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ABSTRACT

Deep latent variable models have seen recent success in many data domains.
Lossless compression is an application of these models which, despite having
the potential to be highly useful, has yet to be implemented in a practical man-
ner. We present ‘Bits Back with ANS’ (BB-ANS), a scheme to perform lossless
compression with latent variable models at a near optimal rate. We demonstrate
this scheme by using it to compress the MNIST dataset with a variational auto-
encoder model (VAE), achieving compression rates superior to standard meth-
ods with only a simple VAE. Given that the scheme is highly amenable to par-
allelization, we conclude that with a sufficiently high quality generative model
this scheme could be used to achieve substantial improvements in compression
rate with acceptable running time. We make our implementation available open
source at https://github.com/bits-back/bits-back.

1 INTRODUCTION

The connections between information theory and machine learning have long been known to be
deep, and indeed the two fields are so closely related that they have been described as ‘two sides
of the same coin’ (Mackay, 2003). One particularly elegant connection is the essential equivalence
between probabilistic models of data and lossless compression methods. The source coding theorem
(Shannon, 1948) can be thought of as the fundamental theorem describing this idea, and Huffman
coding (Huffman, 1952), arithmetic coding (Witten et al., 1987) and the more recently developed
asymmetric numeral systems (Duda, 2009) are actual algorithms for implementing lossless com-
pression, given some kind of probabilistic model.

The field of machine learning has experienced an explosion of activity in recent years, and we have
seen a number of papers looking at applications of modern deep learning methods to lossy compres-
sion. Gregor et al. (2016) discusses applications of a deep latent Gaussian model to compression,
with an emphasis on lossy compression. Ballé et al. (2017), Theis et al. (2017), Ballé et al. (2018),
and Minnen et al. (2018) all implement lossy compression using (variational) auto-encoder style
models, and Tschannen et al. (2018) train a model for lossy compression using a GAN-like objec-
tive. Applications to lossless compression have been less well covered in recent works. We seek to
advance in this direction, and we focus on lossless compression using latent variable models.

The lossless compression algorithms mentioned above do not naturally cater for latent variables.
However there is a method, known as ‘bits back coding’ (Wallace, 1990; Hinton and van Camp,
1993), first introduced as a thought experiment, but later implemented in Frey and Hinton (1996)
and Frey (1997), which can be used to extend those algorithms to cope with latent variables.

Although bits back coding has been implemented in restricted cases by Frey (1997), there is no
known efficient implementation for modern neural net-based models or larger datasets. There is,
in fact, a fundamental incompatibility between bits back and the arithmetic coding scheme with
which it has previously been implemented. We resolve this issue, describing a scheme that instead
implements bits back using asymmetric numeral systems. We term this new coding scheme ‘Bits
Back with ANS’ (BB-ANS).
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Figure 1: Visual comparison of 30 binarized MNIST images with bitstream outputs
from running lossless compression algorithms PNG, bz2 and BB-ANS on the images1.

Our scheme improves on existing implementations of bits back coding in terms of compression rate
and code complexity, allowing for efficient lossless compression of arbitrarily large datasets with
deep latent variable models. We demonstrate the efficiency of BB-ANS by losslessly compressing
the MNIST dataset with a variational auto-encoder (VAE), a deep latent variable model with con-
tinuous latent variables (Kingma and Welling, 2013; Rezende et al., 2014). As far as we are aware,
this is the first time bits back coding has been implemented with continuous latent variables.

We find that BB-ANS with a VAE outperforms generic compression algorithms for both binarized
and raw MNIST, even with a very simple model architecture. We extrapolate these results to predict
that the performance of BB-ANS with larger, state of the art models would be significantly better
than generic compression algorithms.

2 BITS BACK CODING

In this section we describe bits back coding, a method for lossless compression of data using a
latent variable model. Before we describe bits back itself, we briefly discuss methods for encoding
a stream of data given a fully observed model, a task sometimes referred to as ‘range coding’ or
‘entropy coding’. We do not go into detail about the algorithms or their implementation, but describe
the high level characteristics necessary for understanding bits back.

For brevity, in the following sections we use simply log to refer to the base 2 logarithm, usually
denoted log2. Message lengths are measured in bits.

