parameters.

2.3.2 Unsupervised Learning
For some tasks, the data samples have features but there are no clear targets,
either because the it makes little sense for the tasks, or because finding the correct
targets is costly. Under these circumstances, it is possible to analyze the data in
an unsupervised way, where the goal is not to predict some value but to extract
information about the overall structure of the data. This information can then be
studied further, such as finding which data samples are similar to each other. In
general, in supervised learning the model learns the probability distribution of the
targets, conditioned on the inputs, while in unsupervised learning the model learns
the underlying probability distribution that generated the original data [31]. In other
words, the former deals with P (y|x), while the later with P (x), where y are the
targets and x are the input features.

There are different types of unsupervised learning tasks. For example, by detecting
similarities between data samples, it is possible to assign clusters or groups to the
samples. This is akin to a classification task without previous information about the
number or meaning of the classes. Additionally, learning the full data generating
distribution enables models that can synthesize new, artificial data samples that
resemble the original ones.

Unsupervised learning algorithms can also be used to reduce the dimensionality
of the data, by finding a simple, compact representation. The main idea is to
learn a mapping that maps the data samples to a lower dimension latent space,
preserving some properties, such as the relative distance of the data points. This
mapping is useful in two ways: 1) the reduced dimensionality of the data can improve
the performance of other ML algorithms, as it removes features that are not very
relevant to the task, and 2) collapsing the data to 2 or 3 dimensions allows for easy
visualization of complex data.

There are many different methods to perform dimensionality reduction. Here we
utilize two different methods, principal component analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE).

Principal Component Analysis

A basic unsupervised learning method is principal component analysis (PCA). Due to
its simplicity, it is a good starting point to analyze a dataset and to do dimensionality
reduction. PCA is a linear technique that learns a mapping from the feature space
X to the latent space Z, which maximizes the variance of the transformed data.
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In practice, PCA is done by the eigen decomposition of the covariance matrix of
the input features after centering the data (so that it has zero mean). The eigenvectors
are the principal components, which are used to construct a projection matrix W .
Each principal component is a vector in Rd, where d is the dimensionality of the
original data. The projection from the the original space X to the latent space Z is
done with the dot product of the data matrix x and W . Dimensionality reduction
happens when a subset of the eigenvectors is used to form W . Additionally, the
eigenvalues show how much variance of the data is explained by each eigenvector.
Therefore, a matrix W built using the first k principal components, will preserve
the variance determined by the cumulative sum of the first k eigenvalues, divided by
their total sum [34].

The principal components themselves are the new features into which the data
is projected to. These do not represent any meaningful quality of the data, unlike
the original features which correspond to some property of the data. Thus, it is not
possible to interpret the projection directly. On the other hand, the projected data
is decorrelated which can improve the performance of other ML algorithms.

t-Distributed Stochastic Neighbor Embedding (t-SNE)

A new, state of the art method to do dimensionality reduction is the t-Distributed
Stochastic Neighbor Embedding (t-SNE). This method learns a parametric mapping
between the original, high dimensional space X to the latent space Z while preserving
the local structure of the data in the original space as much as possible [35]. Unlike
PCA, this mapping is non-linear, which means it can preserve non-linear relationships
of data more easily than other methods.

The details of t-SNE are beyond the scope of this thesis, but it is enough to
say that it preserves structure by maximizing the distance between dissimilar data
points, and minimizing the distance between similar data points [36].

2.3.3 Neural Networks
A neural network (NN) is a computational model that approximates some function
f ∗. For example, a regression problem can be defined as y = f ∗(x), where some
output value y is produced by function f ∗, given the input x. In short, the neural
network models the true function f ∗ with the mapping y = f(x; θ), where θ are
parameters that need to be learned from the data [31].

The basic unit that builds a neural network is the neuron. In each neuron, the
input data x is weighted by some parameter θ 3. Additionally, the output of the
neuron is fed into an activation function which is a mathematical function that
introduces some properties to the network. The full operation of the neuron is shown
in figure 2.7, and is defined as

y = f(wTx + b), (2.11)
3For the neural networks used on this thesis, the set of parameters θ is composed of weights w

and bias b.
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where x is the input data, w are the weights (parameters), b is bias, both learned
by the network, y is the output, and f(·) is the activation function. In this case,
there are as many w parameters as features for the input x, while the bias term b
is a single value. Thus, the basic element of a neural network is nothing else but a
linear combination of the input values, which are then shaped by some activation
function. By using non-linear activation functions, the network can learn non-linear
relationships between inputs and outputs. Examples of activation functions are
shown in figure 2.8.

Figure 2.7: Schematic for the operations of a single neuron in a neural network.
The dashed line marks the boundary for the neuron, which computes a linear
combination of the input x, weights w and bias b, that are then fed into an
activation function f .

Figure 2.8: Example of common activation functions used to introduce non
linearity to a neural network.

The true power of a neural network arises from the combination of multiple of
these basic neurons. First, neurons can be stacked side by side, where the same
input data is fed into multiple neurons, each with its owns particular set of weights
w and bias b. This stack of neurons is called a hidden layer, and every neuron is
referred to as hidden unit, or simply unit. Furthermore, the network can grow by
adding multiple hidden layers sequentially, where the input of each hidden layer, is
the output of the previous hidden layer. The amount of units per layer define the
width of the network, whereas the total number of hidden layers define its depth.
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Finally, it is also possible to connect units in any way, for example, skipping layers.
The choice of width, depth, connections, and activation function (per unit) define
the architecture of the network.

There exist a large variety of neural networks architectures. A fully connected
(FC) neural network, also know asmulti layer perceptron (MLP), or feedforward
neural network is the fundamental neural network model. In the FC network, all
units from one layer are connected to all the units of the next layer, and nothing else.
This means that there are no recurrent connections, or connections that skip layers.
It has been proven [33] that a FC network with non-linear activation functions, can
be used as a universal function approximator, given enough width and depth. A
diagram for a FC network is shown in figure 2.9.

Figure 2.9: General architecture for a Multi Layer Perceptron (MLP), also known
as fully connected (FC) neural network. The input layer x has d features, the
hidden layers z1 and z2 have a and b units respectively, and the output layer y
has c different targets.

It is important to note that there are two types of unknown variables at this point.
On one hand, the values for all weights w and biases b of all layers are the parameters
that the network will learn after training. On the other one, the architecture of
the network is a choice that needs to be selected beforehand. This architecture is
defined by hyperparameters, which are not learned by the training itself but need
to be obtained by a different process. In short, a learning method is used to
learn the parameters, while an hyperparameter optimization procedure is used
to select the best architecture. Both of these variables play an important role on
determining the effectiveness of the network, that is, how well can it approximate
the true function f ∗.

Learning Methods

A neural network approach to approximate a function f(·) is not much different than
any other machine learning method. The main elements of this solution are: model,
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cost function, and optimization algorithm. In this case, the model is the NN, and the
optimization algorithm will be used to minimize some cost function in order to learn
the parameters θ that define the network. In practice, the parameters are learned
via a gradient descent algorithm.

The cost function is a mathematical expression that evaluates the performance
of the model. For a regression problem, this cost function can be the difference
between the predicted and true values. This difference is also known as loss or error.
More formally, the cost function is

J(θ) = E(x,y)∼pdata
L(f(x; θ), y), (2.12)

where L is the loss function for a single data observation, f(x; θ) is the prediction
generated by the model given input x, using current set of parameters θ, and y is the
true value or target. Thus, the total cost function is the expectation of the individual
loss for all data.

