28 research outputs found

    Bayesian Compression for Deep Learning

    Get PDF
    Compression and computational efficiency in deep learning have become a problem of great significance. In this work, we argue that the most principled and effective way to attack this problem is by adopting a Bayesian point of view, where through sparsity inducing priors we prune large parts of the network. We introduce two novelties in this paper: 1) we use hierarchical priors to prune nodes instead of individual weights, and 2) we use the posterior uncertainties to determine the optimal fixed point precision to encode the weights. Both factors significantly contribute to achieving the state of the art in terms of compression rates, while still staying competitive with methods designed to optimize for speed or energy efficiency.Comment: Published as a conference paper at NIPS 201

    Lossless compression with state space models using bits back coding

    Get PDF
    We generalize the 'bits back with ANS' method to time-series models with a latent Markov structure. This family of models includes hidden Markov models (HMMs), linear Gaussian state space models (LGSSMs) and many more. We provide experimental evidence that our method is effective for small scale models, and discuss its applicability to larger scale settings such as video compression

    Compressing Sets and Multisets of Sequences

    Get PDF
    This is the accepted manuscript for a paper published in IEEE Transactions on Information Theory, Vol. 61, No. 3, March 2015, doi: 10.1109/TIT.2015.2392093. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper describes lossless compression algorithms for multisets of sequences, taking advantage of the multiset’s unordered structure. Multisets are a generalization of sets, where members are allowed to occur multiple times. A multiset can be encoded naïvely by simply storing its elements in some sequential order, but then information is wasted on the ordering. We propose a technique that transforms the multiset into an order-invariant tree representation, and derive an arithmetic code that optimally compresses the tree. Our method achieves compression even if the sequences in the multiset are individually incompressible (such as cryptographic hash sums). The algorithm is demonstrated practically by compressing collections of SHA-1 hash sums, and multisets of arbitrary, individually encodable objects.This work was supported in part by the Engineering and Physical Sciences Research Council under Grant EP/I036575 and in part by a Google Research Award. This paper was presented at the 2014 Data Compression Conferenc

    Universal Deep Image Compression via Content-Adaptive Optimization with Adapters

    Full text link
    Deep image compression performs better than conventional codecs, such as JPEG, on natural images. However, deep image compression is learning-based and encounters a problem: the compression performance deteriorates significantly for out-of-domain images. In this study, we highlight this problem and address a novel task: universal deep image compression. This task aims to compress images belonging to arbitrary domains, such as natural images, line drawings, and comics. To address this problem, we propose a content-adaptive optimization framework; this framework uses a pre-trained compression model and adapts the model to a target image during compression. Adapters are inserted into the decoder of the model. For each input image, our framework optimizes the latent representation extracted by the encoder and the adapter parameters in terms of rate-distortion. The adapter parameters are additionally transmitted per image. For the experiments, a benchmark dataset containing uncompressed images of four domains (natural images, line drawings, comics, and vector arts) is constructed and the proposed universal deep compression is evaluated. Finally, the proposed model is compared with non-adaptive and existing adaptive compression models. The comparison reveals that the proposed model outperforms these. The code and dataset are publicly available at https://github.com/kktsubota/universal-dic.Comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 202

    Practical lossless compression with latent variables using bits back coding

    Get PDF
    Deep latent variable models have seen recent success in many data domains. Lossless compression is an application of these models which, despite having the potential to be highly useful, has yet to be implemented in a practical manner. We present 'Bits Back with ANS' (BB-ANS), a scheme to perform lossless compression with latent variable models at a near optimal rate. We demonstrate this scheme by using it to compress the MNIST dataset with a variational auto-encoder model (VAE), achieving compression rates superior to standard methods with only a simple VAE. Given that the scheme is highly amenable to parallelization, we conclude that with a sufficiently high quality generative model this scheme could be used to achieve substantial improvements in compression rate with acceptable running time. We make our implementation available open source at https://github.com/bits-back/bits-back

    Practical Lossless Compression with Latent Variables using Bits Back Coding

    Get PDF
    Deep latent variable models have seen recent success in many data domains. Lossless compression is an application of these models which, despite having the potential to be highly useful, has yet to be implemented in a practical manner. We present `Bits Back with ANS' (BB-ANS), a scheme to perform lossless compression with latent variable models at a near optimal rate. We demonstrate this scheme by using it to compress the MNIST dataset with a variational auto-encoder model (VAE), achieving compression rates superior to standard methods with only a simple VAE. Given that the scheme is highly amenable to parallelization, we conclude that with a sufficiently high quality generative model this scheme could be used to achieve substantial improvements in compression rate with acceptable running time. We make our implementation available open source at https://github.com/bits-back/bits-back

    Generalization Gap in Amortized Inference

    Get PDF
    The ability of likelihood-based probabilistic models to generalize to unseen data is central to many machine learning applications such as lossless compression. In this work, we study the generalization of a popular class of probabilistic model - the Variational Auto-Encoder (VAE). We discuss the two generalization gaps that affect VAEs and show that overfitting is usually dominated by amortized inference. Based on this observation, we propose a new training objective that improves the generalization of amortized inference. We demonstrate how our method can improve performance in the context of image modeling and lossless compression
    corecore