2.1 COMPRESSING STREAMS WITH ARITHMETIC CODING VS. ASYMMETRIC NUMERAL
SYSTEMS

Suppose that someone (‘the sender’) has a sequence of randomly distributed symbols, s =
(s1, ..., sN ), with each sn drawn from a finite alphabet An, which they would like to communi-
cate to someone else (‘the receiver’) in as few bits as possible. Suppose that sender and receiver
have access to a probabilistic model p for each symbol in the sequence given the previous, and can
compute the mass p(sn = k | s1, . . . , sn−1) for each k ∈ An, n ∈ {1, . . . , N}.
Arithmetic coding (AC) and asymmetric numeral systems (ANS) are algorithms which solve this
problem, providing an encoding from the sequence s to a sequence of bits (referred to as the ‘mes-
sage’), and a decoding to recover the original data s. Both AC and ANS codes have message length
equal to the ‘information content’ h(s) , − log p(s) of the sequence plus a small constant over-
head of around 2 bits. By Shannon’s Source Coding Theorem, the expected message length can be
no shorter than the entropy of the sequence s, defined by H[s] , E[h(s)], and thus AC and ANS
are both close to optimal (Shannon, 1948; Mackay, 2003). For long sequences the small constant
overhead is amortized and has a negligible contribution to the compression rate.

1Code to reproduce this figure is in the git repository, filename make fig 1.py.
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Critically for bits back coding, AC and ANS differ in the order in which messages are decoded. In
AC the message is FIFO, or queue-like. That is, symbols are decoded in the same order to that in
which they were encoded. ANS is LIFO, or stack-like. Symbols are decoded in the opposite order
to that in which they were encoded.

Note that the decoder in these algorithms can be thought of as a mapping from i.i.d. bits with p(bi =
0) = p(bi = 1) = 1

2 to a sample from the distribution p. Since we get to choose p, we can also think
of ANS/AC as invertible samplers, mapping from random bits to samples via the decoder and back
to the same random bits via the encoder.

For a far more detailed introduction to arithmetic coding, see Witten et al. (1987), for asymmetric
numeral systems, see Duda (2009).

2.2 BITS BACK CODING

We now give a short description of bits back coding, similar to those that have appeared in previous
works. For a more involved derivation see Appendix A. We assume access to a coding scheme such
as AC or ANS which can be used to encode and decode symbols according to any distribution. We
will return to the question of which is the correct coding scheme to use in Section 2.4.

y s

Figure 2: Graphical model with latent variable y and observed variable s.

Suppose now a sender wishes to communicate a symbol s0 to a receiver, and that both sender and
receiver have access to a generative model with a latent variable, y. For now we take y to be discrete,
we address continuous latents in Section 2.5.1. Suppose both sender and receiver can compute the
forward probabilities p(y) and p(s | y), and also have access to an approximate posterior q(y | s).
Bits back coding allows the sender and receiver to efficiently encode and decode the symbol s0.

We must assume that, as well as the sample s0, the sender has some extra bits to communicate. The
sender can decode these extra bits to generate a sample y0 ∼ q(y | s0). Then they can encode the
symbol s0 according to p(s | y0) and the latent sample according to p(y). The receiver then does
the inverse to recover the latent sample and the symbol. The extra bits can also be recovered by
the receiver by encoding the latent sample according to q(y | s0). We can write down the expected
increase in message length (over the extra bits):

L(q) = Eq(y | s0)
[
− log p(y)− log p(s0 | y) + log q(y | s0)

]
(1)

= −Eq(y | s0) log
p(s0, y)

q(y | s0)
. (2)

This quantity is equal to the negative of the evidence lower bound (ELBO), sometimes referred to
as the ‘free energy’ of the model.

A great deal of recent research has focused on inference and learning with approximate posteriors,
using the ELBO as an objective function. Because of the above equivalence, methods which max-
imize the ELBO for a model are implicitly minimizing the message length achievable by bits back
coding with that model. Thus we can draw on this plethora of existing methods when learning a
model for use with bits back, safe in the knowledge that the objective function they are maximizing
is the negative expected message length.

2.3 CHAINING BITS BACK CODING

If we wish to encode a sequence of data points, we can sample the extra bits for the first data point at
random. Then we may use the encoded first data point as the extra information for the second data
point, the encoded second data point as the extra information for the third, and so on. This daisy-
chain-like scheme was first described by Frey (1997), and was called ‘bits-back with feedback’. We
refer to it simply as ‘chaining’.