The learning procedure is then the process of finding the values for parameters θ
that minimizes J(θ). This is typically done using some variant of iterative gradient
descent algorithm. The main idea is to evaluate the cost function using the current
parameters θ and available data. Then compute the gradient of the the cost function,
and move θ a small amount towards the direction of the negative gradient. The
update rule for a basic gradient descent algorithm can be expressed as

θ = θ − ε∇θJ(θ), (2.13)

where ε is the learning rate and ∇θJ(θ) is the gradient of the cost function.
There are other, more sophisticated solvers than can be used instead of the basic

gradient descent algorithm. In this work, all networks are trained using Adam. Adam
adds an adaptive momentum term that modifies how the update for parameters θ
are done. In short, the update is larger when the gradient over a set of iterations
points to the same direction, whereas if the gradient is noisy, the updates become
smaller [37], [31]. The details of this solver are out of scope of this thesis.

Hyperparameter Optimization

The hyperparameters of a model are selected by some optimization procedure. The
main idea is to split the available into 2 subsets, called training and validation. Then,
a model is build using a set of hyperparamters, trained using the training data, and
evaluated using the validation set. This process is repeated using different sets of
hyperparameters. At the end, the hyperparameter set that performs the best on the
validation set is chosen. The validation set estimates the performance of all models
in unseen data.

In practice, this search for optimal hyperparameters can be a simple method or
a much more complicated optimization problem on its own. Simple approaches do
a grid search over a space of possible values for all hyperparameters combinations.
Other methods perform a random search, using random sets of hyperparamters.
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Capacity, Overfitting and Regularization

In general, the capacity of a neural network is defined by the total amount of
learnable parameters θ that are in the network. Usually, networks with higher
capacity are able to approximate more complex functions, given enough training time.
This means that models with higher capacity will be able to explain the training
data better, and will therefore have smaller error than simpler models. In fact, it is
possible to have zero error on training data, with a powerful enough model [31], [33].

However, the performance of the model in the training data is not the most
important evaluation criteria. After all, the true values of the training data are
known. What we care about is the performance of the model on data it has not
seen before. Ideally, the network will approximate the true function f ∗(·) for all
data, and not just the data used for training. Furthermore, the network should
not learn particularities of the training data that are not present on all the data,
such as noise, or problems due to outliers. In other words, we want to minimize the
generalization error.

In practice, this means that the ideal capacity of a model should be high enough
to model the training data, but not too high, so that it fails the model the test data.
An example of this concept is shown in figure 2.10, where a model with different
capacities is fit to some training data.

Figure 2.10: How the capacity of the model affects the fit to the data. (Left)
Whne the model is too simple and has little capacity, it fails to approximate the
function of the data, so the error between the model and the data is big. (Middle)
A model with enough capacity can model most of the training data with small
errors. This model is just complex enough to explain the data but not more.
(Right) A model with too much capacity, will fit all the training data with no
error, but will most likely fail to explain data not seen during training. Adapted
from [38].

In order to minimize the generalization error, it is possible to limit the model
capacity directly, for example, by carefully selecting the hyperparameters of the
model. Another option is to add a term to the cost function used during training,
that explicitly penalizes models that are "too complicated". This is a form of
regularization. For example, by penalizing the norm of the weights vectors w
learned by the network, the training will prefer solutions that have small weights. In
the end, the best solution learned will balance the error between the predicted and
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the true data, and this regularization term. This balance can be controlled by an
hyperparameter.

There are many regularization methods, but the main idea across all of the them
is to let the training procedure prefer some solutions over other, by adding additional
constraints, either to the cost function, or the training procedure itself. If applied to
the cost function, the general form is

J̃(θ; x,y) = J(θ; x,y) + λΩ(θ), (2.14)

where J(·) is the cost function defined by parameters θ, evaluated for inputs an
outputs x and y, Ω(·) is the new regularization term, and λ is the hyperparameters
that controls how much penalty is applied. In this thesis, all models use the squared
error with L2 regularization, defined as:

J̃(w, b; x,y) = λ

2 wTw + 1
n

n∑
i=1

(
y− f(x)

)2
. (2.15)



Chapter 3

Data Analysis

One of main goals of this work is to analyze the acoustical properties of a room
and to build a computational model that is able to predict these properties based
on geometrical and acoustical information without recurring to simulations. For
this purpose, a dataset was composed. On this chapter, first, the data is described,
including the collection process and some general qualities. Secondly, the data
manipulation and preparation processes are explained. Finally, an exploratory data
analysis is detailed, that exemplifies some of the dataset most peculiar characteristics.

3.1 Public Datasets
Machine learning algorithms are powered by data, and the performance of these
algorithms on any given task is limited by the quality and quantity of this data.
In the words of Andrew Ng, "if a ML algorithm is a rocket engine, data is the fuel
that feeds the engine" [39]. Therefore, a successful ML solution requires not only
sophisticated models and methods, but also adequate and abundant data. Moreover,
most models can benefit from additional data, as long as they have enough capacity
to exploit it. Even for tasks than can be accurately represented, such as physics
based phenomena, large amounts of data is helpful [40].

In practice, developing large, diverse datasets has played a significant role in the
results achieved in many fields. In computer vision, a major breakthrough occurred
when the Imagenet dataset became popular [41], where state of the art solutions can
now outperform human level in tasks such as object detection. In music classification,
efforts like the Million Song Dataset (MSD) [42], or more recently the Free Music
Archive (FMA) [43] have contributed to major improvements 1.

For room acoustics, there are no large, open, standard datasets that researchers
from different institutions use, share and compare results. Instead, most studies
collect their own data according to their needs. And although it is common to share
this data with the scientific community, most of the time it has limited use beyond
the scope of the original study, due to small size, lack of variety, or features types.

1Although music classification in general is far from solved, and more recently researchers are
moving onto related tasks such as tagging.

22
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For example, in [44] a set of room impulses is provided. It has 3 different rooms,
including a medium hall with 200 seats, and big, open space that works as a library,
and a small classroom. The data includes multiple loudspeaker positions for each
room, 2 microphone positions, and both omninidirectional and B-format impulse
responses. However, the dataset only includes basic geometric information about each
room, such as general dimensions, and positions for loudspeakers and microphones.
There is no data about acoustical properties of the rooms.

Other datasets focus on different problems, such as sound event detection inside
noisy environments. For instance, [45] and [46] provide a collection of sounds and
room impulses in ambisonics format. Much of the data variety comes from the event
themselves and not the responses. Simulated room impulse responses are used in
[47], although for very few examples.

For this thesis, we are interested in the prediction of general room acoustics prop-
erties based on different features such as the dimensions of the room or the furniture
inside. None of the aforementioned datasets provide both, high quality multichannel
room impulse responses for a variety of positions and acoustical environments, and
detailed information about the geometry and absorption coefficients of environments
and objects. Therefore we analyze a novel dataset, produced by the Department of
Signal Processing and Acoustics of Aalto University 2. The data consists of real-life
acoustical measurements and full 3D geometrical modelling of the room and furniture,
in addition to absorption coefficients for most elements. Even though the size and
variety of the data is not cosidered large, especially when it is compared to what
may be obtained with simulations, the data offers a true representation of a real
world phenomenon, including all the noise and disturbance associated with real world
measurements. For these reasons, the data is suitable for a proof of concept.

3.2 Room Acoustics Dataset
The dataset consists of a total of 3332 data records 3, that include audio measurements
and other properties. All measurements were made in a single room at the Otaniemi
campus of Aalto University during the summer of 2017. The room is a small office,
with carpeted floor, light acoustic treatment in the ceiling (in the form of perforated
gypsum panels), a large window on one wall, and a single door. The dimensions of
the room are show in table and figure 3.1. A total of 4 different fixed loudspeaker
positions and 1 microphone position were used. For each observation, the room
impulse response (RIR) was obtained by reproducing an exponential sine sweep with
a loudspeaker inside the room, and then recording the sound with a microphone [48].
The microphone used is an spherical microphone Eigenmic with 32 capsules, so for
each measurement there are 32 recordings or channels.

Even though all the data was obtained from a single room with fixed loudspeaker
and microphone positions, variance was introduced by manipulating the objects

2It should be noted that the data collection process was not part of this thesis itself, as it was
carried out by other personnel of the department

3In this work the terms data record, observation, and example are used interchangeably.
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Property Value
Width 4.398 m
Height 2.856 m
Depth 4.867 m
Volume 61.13 m3

Wall surface 95.73 m2

Figure 3.1 & Table 3.1: Dimensions of the room used for all the acoustical measurements
in the dataset.

placed inside the room. The room itself is rectangular and mostly empty, with only
a few surfaces that break the flatness of the walls: lamps in the ceiling, and an edge
around the window. The objects added to the room included shelves, crates and
most noticeably highly absorptive wedges, which are commonly used in anechoic
chambers. In the end, the placement and position of these objects in the room creates
a unique acoustical environment. In this work we refer to the combination of room,
furniture and objects as room configuration. In total, there are 833 different room
configurations available.

A data observation collected for each room configuration, and a single loudspeaker
position out of the 4 available, thus there are 3332 observations. Each data record
includes the full 3D model of the room configuration, a 2D equirectangular projection
of a spherical (360◦ panoramic) photograph of the room configuration at the time of
the measurement from the microphone location, position and orientation coordinates
of the loudspeaker and microphone used, and finally the 32 channel RIR. A summary
of these raw features is shown in table 3.2. The sampling frequency used is 48 000
Hz.

Feature Type Dimensionality
3D model complex N/A
Spherical photograph image 2688 x 5376 x 3
Loudspeaker position and orientation vector 1 x 3
Microphone position and orientation vector 1 x 3
Room impulse response multichannel sequence 240000 x 32

Table 3.2: Features available for each raw data observation.

A visualization of the raw data for a typical room configuration is shown in
figure 3.2. The 3D model is rendered from two different perspectives, and it includes
the room, objects inside, and the loudspeaker and microphone locations. For this
configuration, most of the room in empty, except for some absorptive wedges placed
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(a) Top view (b) 3D View

(c) 2D Spherical photograph

Figure 3.2: Geometrical data for a typical room configuration, including the general layout
of the room along with the placement of fixtures such as lamps, furniture, or absorptive
wedges. In the 3D models (a) and (b), the speaker icon represents the loudspeaker position,
and the green line marks its orientation. The cyan sphere shows the microphone position,
where each magenta line marks the orientation of the 20 faces of the icosahedron volume
used to analyze the room. The spherical camera (c) shows the photograph of the same
room configuration at the microphone position.

on the floor, along the front and right walls. The icosahedral volume is shown, where
each magenta line marks the direction of each of its 20 faces. Only the position of
the loudspeaker used in the data record is marked in the 3D model, however, the
spherical photograph shows all the speakers at the same time.

Lastly, all the locations of the loudspeakers as shown in figure 3.3. This positions
are fixed for all room configurations. For analysis, we refer to each of the positions by
the labels front , left90degrees , left45degrees and farAway. Do note that all positions
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(a) front (b) left90degrees

(c) left45degrees (d) farAway

Figure 3.3: Location of the 4 different loudspeaker positions inside the room. These
positions are fixed for all room configurations.
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except for farAway point directly at the microphone.

3.2.1 Data pre-preprocessing
The raw data described before lacks two important attributes. First, there is no
information about the absorption coefficients α of the room surfaces and objects,
and second, room acoustic parameters need to be extracted from the RIR. So an
additional procedure needs to be applied to the data to obtain the relevant features
and targets. Here we call this process the pre-preprocessing of the data, in order
to differentiate it from the preprocessing step that is done later, during the estimation
phase, as a method to prepare the data for the ML models.

For spatial audio, we are interested in the direction where sound is coming from.
In addition, the differences between sounds coming from multiple directions are also
relevant. For room acoustics, the acoustical properties of the room configuration will
affect sound from multiple directions differently. To capture the diversity among
directions, we first consider an imaginary volume right at the microphone position and
analyze both the input features and perceived sound for several directions originating
from this point.

In practice, the pre-preprocessing procedure is as follows. For each data record,
the 3D model of the full room configuration is loaded. Then an icosahedral volume 4

(see figure 3.4) is placed in the model, at the location of the microphone. Each face of
the icosahedron points to a unique direction in the room. First the geometrical data is
processed. For each of the 20 directions, the 3D model is analyzed, using ray casting,
to identify the total absorption area (ignoring obstacles), visible absorption area
(taking obstacles into account), distance to nearest surface and distance to farthest
surface. Given than α depends on frequency, all absorption values are calculated for
octave bands. This results in 4 new features sets, two of 20 x 6 values, and two of 20
x 1. We refer to each set as a spherical map.

Figure 3.4: Icosahedron with 20 triangular faces. This polygon is used to extract directional
information of the raw data.

Afterwards, the relevant acoustical parameters are computed for each direction
of the icosahedron. To do this, the 32 channels of the RIR are loaded, and using

4An icosahedron is a polyhedron with 20 faces. A regular icosahedron has faces that are all
equilateral triangles, and is one of the five Platonic solids [49].



28

microphone array processing we generate 20 different 3rd order hypercardiod signals,
with them pointing to the same 20 directions as the center point of the faces of
the icosahedron. The result is a spatially-constrained single channel RIR for each
direction, which are used to calculate the values for T60 , EDT, C50 , DRR and L.
The actual computation is done with the toolbox provided by University of Surrey
[50]. All these parameters are computed in octave bands, except for C50 and DRR
which are broadband. Table 3.3 shows a summary of all the available features after
the pre-preprocessing step. At this point, some of the raw features are discarded
from further analysis.

Feature Type Dimensionality Units
All available absorption area spherical map 1 x 20 x 6 sabine
Visible absorption area spherical map 1 x 20 x 6 sabine
Nearest surface distance spherical map 1 x 20 x 1 m
Farthest surface distance spherical map 1 x 20 x 1 m
Spherical photograph image 2688 x 5376 x 3 pixel
Loudspeaker position and orientation vector 1 x 6 m
Microphone position and orientation vector 1 x 6 m
T60 spherical map 1 x 20 x 6 s
EDT spherical map 1 x 20 x 6 s
C50 spherical map 1 x 20 x 1 dB
DRR spherical map 1 x 20 x 1 dB
L spherical map 1 x 20 x 6 dB

Table 3.3: Summary of all features available for each observation after the pre-preprocessing
step.

An example of data after pre-preprocessing for a typical room is shown in figure
3.5. The total absorption area for all processed directions computed at the microphone
position are visualized as a spherical map (3.5 (b) ), where each triangle corresponds
to a face of the icosahedron. Thus, the highest absorption values for this configuration
are found in the faces pointing front and down, where most of the wedges are located.
The values for T60 and L of all 3rd order cardiod signals are also shown as spherical
maps in 3.5 (c) and (d).

3.3 Exploratory data analysis
An exploratory data analysis (EDA) is a useful method to understand some of the
properties of a dataset [51]. An EDA is usually the first step applied to a new dataset,
where the goal is to find patterns, identify anomalies, or confirm assumptions. This
process can discover areas that become future research opportunities. For example,
it is common to visualize the distribution of features, or remove features that are
highly correlated. In this section, a basic EDA evalutes some of the most salient
attributes, without going into deep details.
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(a) (b)

(c) (d)

Figure 3.5: Visualization of some input features and acoustical parameter values
for a typical room after pre-preprocessing the raw data. (a) top view of the
3D model of the room configuration, including the loudspeaker and microphone
positions, and orientation. (b) spherical map of all absorption available in the
room. (c) spherical map for T60 values. (d) spherical map for L values. All values
shown for 1000 Hz.
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Figure 3.6 shows the distribution of values for all available absorption area found
in the room, for all observations, in the 20 directions analyzed, at a single frequency
band. It is not surprising that some directions have a very small range of values, as
these directions most likely point to areas of the room where no treatment is applied,
such as those that point to the ceiling. Figure 3.7 shows a similar plot with the
distribution of the computed values for T60 and L, for all hypercardiod signals. As
expected, T60 has comparable distributions across all directions, as it is the result
of late reflections coming from all directions. L is more varied, because given the
fixed loudspeaker positions, some directions always have stronger direct sound than
others.