As Frey (1997) notes, chaining cannot be implemented directly using AC, because of the order in
which data must be decoded. Frey gets around this by implementing what amounts to a stack-like
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wrapper around AC, which incurs a cost both in code complexity and, importantly, in compression
rate. The cost in compression rate is a result of the fact that AC has to be ‘flushed’ in between each
iteration of bits back, and each flush incurs a cost which is implementation dependent but typically
between 2 and 32 bits.

2.4 CHAINING BITS BACK CODING WITH ANS

The central insight of this work is to notice that the chaining described in the previous section can be
implemented straightforwardly with ANS with zero compression rate overhead per iteration. This
is because of the fact that ANS is stack-like by nature, which resolves the problems that occur if
one tries to implement bits back chaining with AC, which is queue-like. We now describe this novel
method, which we refer to as ‘Bits Back with ANS’ (BB-ANS).

We can visualize the stack-like state of an ANS coder as

where the dashed line symbolizes the encoding/decoding end or ‘top’ of the stack. When we encode
a symbol s onto the stack we effectively add it to the end, resulting in a ‘longer’ state

and when we decode (or equivalently, sample) a symbol t from the stack we remove it from the same
end, resulting in a ‘shorter’ state, plus the symbol that we decoded.

Table 1 shows the states of the sender as they encode a sample, using our bits back with ANS
algorithm, starting with some ‘extra information’ as well as the sample s0 to be encoded.

Table 1: Sender encodes a symbol s0 using Bits Back with ANS.

BB-ANS stack Variables Operation

s0

s0, y0 Draw sample y0 ∼ q(y | s0) from the stack.

y0 Encode s0 ∼ p(s | y0) onto the stack.

Encode y0 ∼ p(y) onto the stack.

This process is clearly invertible, by reversing the order of operation and replacing encodes with
decodes and sampling with encoding. Furthermore it can be repeated; the ANS stack at the end
of encoding is still an ANS stack, and therefore can be readily used as the extra information for
encoding the next symbol. The algorithm is compatible with any model whose prior, likelihood and
(approximate) posterior can be encoded and decoded with ANS. A simple Python implementation
of both the encoder and decoder of BB-ANS is given in Appendix C.
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2.5 ISSUES AFFECTING THE EFFICIENCY OF BB-ANS

A number of factors can affect the efficiency of compression with BB-ANS, and mean that in prac-
tice, the coding rate will never be exactly equal to the ELBO. For any algorithm based on AC/ANS,
the fact that all probabilities have to be approximated at finite precision has some detrimental effect.
When encoding a batch of only a small number of i.i.d. samples, with no ‘extra information’ to com-
municate, the inefficiency of encoding the first datapoint may be significant. In the worst case, that
of a batch with only one datapoint, the message length will be equal to the log joint, log p(s0, y0).
Note that optimization of this is equivalent to maximum a posteriori (MAP) estimation. However,
for a batch containing more than one image, this effect is amortized. Figure 1 shows an example
with 30 samples, where BB-ANS appears to perform well.

Below we discuss two other issues which are specific to BB-ANS. We investigate the magnitude of
these effects experimentally in Section 3.2. We find that when compressing the MNIST test set, they
do not significantly affect the compression rate, which is typically close to the negative ELBO in
our experiments.

2.5.1 DISCRETIZING A CONTINUOUS LATENT SPACE

Bits back coding has previously been implemented only for models with discrete latent variables, in
Frey (1997). However, many successful latent variable models utilize continuous latents, including
the VAE which we use in our experiments. We present here a derivation, based on Mackay (2003),
of the surprising fact that continuous latents can be coded with bits back, up to arbitrary precision,
without affecting the coding rate. We also briefly discuss our implementation, which as far as we
are aware is the first implementation of bits back to support continuous latents. Further discussion
can be found in Appendix B.

We can crudely approximate a continuous probability distribution, with density function p, with
a discrete distribution by partitioning the real line into ‘buckets’ of equal width δy. Indexing the
buckets with i ∈ I , we assign a probability mass to each bucket of P (i) ≈ p(yi)δy, where yi is
some point in the ith bucket (say its centre).

During bits back coding, we discretize both the prior and the approximate posterior using the same
set of buckets. We use capital P and Q to denote discrete approximations. Sampling from the dis-
crete approximation Q(i | s) uses approximately log(q(yi | s)δy) bits, and then encoding according
to the discrete approximation to the prior P costs approximately log(p(yi)δy) bits. The expected
message length for bits back with a discretized latent is therefore

L ≈ −EQ(i | s0)

[
log

p(s0 | yi)p(yi)δy
q(yi | s0)δy

]
. (3)

The δy terms cancel, and thus the only cost to discretization results from the discrepancy between
our approximation and the true, continuous, distribution. However, if the density functions are
sufficiently smooth (as they are in a VAE), then for small enough δy the effect of discretization will
be negligible.

Note that the number of bits required to generate the latent sample scales with the precision− log δy,
meaning reasonably small precisions should be preferred in practice. Furthermore, the benefit from
increasing latent precision past a certain point is negligible for most machine learning model im-
plementations, since they operate at 32 bit precision. In our experiments we found that increases in
performance were negligible past 16 bits per latent dimension.

In our implementation, we divide the latent space into buckets which have equal mass under the
prior (as opposed to equal width). This discretization is simple to implement and computationally
efficient, and appears empirically to perform well. However, further work is required to establish
whether it is optimal in terms of the trade-off between compression rate and computation.

2.5.2 THE NEED FOR ‘CLEAN’ BITS

In our description of bits back coding in Section 2, we noted that the ‘extra information’ needed to
seed bits back should take the form of ‘random bits’. More precisely, we need the result of mapping
these bits through our decoder to produce a true sample from the distribution q(y | s). A sufficient

5



Published as a conference paper at ICLR 2019

condition for this is that the bits are i.i.d. Bernoulli distributed with probability 1
2 of being in each

of the states 0 and 1. We refer to such bits as ‘clean’.

During chaining, we effectively use each compressed data point as the seed for the next. Specifically,
we use the bits at the top of the ANS stack, which are the result of coding the previous latent y0
according to the prior p(y). Will these bits be clean? The latent y0 is originally generated as a
sample from q(y | s0). This distribution is clearly not equal to the prior, except in degenerate cases,
so naively we wouldn’t expect encoding y0 according to the prior to produce clean bits. However,
the true sampling distribution of y0 is in fact the average of q(y | s0) over the data distribution. That
is, q(y) ,

∫
q(y | s)p(s)ds. This is referred to in Hoffman and Johnson (2016) as the ‘average

encoding distribution’.

If q is equal to the true posterior, then evidently q(y) ≡ p(y), however in general this is not the
case. Hoffman and Johnson (2016) measure the discrepancy empirically using what they call the
‘marginal KL divergence’ KL[q(z)‖p(z)], showing that this quantity contributes significantly to the
ELBO for three different VAE like models learned on MNIST. This difference implies that the bits
at the top the ANS stack after encoding a sample with BB-ANS will not be perfectly clean, which
could adversely impact the coding rate.

3 EXPERIMENTS

3.1 USING A VAE AS THE LATENT VARIABLE MODEL

We demonstrate the BB-ANS coding scheme using a VAE. This model has a multidimensional latent
with standard Gaussian prior and diagonal Gaussian approximate posterior:

p(y) = N(y; 0, I) (4)

q(y | s) = N(y;µ(s), diag(σ2(s))) (5)

We choose an output distribution (likelihood) p(s | y) suited to the domain of the data we are mod-
elling (see below). The usual VAE training objective is the ELBO, which, as we noted in Section
2.2, is the negative of the expected message length with bits back coding. We can therefore train a
VAE as usual and plug it into the BB-ANS framework.

3.2 COMPRESSING MNIST

We consider the task of compressing the MNIST dataset (LeCun et al., 1998). We first train a VAE
on the training set and then compress the test using BB-ANS with the trained VAE.

The MNIST dataset has pixel values in the range of integers 0, . . . , 255. As well as compressing
the raw MNIST data, we also present results for stochastically binarized MNIST (Salakhutdinov
and Murray, 2008). For both tasks we use VAEs with fully connected generative and recognition
networks, with ReLU activations.

For binarized MNIST the generative and recognition networks each have a single deterministic hid-
den layer of dimension 100, with a stochastic latent of dimension 40. The generative network
outputs logits parameterizing a Bernoulli distribution on each pixel. For the full (non-binarized)
MNIST dataset each network has one deterministic hidden layer of dimension 200 with a stochastic
latent of dimension 50. The output distributions on pixels are modelled by a beta-binomial dis-
tribution, which is a two parameter discrete distribution. The generative network outputs the two
beta-binomial parameters for each pixel.