Figure 3.6: Distribution of values for all absorption area available in the room
for every direction of the icosahedron, at 1000 Hz.

Figure 3.8 shows the relationship between visible absorption and T60 for all room
configurations, a single frequency band, and all loudspeaker positions. There is
little difference between the distribution of values across all loudspeaker positions.
Moreover, there is no correlation between visible absorption and T60 value, as it can
be seen that similar T60 values occur for a wide range of visible absorption areas. A
similar analysis is shown in figure 3.9 for L values. Once again, there is no evident
correlation between L and visible absorption. More interestingly, for all loudspeaker
positions except farAway, there are 2 clear clusters of values for L. These highest
values are most likely those positions that point directly towards the loudspeaker
on each observation, as the direct sound usually has higher level than reflections.
Therefore, as position farAway is not pointing towards the microphone, this difference
is not observed.

An analysis of the distribution of T60 values and its relationship with all available
absorption area, for all room configurations, loudspeaker positions and frequency band
of 1000 Hz is shown in figure 3.10. On this plots, the mean values for all directions of
the icosahedron were considered, as the goal is to analyze the distribution of values
for each observation. As expected, when the mean of the total absorption present in
the room is low, the mean T60 across all directions is high. In other words, when
the room has little absorption, the reverberance is high. As mean total absorption
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Figure 3.7: Distribution of values for all T60 (left) and L (right) for every direction
of the icosahedrical volume, at 1000 Hz..

increases, the T60 decreases until it stabilizes. In addition, the variance for each room
configuration is very small, which supports the idea that T60 has little difference
across directions. There is minor deviation among loudspeaker positions, except for
slightly more variance for position front, specially for certain room configurations.

The same analysis is shown in figure 3.11 for L values. The relationship between
mean values of L and absorption is comparable with that of T60, however, here the
variance is much higher and follows an inverse trend than the mean, it increases with
the mean absorption. L correlates to the sound pressure level of the direct sound,
for this reason, the variance across direction is high.
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Figure 3.8: Relationship between visible absorption and measured T60 values for
all room configurations at 1000 Hz, with loudspeaker positions front (top left),
left90degrees (top right), left45degrees (bottom left), and farAway (bottom right).
Each point in the scatter plot is a pair of visible absorption and T60 value for a
single direction of the icosahedron volume faces placed in the microhpone position.
Rugplots on top of the x and y axes show the marginal distribution, where the
solid and dashed lines mark the mean and median respectively. Points where the
T60 > 2 s where removed from the analysis as they are considered outliers.
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Figure 3.9: Relationship between visible absorption and measured L values for
all room configurations at 1000 Hz, with loudspeaker positions front (top left),
left90degrees (top right), left45degrees (bottom left), and farAway (bottom right).
Each point in the scatter plot is a pair of visible absorption and L value for a
single direction of the icosahedron volume faces placed in the microphone position.
Rugplots on top of the x and y axes show the marginal distribution, where the
solid and dashed lines mark the mean and median respectively.
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Figure 3.10: Relationship between the absorption present in a room configura-
tion and the measured T60 values for all room configurations at 1000 Hz, with
loudspeaker positions front (top left), left90degrees (top right), left45degrees (bot-
tom left), and farAway (bottom right). The x axis is the mean of all absorption
present in the room for all directions. Each point is the mean (red points) or
variance (blue points) of the T60 values for all directions in a particular room
configuration. The absorption values consider all the absorption present in the
room and not just what is visible from the microphone position. Points where the
T60 > 2 s where removed from the analysis as they are considered outliers.
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Figure 3.11: Relationship between the absorption present in a room configuration
and the measured L values for all room configurations at 1000 Hz, with loudspeaker
positions front (top left), left90degrees (top right), left45degrees (bottom left), and
farAway (bottom right). The x axis is the mean of all absorption present in the
room for all directions. Each point is the mean (red points) or variance (blue
points) of the L values for all directions in a particular room configuration. The
absorption values consider all the absorption present in the room and not just
what is visible from the microphone position.



Chapter 4

Methodology

In this chapter, we describe the preprocessing procedure which the data (described in
chapter 3) undergoes, where it is prepared for the ML models. Next, the performance
metrics used to evaluate all models are explained. Finally, the models themselves are
listed and detailed, including the hyperparameter optimization procedure employed
to tune the models.

4.1 Data Preparation and Preprocessing
After the pre-preprocessing step described in 3.2.1, the data needs to be prepared to
be used in the neural networks models. This means that a data matrix (or tensor)
needs to be built selecting some or all the features available as inputs, as well as the
appropriate targets as outputs. Additionally, the inputs need to be standardized.

Outliers Removal
One of the limitations of the method used to compute the T60 values is that sometimes
it can give very wrong values. This is most likely because the background noise
in the RIR was too high, which affects the regression of the energy decay curve.
Thus, it is not uncommon for some T60 values to be as high as 20 s, which is severely
unreasonable for the room used in the dataset.

Therefore, there is a need to remove from the analysis those observations where
the T60 values are higher than some threshold tlimit. For most computations of this
thesis, the threshold was set to tlimit =2 s. This threshold does not remove all outliers
(as perhaps values larger than 1 s are already wrong ), but going any lower would
severely limit the amount of available data for models that predict multiple bands.
In such cases, all observations with T60 > tlimit for any frequency band were removed.

Then same rule was applied for models using EDT. No outliers where removed
for the other acoustical parameters.

36
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Normalization
For all models, the input data was normalized so that each feature has zero mean,
and unit variance. That said, in most cases this normalization process was not very
important, as the data has very similar ranges for most features. No further analysis
was done to, for example, compare different normalization strategies.

Split
For all experiments, the data was split into different subsets after removing outliers
unless noted otherwise. The typical split used 70 % of the data for training, 10%
for validation, and 20% for test. Validation was only used as early stopping criteria
when training the models. In addition, the data observations where shuffled before
splitting, so that each run works on a different sample. Where applicable, cross
validation was used using 5 folds.

Augmentation
Data augmentation was used to artificially increase the amount of training data and to
combat overfitting. The method used was to create copies of the training observations,
and add a small amount of white noise to the copies. For most experiment, the
data was replicated 4 times, so that the training set has 5 times the total number
of available observations. The added noise was sampled with Gaussian distribution
with mean 0 and standard deviation of 0.2. A cursory analysis of the effect of
augmentation showed that increasing the amount of augmentation did not improved
the performance significantly, while higher standard deviations for the noise escalated
errors. Only training data was augmented, as both validation and test data were left
unperturbed.

4.2 Performance metrics
In any machine learning application it is important to define objective measures that
determine the quality of solutions. These metrics allow to easily compare models
and to correctly evaluate whether one is better than another [39]. However, in real
world applications determining what is a better solution is not simple. Commonly,
there are multiple aspects that need to be considered, and some of these values can
be unrelated, or even inversely related.

For example, in a particular classification problem, finding the correct class for
the input data (which means having high classification accuracy) is important. At
the same time, having a system that makes the classification in a computationally
efficient manner is also important, as the application might be deployed in consumer
devices with limited resources. Therefore, the ideal solution would have high accuracy
and low computational cost.

This thesis deals with the prediction (or estimation) of common room acoustics
parameters as a regression problem. Thus, it is important to quantify the regression
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error, to measure how much the predictions deviate from the true values. However,
this can be done in multiple ways, and each method shows different facets of the
errors. It is important to mention that these performance measures are not necessarily
the same as the cost function used to train the ML models, as these measures can
always be computed from the final predictions of any model.