Instead of directly sampling the first latents at random, to simplify our implementation we instead
initialize the BB-ANS chain with a supply of ‘clean’ bits. We find that around 400 bits are required
for this in our experiments. The precise number of bits required to start the chain depends on the
entropy of the discretized approximate posterior (from which we are initially sampling).

We report the achieved compression against a number of benchmarks in Table 2. Despite the rela-
tively small network sizes and simple architectures we have used, the BB-ANS scheme outperforms
benchmark compression schemes. While it is encouraging that even a relatively small latent vari-
able model can outperform standard compression techniques when used with BB-ANS, the more
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Dataset Raw data VAE test ELBO BB-ANS bz2 gzip PNG WebP

Binarized MNIST 1 0.19 0.19 0.25 0.33 0.78 0.44
Full MNIST 8 1.39 1.41 1.42 1.64 2.79 2.10

Table 2: Compression rates on the binarized MNIST and full MNIST test sets, using
BB-ANS and other benchmark compression schemes, measured in bits per dimension.
We also give the negative ELBO value for each trained VAE on the test set.

important observation to make from Table 2 is that the achieved compression rate is very close to
the value of the negative test ELBO seen at the end of VAE training.

In particular, the detrimental effects of finite precision, discretizing the latent (Section 2.5.1) and of
less ‘clean’ bits (Section 2.5.2) do not appear to be significant. Their effects can be seen in Figure
3, accounting for the small discrepancy of around 1% between the negative ELBO and the achieved
compression.

(a) Binarized MNIST (b) Full MNIST

Figure 3: A 2000 point moving average of the compression rate, in bits per dimen-
sion, during the compression process using BB-ANS with a VAE. We compress a
concatenation of three shuffled copies of the MNIST test set.

4 DISCUSSION

4.1 EXTENDING BB-ANS TO STATE-OF-THE-ART LATENT VARIABLE MODELS

Implementing a state-of-the-art latent variable model is not the focus of this work. However, as
shown in our experiments, BB-ANS can compress data to sizes very close to the negative ELBO.
This means that we can predict the best currently achievable compression using BB-ANS from
the reported values of the negative ELBO for state-of-the-art latent variable models. We consider
PixelVAE (Gulrajani et al., 2016), a latent variable model with close to state-of-the-art results. We
use their reported ELBO on binarized MNIST and the 64× 64 ImageNet dataset introduced in van
den Oord et al. (2016).

The predictions are displayed in Table 3, and show that BB-ANS with PixelVAE may have a signif-
icantly better compression rate than existing schemes. These predictions are based on the assump-
tion that the discrepancy between compression rate and ELBO will remain small for larger models.
We believe this assumption is reasonable, since from the point of view of BB-ANS there are no
fundamental differences, apart from dimensionality, between a complex, hierarchical VAE such as
PixelVAE and the simple VAEs which we used for our experiments. We leave the experimental
verification of these predictions to future work.

Another potential extension of BB-ANS is to time series latent variable models such as hidden
Markov models, or latent Gaussian state space models such as those studied in Johnson et al. (2016).
Such models could, in principal, be coded with BB-ANS, but the number of ‘extra bits’ needed in
a naive implementation scales with the length of the chain (the total time for a time series model),
which could lead to a highly sub-optimal compression rate in practice. It would be useful to have a
method for ‘interleaving’ bits back with the time steps of the model, however it is unclear whether
this is possible, and we leave deeper exploration of this problem to future work.
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BB-ANS with
Dataset Raw data PixelVAE (predicted) bz2 gzip PNG WebP

Binarized MNIST 1 0.15 0.25 0.33 0.78 0.44
ImageNet 64× 64 8 3.66 6.72 6.95 5.71 4.64

Table 3: Predicted compression of BB-ANS with PixelVAE against other schemes,
measured in bits per dimension.

4.2 PARALLELIZATION OF BB-ANS

Modern machine learning models are optimized to exploit batch-parallelism and model-parallelism
and run fastest on GPU hardware. Our current implementation of BB-ANS is written in pure
Python, is not parallelized and executes entirely on CPU. During encoding/decoding the compres-
sion/decompression code is a computational bottleneck, running orders of magnitude slower than the
computations of the model probabilities. However, we believe that almost all of the computation in
the algorithm could be executed in parallel, on GPU hardware, potentially relieving this bottleneck.