Mean Square Error (MSE)

Perhaps the most common way to magnify the regression error is the mean square
error (MSE) and the closely related root mean square error (RMSE), which are
computed as

MSE = 1
n

n∑
i=1

(ŷi − yi)2, (4.1)

RMSE =
√

MSE =
√√√√ 1
n

n∑
i=1

(ŷi − yi)2, (4.2)

where n is the total number of observations, and yi, ŷi are the true value and predicted
value of the ith observation respectively.

Besides measuring error, the MSE can also work as an unbiased estimator of the
population variance, by scaling it by 1

n−1 [52]. However, as the MSE uses square
values, it is sensible to outliers, where unusually large values are over penalized.
Nonetheless, the MSE is a good starting point, and it is particularly insightful because
it is commonly used as a cost function as it is easily derivable.

Mean Absolute Error (MAE)

The mean absolute error (MAE) is similar to the MSE, with the difference that
instead of squaring the error, here the absolute value is used. It is compute as

MAE = 1
n

n∑
i=1
|ŷi − yi|, (4.3)

where n is the total number of observations, and yi, ŷi are the true value and predicted
value of the ith observation respectively.

The MAE is not as sensible to outliers as MSE, but it cannot be used to estimate
the variance as well. Additionally, both MAE and MSE (or RMSE) depend on the
distribution of errors. MAE is better suited when the errors are more or less uniform,
as it assigns the same weight to all errors. On the other hand, if the errors are
distributed normally, MSE might work best. Another disadvantage of the MAE (and
MSE) is that it is not relative to the magnitude of the true values y, which makes it
difficult to interpret.
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Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error takes into account the actual value of each
observation, giving a scaled measure of error. Its main advantage is that it is very
easy to interpret, as it shows how big the errors are on average as a percentage of the
true values, while not being extra sensible to outliers. MAPE is computed following
[53] as

MAPE = 100%
n

n∑
i=1

∣∣∣∣ ŷi − yiyi + ε

∣∣∣, (4.4)

where n is the total number of observations, ε is a small number to avoid division by
0, and yi, ŷi are the true value and predicted value of the ith observation respectively.

Regression Accuracy

All previous performances metrics measure the size of the error, where smaller values
are better. The regression accuracy measures instead how close the prediction is
to the true values, so that larger values are better. It is computed as

accuracy = (1−MAPE), (4.5)

The main problem with this metric is that it can be lower than 0, as the MAPE
is not bounded for very large errors. On the other hand, when errors are small, the
accuracy is a very clear way to compare results, and it should be as close to 100% as
possible.

Finally, for models that estimate multiple values at the same time (for example,
those that estimate all frequency bands in one pass), y and ŷ are row vectors for
each observation, and the total performance metric is the mean of all columns.

4.3 Machine Learning Models

4.3.1 Baseline
The baseline model is a FC network with 2 layers and 30 and 15 hidden units for
each layer respectively. The activation function for both layers is relu, and there is
no dropout. The training (for this and all models) was done using Adam optimizer
[37] and the cost function is the MSE as defined in section 4.2 with L2 regularization.
The minibatch size was set to 256, using learning rate of 5 x 10−3 and L2 coefficient
λ of 1 x 10−4. Weights are initialized using random values from Normal distribution
with mean of 0 and standard deviation of 0.01, while initial biases are set to 0. The
gradient threshold is set to 1, which means that all gradient values larger than 1 will
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be clipped to 1 1. Additionally, the validation patience is set to 25 epochs, so that
whenever the validation error stops decrease for 25 continuous epochs, training is
stopped (early stopping). The hyperparameters for this model are summarized in
table 4.1.

Group Hyperparameter Value
Model # layers 2
Model # hidden units (per layer) [30, 15]
Model activation (per layer) { relu, relu}
Optimizer learning rate 10−3

Optimizer gradient threshold 1
Regularization L2 L2
Regularization dropout [0, 0]

Table 4.1: Hyperparameters for the baseline model.

This baseline model is used to explore the prediction of different acoustical
parameters using multiple input features. Therefore, even though the core model is
the same, the input and output layers change depending on the choice of features
and targets. We refer to this choice as input and output modes.

Input Layer

In chapter 3 the features available after pre-preprocessing the data were mentioned.
In practice, for most of the experiments mentioned in this thesis, the input is the
spherical map of all available absorption for a single frequency band. This means
that the input layer has width of 20. Additional experiment were conducted using
additional features. For instance, all available absorption and visible absorption
(allAbs + visAbs) with an input width of 20 + 20 = 40; or all available absorption,
visible absorption, distance to nearest surfaces and distance to farthest surfaces
(allAbs + visAbs + nearSurf + farSurf ) with an input width of 20 + 20 + 20 + 20
= 80.

Other modes include multiband features, where we stack the spherical maps
consider of all frequency bands at the same time. For example, using only all
available absorption and all frequency bands, the input width is 20 × 6 = 120.
The largest mode uses all maps for all frequencies, so the total input width is
20 × 6 + 20 × 6 + 20 + 20 = 280, as the distance to surfaces does not depend on
frequency.

For the baseline model, each loudspeaker position was treated as a different
dataset, primarily because there are only 4 different options. Therefore, there is
no need to include features relating to these positions. This was done to facilitate

1Gradient clipping is usually only needed for very large neural networks, such as models with
many layers or recurrent architectures. We applied gradient clipping as it helped to obtain consistent
results
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analysis and study, for example, if some speaker positions were easier to predict
than others. The main drawback of this is that the amount of available data is
reduced to only 833 observations for each loudspeaker (as there are 833 different
room configurations).

Given the high dimensionality of the spherical photographs (2688× 5376× 3 > 43
million) compared to the size of the data, these images were not used in any models.

Output Layer

For the output layer, there are also multiple modes possible, and they depend on the
input layer. When the input layer has values for a single frequency band, the output
layer has width of 20, as it predicts the values for a single acoustical parameter, at
one frequency band for all 20 directions. This is regardless of whether one or more
types of input features was used ( for example, allAbs or allAbs + visAbs). If the
input features consider multiple frequency bands, then the output layer will also have
multiple values. So a model which has multiband input layer (allAbs with width
20× 6 = 120) will have 120 outputs.

Furthermore, it is possible to have models that predict multiple acoustical pa-
rameters at the same time, either for single band or multiple bands. In theory, even
though this means that the complexity of the model increases as there are more
weights that need to be learned, models could benefit from multiple predictions, as
all acoustical parameters are related and come from the same physical phenomenon.
In practice, no models were tested having an output layer with multiple acoustical
parameters. Thus the largest size of the output layer was 120, for multiband models.

4.3.2 Baseline + Location
An additional model was tested, that includes all the possible input layers mentioned
earlier, and adds the features indicating the location of both the loudspeakers and
the microphone. For example, a model with only all available absorption (allAbs)
as input and single band, would have input width of 20 × 1 + 3 + 3 = 26 . Even
though the microphone position and orientation is the same for all data examples,
this feature was still added to the model as preparation for future work. Moreover,
we found that its presence did not affect performance. Unlike the baseline model,
when the location features are added, the training and evaluation is done considering
the observations for all loudspeaker positions.