Firstly, our encoder requires computation of the CDF and inverse CDF of the distributions in the
model. In the case of a VAE model of binarized MNIST, these are Gaussian and Bernoulli distribu-
tions. CDFs and inverse CDFs are already implemented to run on GPU, for many standard distribu-
tions, including Gaussian and Bernoulli, in various widely used machine learning toolboxes. Less
trivial is the ANS algorithm. However, ANS is known to be amenable to parallelization. Techniques
for parallel implementation are discussed in Giesen (2014), and Krajcevski et al. (2016) presents an
open source GPU implementation. We leave the performance optimization of BB-ANS, including
adapting the algorithm to run on parallel architectures, to future work, but we are optimistic that the
marriage of models which are optimized for parallel execution on large datasets with a parallelized
and optimized BB-ANS implementation could yield an extremely high performance system.

4.3 COMMUNICATING THE MODEL

A neural net based model such as a VAE may have many thousands of parameters. Although not
the focus of this work, the cost of communicating and storing a model’s parameters may need to be
considered when developing a system which uses BB-ANS with a large scale model.

However, we can amortize the one-time cost of communicating the parameters over the size of the
data we wish to compress. If a latent variable model could be trained such that it could model
a wide class of images well, then BB-ANS could be used in conjunction with such a model to
compress a large number of images. This would make the cost of communicating the model weights
worthwhile to reap the subsequent gains in compression. Efforts to train latent variable models to
be able to model such a wide range of images are currently of significant interest to the machine
learning community, for example on expansive datasets such as ImageNet (Deng et al., 2009). We
therefore anticipate that this is the most fruitful direction for practical applications of BB-ANS.

We also note that there have been many recent developments in methods to decrease the space
required for neural network weights, without hampering performance. For example, methods in-
volving quantizing the weights to low precision (Han et al., 2016; Ullrich et al., 2017), sometimes
even down to single bit precision (Hubara et al., 2016), are promising avenues of research that could
significantly reduce the cost of communicating and storing model weights.

5 CONCLUSION

Probabilistic modelling of data is a highly active research area within machine learning. Given the
progress within this area, it is of interest to study the application of probabilistic models to lossless
compression. Indeed, if practical lossless compression schemes using these models can be developed
then there is the possibility of significant improvement in compression rate over existing methods.

We have shown the existence of a scheme, BB-ANS, which can be used for lossless compression us-
ing latent variable models. We demonstrated BB-ANS by compressing the MNIST dataset, achiev-
ing compression rates superior to generic algorithms. We have shown how to handle the issue of
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latent discretization. Crucially, we were able to compress to sizes very close to the negative ELBO
for a large dataset. This is the first time this has been achieved with a latent variable model, and
implies that state-of-the-art latent variable models could be used in conjunction with BB-ANS to
achieve significantly better lossless compression rates than current methods. Given that all compo-
nents of BB-ANS are readily parallelizable, we believe that BB-ANS can be implemented to run on
GPU hardware, yielding a fast and powerful lossless compression system.
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APPENDIX

A BITS BACK CODING

We present here a more detailed derivation of bits back coding.

As before, suppose that a sender and receiver wish to communicate a symbol s0, and they both
have access to a generative model with a latent variable, y. Suppose both sender and receiver can
compute the forward probabilities p(y) and p(s | y). How might they communicate a sample s0 from
this model?

Naively, the sender may draw a sample y0 from p(y), and encode both y0 and s0 according to
the forward model, p(y) and p(s | y0) respectively. This would result in a message length of
−
(
log p(y0) + log p(s0 | y0)

)
bits. The receiver could then decode according to the forward model

by first decoding y0 according to p(y) and then decoding s0 according to p(s | y0). However, they
can do better, and decrease the encoded message length significantly.

Firstly, if there is some other information which the sender would like to communicate to the re-
ceiver, then we may use this to our advantage. We assume the other information takes the form
of some random bits. As long as there are sufficiently many bits, the sender can use them to gen-
erate a sample y0 by decoding some of the bits to generate a sample from p(y), as described in
Section 2.1. Generating this sample uses − log p(y0) bits. The sender can then encode y0 and s0
with the forward model, and the message length will be −

(
log p(y0) + log p(s0 | y0)

)
as before.