The goal of this work is not only to obtain the lowest prediction errors for a
specific acoustical parameter, but to explore how different types of input features
affect the prediction and to compare the errors across different targets. Therefore,
multiple combinations of input and output layers were tested. A summary of some of
the modes tested are shown in tables 4.2 and 4.3. Given the vast amount of possible
modes, plus their combinations, in this thesis only the most relevant results are
presented
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Input Layers
Frequency Features Width

Ba
se
. Single Band allAbs 1× 20 = 20

allAbs + visAbs 1× 20 + 1× 20 = 40

Multiband allAbs 6× 20 = 120
allAbs + visAbs 6× 20 + 6× 20 = 240

Ba
se
+
Lo

c Single Band allAbs 1× 20 + 6 = 26
allAbs + visAbs 1× 20 + 1× 20 + 6 = 46

Multiband allAbs 6× 20 + 6 = 126
allAbs + visAbs 6× 20 + 6× 20 + 6 = 246

Table 4.2: Example of different modes for the input (top) and output (bottom) layers for
the baseline and the baseline + location neural network models. Frequency modes can be
either single of multiband, while features can select one or more spherical maps allAbs ,
visAbs , nearSurf or farSurf . This table is not exhaustive and shows only a few possible
combinations.

Output Layers
Frequency Target Width

A
ll

Single Band T60 1× 20 = 20
T60 + L 1× 20 + 1× 20 = 40

Multiband T60 6× 20 = 120
T60 + L 6× 20 + 6× 20 = 240

Table 4.3: Example of different modes for the output (bottom) layers of some neural
network models. Frequency modes can be either single of multiband, while acoustical
parameters can select one or more of T60, EDT, C50, EDT or L. This table is not exhaustive
and shows only a few possible combinations.

4.3.3 Hyperparameter search
The basic architecture of the baseline model was found with a cursory hyperparameter
optimization procedure

An hyperparameter optimization procedure was done to find the best possible
architecture of a model for a specific task

In addition to the aforementioned baseline and baseline + location models,
a separate set of experiments was run to to study how certain hyperparameters
influence the performance of the models, for most input and output modes. Usually,
an hyperparameter search (or optimization) procedure is done to find the best possible
architecture of a model for a specific task, but on this thesis we are more interested
in the analysis rather than the final performance. This procedure was done using
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the random search method as defined by [54].
More specifically, we defined both a range of values and a distribution for all valid

hyperparameter available in the models. Then, a trial experiment was run, using
a randomly sampled hyperparameter set. For each trial, a random sample of the
data (using the normalization, split, and augmentation steps mentioned earlier) was
used to train and evaluate a model build using that hyperparameter set. Since each
trial has an independent random sample of the data and hyperparameter, and each
sample follows the same distribution, the trials can be considered as independent
experiments of identical distributions (i.i.d) [54]. The main idea is that after enough
trials, patterns can be observed in the results, were certain hyperparameter settings
consistently perform better than others.

The hyperparameters tested in this process, the range of possible values, and
the corresponding probability distribution, are listed in table 4.4. For example,
the activation function for each layer is drawn uniformly from the set of 5 possible
functions described in the table. On the other hand, the number of layers is drawn
geometrically 2 from 1 to 5. For each input and output mode tested, a set of 3000
trials was evaluted.

Group Hyperparameter Dist. Range
Augmentation size uniform [1, 20]
Augmentation noise σ uniform [0, 1]
Model # layers geometric [1, 5]
Model # hidden units (per layer) geometric [5, 100]
Model activation (per layer) uniform {relu, tanh, leakyRelu,

clippedRelu, linear}
Optimizer learning rate exponential [1× 10−6, 10]
Optimizer gradient threshold geometric [1, 100]
Regularization L2 exponential [3.1× 10−7, 3.1]
Regularization dropout uniform [0, 1]

Table 4.4: Hyperparameters to be optimized, the range of values that can be selected in
the random search, and the distribution used to select their values.

2Here we use the same definition for geometrical and exponential drawing as [54]. A geometrical
draw from A to B for 0 < A < B correspond to a uniform sample in the range [log(A), log(B)],
then exponentiating the result to get a number between A and B, and rounding it to the nearest
integer. Exponential draw is the same without rounding .



Chapter 5

Results

This chapter starts with a test of the validity of the proposed method by comparing
it to the traditional estimation of T60 on monophonic (omnidirectional) data. This is
followed by an unsupervised analysis of the data, which reveals some characteristics
of the data. An expansion of the proposed method to spatial data using 3rd-order
hypercardiod signals is then presented. Finally, the role of selected hyperparameters
is detailed.

Due to the vast amount of different experiment configurations (determined by
loudspeaker position, frequency mode, and acoustical parameter) only the most
relevant results are shown on this chapter. Where applicable, additional results can
be found in the appendix.

5.1 Test case: T60 Estimation vs Sabine Formula
In any machine learning application, it is important to compare the performance of
the proposed model to a reference solution. As a proof of concept, the baseline neural
method is used to estimate the omnidirectional T60 values and the performance is
compared to the traditional estimation using the Sabine formula.

For this experiment, the input for the baseline neural network is the all available
absorption area spherical map (allAbs) for a single band (1 x 20), and the output is
a single value (1 x 1), as this is the omnidirectional case. The Sabine formula was
computed using the same 20 absorption values. For details about the Sabine formula
refer to section 2.1.5.

For each frequency band and speaker position, the data was randomly split into
60 % training and 40 % test sets. The baseline neural network was trained using only
the training set. In order to have a fair comparison, the results are only evaluated
using the test set. Figure 5.1 shows the prediction accuracy for a typical case, where
the neural network model clearly outperforms the Sabine method, with a mean
accuracy more than 2 times higher. The Sabine method generally underestimates
the T60, and has a wider range of predictions than the true values. For example, the
Sabine method predicts a significant amount of values as low as 0.15 s, while the
real data never goes under 0.4 s.

44
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Even in cases where the neural network model doesn’t perform as well, there is a
clear improvement over the Sabine method. For example, for the frequency band
of 250 Hz, and the speaker position farAway, the Sabine method again has a large
bias towards underestimating the values, whereas the prediction error for the neural
network model is more even (figure 5.2), with predictions that go over and under the
true values on similar ratios.

The boxplots for the distribution of the prediction accuracy of all bands and
speaker positions is shown in figure 5.3. For the neural network model, most bands
and loudspeaker positions have similar performance, where only the 250 Hz band
consistently shows both lower mean and higher variance. For the farAway position, the
highest frequency also underperformed. On the other hand, the Sabine method shows
poor performance along all bands and positions. Interestingly, the best performance
happens in the 250 Hz band.

Figure 5.1: Regression plot for the estimation of omnidirectional T60 values using
the baseline neural network model (left) and the traditional Sabine formula (right),
at 1000 Hz, with the speaker position front.

5.2 Unsupervised Learning
For each combination of frequency band and acoustical parameter, two dimensionality
reduction techniques were applied: PCA and t-SNE. The process consisted of stacking
the input features of the all available absorption area spherical map (allAbs), with
the target values (20 directions for different acoustical parameters), for a total of 40
input features per data sample. Models using all frequency bands (multiband), or all
parameters (multiparameter) at the same time, were also considered.

These input features were then projected to a lower dimensionality space utilizing
the two methods mentioned previously. As the goal of this projection is to visualize
the data and not to reduce the dimensionality of the data as a preprocessing step,
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Figure 5.2: Regression plot for the estimation of omnidirectional T60 values using
the baseline neural network model (left) and the traditional Sabine formula (right),
at 250 Hz, with the speaker position farAway.

Figure 5.3: Boxplots for the accuracy of the estimation of omnidirectional T60
values using the baseline neural network model (top) and the traditional Sabine
formula (bottom), at various frequency bands and speaker positions.
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all projections were fixed to 2 dimensions. The computation of the mapping and
projections was performed using the dimensionality reduction toolbox for Matlab
[55].

As there were only 4 loudspeaker positions for all data, it is possible to classify
each data sample to one of this distinct positions. All loudspeaker positions were
analyzed at the same time, where these class labels were utilized only to visualize the
different positions in the projections. The goal was to find out if samples belonging
to the same position are clustered close together and separate from other classes in
the projection, which would imply that these classes are easily separable giving the
selected features.

Figure 5.4: Percentage of cumulative explained variance expressed as a function
of principal components selected for a low dimensionality projection of various
configurations of frequency bands and acoustical parameters.

5.2.1 PCA
By analyzing the eigenvalues obtained form the eigen decomposition of the covariance
matrix in the PCA method, it is possible to observe how much variance is explained
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by each of the principal component dimensions. Figure 5.4 shows the cumulative
explained variance for the first 10 principal components for different acoustical
parameters and frequency bands, including the multiband and multiparameter modes.
On average, time features such as T60 and EDT have under 80% percent of the
variance explained using just 2 principal components, while L is slightly better. For
all cases, 6 components is already enough to explain at least 90% of the variance,
even for the multiband, multiparemeter case.

For some quantities such as T60, the PCA projection shows that the clusters
defined by each loudspeaker position are not well separated (see figure 5.5), which
means that it is not possible to identify the class based only on T60. However, other
parameters such as L show a very clear separation, shown in figure 5.6.

A Trellis plot showing the PCA projections for all frequencies and acoustical
parameters is shown in 5.7. There is not much difference in the density of the clusters
across different frequency bands, even for the the multiband case where the original
dimensionality is much higher.

Figure 5.5: Projection into the first 2 principal components using PCA for
frequency band of 1000 Hz and acoustical parameter T60.

5.2.2 t-SNE
The t-SNE projections into 2 dimensions are shown in figure 5.8 show little difference
to the PCA projections shown earlier. T60 and EDT show poor aggregation for
loudspeaker positions while other acoustical parameters show good separation between
classes. Perhaps the most important distinct feature of these projections is that
for some configurations, such as L at 4000 Hz, some of the loudspeaker positions
are split into two or more distinct areas, which means that a simple linear classifier
would fail to correctly identify at least a sizable portion of the samples.
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Figure 5.6: Projection into the first 2 principal components using PCA for
frequency band of 1000 Hz and acoustical parameter L.
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Figure 5.7: Projections into the first 2 principal components using PCA for
multiple frequency bands, and acoustical parameters. Plots for C50 and DRR are
the same for all frequency bands as these values are computed broadband.
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Figure 5.8: Two dimensional projection using t-SNE method for multiple config-
urations for frequency bands and acoustical parameters. Plots for C50 and DRR
use the same input features as these values are computed broadband, but the
projections correspond to different realizations.
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5.3 Estimation

5.3.1 Baseline Model
The baseline neural network model described in chapter 4.3.1, was first trained for
each loudspeakeer position individually.

Loudspeaker
Location

Frequency Target Dimensions RMSE MAE Accuracy

Front 250 T60 20 0.172 0.1093 0.8633
Front 500 T60 20 0.0761 0.0484 0.9251
Front 1000 T60 20 0.0613 0.042 0.9304
Front 2000 T60 20 0.0645 0.0468 0.9245
Front 4000 T60 20 0.052 0.0374 0.9351
Front 8000 T60 20 0.0528 0.0333 0.9329
Front Multiband T60 120 0.0943 0.0564 0.9136
Front 250 L 20 1.1011 0.8658 0.9869
Front 500 L 20 1.1213 0.876 0.9862
Front 1000 L 20 1.2575 0.9732 0.9837
Front 2000 L 20 1.2122 0.9133 0.9847
Front 4000 L 20 1.158 0.8605 0.9854
Front 8000 L 20 0.9495 0.6836 0.9878
Front Multiband L 120 1.3352 1.0354 0.9828
Table 5.1: Performance results for the baseline neural network model for loud-
speaker position fron.

5.3.2 Baseline + Location
The Baseline + Location model was trained using the all available absorption spherical
map (allAbs ) for different acoustical parameters using both single and multiband
modes. The results are shown in figure 5.10. Overall, this model has the same trend
as the baseline, where L has the best performance and DRR the worst. Interestengly
there is little difference across frequency bands for most acoustical parameters except
for T60.

5.3.3 Hyperparameter Optimization
Impact of Data Size

In this set of experiments, for each configuration of loudspeaker position, frequency
mode, and acoustical parameter, the dataset was randomly split into fixed training
and validation subsets. Afterwards, a baseline neural network model was trained using
only a random sample (with no replacement) of the training subset and evaluated on
the validation set. To monitor the impact of the amount of training data, the number
of examples in the training sample was varied. To reduce problems derived form
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(a) (b)

(c) (d)

Figure 5.9: Estimation accuracy for the baseline neural network model for all
frequency modes and acoustical parameters, for loudspeaker positions front (a),
left45degrees (b), left90degrees (c), and farAway (d).
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(a) (b)

Figure 5.10: Performance for the baseline + location neural network model with
input features for allAbs and the loudspeaker location and orientation coordinates,
for all frequency modes and acoustical parameters. (a) shows RMSE where lower
is better. (b) shows accuracy where higher is better.
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Figure 5.11: Estimation performance for speaker position front, frequency 1000
Hz, and acoustical parameter T60 (top row) or L (bottom row) when a baseline
neural network model is trained on different samples of the training subset. The
x-axis is the data size in log-scale and y-axis is the MSE (left column) or estimation
accuracy (right column).

having an unlucky sample, each experiment was repeated 4 times, and the average
performance of all repetitions was reported. With 5 speaker positions (4 single
speaker and 1 multispeaker), 7 frequency modes (6 single band and 1 multiband), 6
acoustical parameters, 25 training subset sizes, and 4 repetitions, a total of 21 000
experiments were evaluated. All other hyperparameters remained constant.

Figure 5.11 shows the performance of a typical configuration for the acoustical
parameters of T60 and L for increasing training sample sizes. At first, the results follow
the expected behavior, were adding more data increases performance. However, the
performance saturates after around 150 examples but at a very high accuracy value.
This means that at least for this speaker position and frequency band, the estimation
problem is quite simple, and the difference between predictions and true values could
very well be the product of measurement noise or deficiencies on the computation of
the T60 from the recorded impulse responses. Moreover, this performance is present
in both training and validation subsets, therefore showing little sign of overfitting.

The results for other speaker locations shown in figure 5.12 resemble the previ-
ous ones, where only loudspeaker position farAway has a significantly diminished
performance.

Other configurations show similar behavior. Once again, for single band models,
frequencies of 250 and 8000 Hz show overall lower performance but the trend is the
same. Figure 5.13 shows a comparison of the same curves as 5.11 across multiple
frequency modes.
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Figure 5.12: Estimation performance for frequency 1000 Hz, and acoustical
parameter T60 for loudspeaker positions front (top left), left90degrees (top right),
left45degrees (bottom left) and farAway (bottom right) when a baseline neural
network model is trained on different samples of the training subset. The x-axis
is the data size in log-scale and y-axis is the estimation accuracy.

Impact of Model Capacity

To study the relationship between model capacity and performance the results of all
individual experiments of the random search for a single configuration were sorted
according to the total number of trainable parameters present in the model. All
the models used are fully connected neural networks, so the total amount of these
parameters is determined by the number of layers and the number of hidden units
per layer. Here there is no difference between deep (many layers) and wide (many
units per layers) models, as the objective is to measure the overall capacity of the
model.

Figure 5.14 shows the relationship between accuracy and model capacity for
randomized experiments. There is no clear dependency between the number of the
trainables and the overall accuracy. Models with as few as 225 trainable parameters
(which is a single hidden layer with 5 hidden units) can already achieve very high
accuracy. More surprisingly, there seems to be two concentration of results, where
most of the results are either good enough (with accuracy larger than 80%), or very
poor (with accuracy lower than 10%, and only a few amount of results are in between.
This means that the problem is simple enough that it can be solved by a vast amount
of model architectures, as long as certain features are present.
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Figure 5.13: Comparison of the estimation performance loudspeaker positions
front acoustical parameter T60 for multiple frequency bands when a baseline neural
network model is trained on different samples of the training subset. The x-axis
is the data size in log-scale and y-axis is the estimation accuracy.

The same pattern is present in models with a larger amount of inputs and outputs.
For example, models that predict the values for all loudspeaker positions at the same
time are shown in figure 5.15, while models that predict all loudspeaker positions
and all frequency modes appear in figure 5.16.

Impact of Model Depth

The total number of trainable parameters is not the only way to measure a model’s
complexity, as the ordering composition and distribution of those parameters along the
full architecture is important. To study the relationship between model depth (number
of layers) and performance the results of all experiments for a given configuration
were grouped by depth.

Generally, deeper and thin models are better than shallow and wide ones [56],
[7], however, here shallow models perform slightly better. Figure shows the 5.17 the
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Figure 5.14: Estimation performance for speaker position front, frequency 1000
Hz, and acoustical parameter T60 (top two rows) or L (bottom two row) when
training different neural networks models. The x-axis is total amount of trainable
parameters in the model and y-axis is the estimation accuracy for train subset
(rows 1 and 3) and test subset (rows 2 and 4).
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Figure 5.15: Estimation performance for all speaker positions, frequency 1000
Hz, and acoustical parameter T60 when training different neural networks models.
The x-axis is total amount of trainable parameters in the model and y-axis is the
estimation accuracy for train subset (top row and test subset (bottom row).
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Figure 5.16: Estimation performance for all speaker positions, all frequency
bands, and acoustical parameter T60 when training different neural networks
models. The x-axis is total amount of trainable parameters in the model and
y-axis is the estimation accuracy for train subset (top row and test subset (bottom
row).
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boxplots for the accuracy values of all trained models grouped by number of layers
for some configurations. Other configurations followed a similar trend.
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Figure 5.17: Boxplots for the estimation performance of 3000 different models
with randomized hyperparameters grouped by number of layers, for loudspeaker
position front, frequency 1000 Hz, and acoustical parameters T60 (top) and L
(bottom). The x-axis is the number of hidden layers and the y-axis is the estimation
accuracy.



Chapter 6

Discussion

6.1 Results Analysis
The exploratory data analysis of the room acoustics dataset confirmed that some
acoustical parameters like T60 have little spatial variety, while others like L are more
directional. Additionally, there is some correlation between some of the measured
values and the total amount of absorption area in the room.

The boxplots for the values computed for T60 show a clear gap, where there is a
large group of results under 1 s and a smaller group above 1 s. This could mean that
all values over 1 s are incorrect, derived from errors or bugs in the software used to
compute the values.

The baseline model is much better than the traditional Sabine method, and it
can be expanded to estimate other acoustical parameters as well. That said, not
all parameters show the same performance. In general, T60, EDT and L are easy
to estimate for most frequency bands, while C50 and DRR are more challenging.
Although this could be because the latter ones are computed broadband.

Perhaps the most surprising result is that there is little sensitivity to most
hyperparameters for the models, where many different neural network architectures
perform well. In machine learning applications, the hyperparameter optimization
is usually a crucial step, where finding the correct configuration will determine
performance. In this case, the physical model of sound propagation appears to be
simple enough that it can be approximated by a vast range of functions, expressed
as networks with many architectures. However, this needs to be analyzed further,
as it could only be true for the particular dataset used, which is limited to a single
room, and fixed positions for microphone and loudspeakers.

More importantly, models with very few trainable parameters can achieve high
performance. These models could then be utilized in real time implementations due
to their reduced computational cost. That said, it is important to also consider
the computational cost of the data pre-preprocessing step described in section 3.2.1,
as the input features (the spherical maps using absorption coefficients) need to be
computed for each microphone position.

The baseline model with location features also performed very well. Furthermore,
the results of section 5.12 where performance is validated against amount of training
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examples show that relatively low amount of data is needed, at least for the fixed
microphone position. In practice, it might be that a simple room as the once
used requires only a few dozen measurements to estimate the effects of all possible
loudspeaker positions. More complex conditions might require more measurements.

6.2 Future Work
The work contained in this thesis provides a proof of concept on how to apply machine
learning methods to estimate common room acoustics parameters based on real
physical measurements. The results so far are promising and show that the method
works very well for the conditions available. However, these results are only the first
step of a much bigger problem, and there are several other things that need to be
tried.

The most obvious next step is to add more, and more diverse data. The dataset
used was restricted to measurements inside a single room with a simple rectangular
shape, limited positions for the microphone and loudspeakers, and a relatively small
number of configurations for objects inside the room. Rooms with more complex,
asymmetrical geometries might present different behavior, as the sound propagation
becomes more complex in such situations. Furthermore, the results show that
some loudspeaker positions are more difficult than others, specially those were
the loudspeaker is very close to a wall, and not pointing towards the microphone.
Additional complexity can be added by introducing diffusing elements to the room.
An ideal dataset would include data from many different rooms of multiple sizes,
geometries, acoustical materials, and plenty of measurements with multiple non fixed
positions of microphones and loudspeakers covering a large area of each room.

Obtaining real life data is difficult and costly. An alternative could be using data
from simulations. In theory, these simulations could provide infinite data where the
precision is only constrained by computational power. An interesting topic would
be to compare the performance of models using simulated data against real world
data. Moreover, a transfer learning approach could be useful, where the models are
trained using mostly simulated data, and then refined using limited real life data.

Finding a good representation for different room shapes could be a problem, as
the current models lack input features for this property, and adding features for
the dimensions of walls will not capture nuances in the geometry, such as angled
surfaces. An idea to test is to use image source model to generate a grid of points
that describes the room geometry.

Other types of input features could also be explored. In this work only a fraction
of the available features were tested, mostly the total absorption present for all
particular directions. Information such as visible absorption and distance to surfaces
were not fully utilized. Of particular interest are visual features such as spherical (or
panoramic) photographs of the rooms, as these images are easy to collect and don’t
require as much effort as 3d modelling. Additionally, models that employ different
types or features (such as visual, geometrical or absorption coefficients) will need to
carefully normalize all features, or perhaps use an ensemble model approach.
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Finally, a more ambitious project should explore if it is possible to generate the
full room impulse response (for as many channels or directions as needed) using the
available features or additional ones. That said, given the length of a typical impulse
response (up to a few seconds), a generative model would probably require much
more data than the currently available.



Chapter 7

Conclusion

This thesis has provided a proof of concept for a machine learning method to estimate
a set of typical room acoustics parameters using only geometric information as input
features. All models were trained and evaluated in a dataset that contains real
world acoustical measurements, as well as various geometric information including
absorption coefficients α. The process included a thorough analysis of the dataset,
along with a signal processing step where microphone array encoding methods are
used to extract spatial information of the data.

From this analysis, we confirm that reverberation times, measured by both T60
and EDT, have little variance across different directions for most examples. On the
other hand, parameters such as L, that depend more on the direct sound than the
late reflections, show a clear correlation with the absorption area available on each
direction. Additionally, a dimensionality reduction for visualization purposes showed
a similar trend. When clustering by loudspeaker position, T60 and EDT have little
cluster separation, while L, DRR, and C50 show good separation.

The estimation was performed using neural network models. A basic baseline
model using a FC network and the spherical map of available absorption as input
features, achieved good results for most parameters. The model was first validated
against the Sabine method, which the proposed model consistently outperforms. An
additional model that includes input features for the locations of the source and
microphone, also achieved high performance.

Furthermore, the hyperparameter analysis of both models produced three main
findings. First, a large number of combinations of hyperparameters produce very
high performance, where even models with as few a 1 layer and 15 hidden units
can match the results of models with thousands of trainable parameters. Second,
the depth of the models has little influence on the results, where there is only a
slight improvement for models up to 2 layers. Third, the benefit of increasing the
amount of training data examples for a single loudspeaker saturates after around
100 examples. All these suggest that the acoustical parameters derived from the
sound propagation inside the analyzed room, can be easily modeled by a wide range
of neural networks architectures.
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