But now the receiver is able to recover the other information, by first decoding s0 and y0, and then
encoding y0, reversing the decoding procedure from which the sample y0 was generated, to get
the ‘bits back’. This means that the net cost of communicating s0, over the other information is
− log p(s0 | y0)− log p(y0) + log p(y0) = − log p(s0 | y0).
Secondly, note that we can choose any distribution for the sender to sample y0 from, it does not
have to be p(y), and it may vary as a function of s0. If we generalize and let q(· | s0) denote the
distribution that we use, possibly depending functionally on s0, we can write down the expected
message length:

L(q) = Eq(y | s0)
[
− log p(y)− log p(s0 | y) + log q(y | s0)

]
(6)

= −Eq(y | s0) log
p(s0, y)

q(y | s0)
(7)

This quantity is equal to the negative of the evidence lower bound (ELBO), sometimes referred to
as the ‘free energy’ of the model.

Having recognized this equivalence, it is straightforward to show using Gibbs’ inequality that the
optimal setting of q is the posterior p(y | s0), and that with this setting the message length is

Lopt = − log p(s0) (8)

This is the information content of the sample s0, which by the source coding theorem is the optimal
message length. Thus bits back can achieve an optimal compression rate, if sender and receiver
have access to the posterior. In the absence of such a posterior (as is usually the case), then an
approximate posterior must be used.

We note that Ballé et al. (2018) and Minnen et al. (2018) approach lossless compression with latent
variables by generating a latent from an approximate posterior, and encoding according to the prior
and likelihood as described above, but not recovering the bits back. Ballé et al. (2018) mention that
the cost of coding the hierarchical distribution is only a small fraction of the total coding cost in their
setting. This small fraction upper bounds the potential gains from using bits back coding. However,
their approach is sub-optimal, even if only slightly, and in the common case where more than one
data-point is being encoded they would gain a better compression rate by using BB-ANS.
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B DISCRETIZATION

As we discussed in Section 2.1, the coding scheme we wish to use, ANS, is defined for symbols
in a finite alphabet. If we wish to encode a continuous variable we must restrict it to such a finite
alphabet. This amounts to discretizing the continuous latent space.

In choosing our discretization, it is important to note the following:

• The discretization must be appropriate for the densities that will use it for coding. For
example, imagine we were to discretize such that all but one of our buckets were in areas
of very low density, with just one bucket covering the area with almost all of the density.
This would result in almost all of the latent variables being coded as the same symbol
(corresponding to the one bucket with the majority of the density). Clearly this cannot be
an efficient discretization.

• The prior p(y) and the approximate posterior q(y | s) must share the same discretization.

• The discretization must be known by the receiver before seeing data, since the first step of
decoding is to decode y0 according the prior.

We propose to satisfy these considerations, by using the maximum entropy discretization of the prior,
p(y), to code our latent variable. This amounts to allocating buckets of equal mass under the prior.
We visualize this for a standard Gaussian prior in Figure 4.
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Figure 4: An example of the discretization of the latent space with a standard Gaussian
prior, using 16 buckets.

Having the discretization be a function of the prior (which is fixed) allows the receiver to know the
discretization up front, which we have noted is necessary. This would not be true for a discretization
that depended on the posterior.

This discretization is appropriate for coding according to the prior, since we are maximizing the
entropy for this density. However, it is not obvious that it will be appropriate for coding according
to the posterior, which it must also be used for.

Note that we can write our the expected message length (negative ELBO) for a single data point as:

L(q) = −Eq(y | s0)
[
log p(s0 | y)

]
+KL[q(y | s0)‖p(y)] (9)

We can see that minimizing this objective encourages the minimization of the KL divergence be-
tween the posterior and the prior. Therefore a trained model will generally have a posterior ‘close’
(in a sense defined by the KL divergence) to the prior.

This indicates that the maximum entropy discretization of the prior may also be appropriate for
coding according to the posterior.
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C BB-ANS PYTHON IMPLEMENTATION

Figure 5 shows code implementing BB-ANS encoding (as described in Table 1) and decoding in
Python. Since the message is stack-like, we use the Pythonic names ‘append’ and ‘pop’ for encoding
and decoding respectively.

Notice that each line in the decoding ‘pop’ method precisely inverts an operation in the encoding
‘append’ method.

The functions to append and pop from the prior, likelihood and posterior could in principle use
any LIFO encoding/decoding algorithm. They may, for example, do ANS coding according to a
sophisticated autoregressive model, which would be necessary for coding using PixelVAE. The only
strict requirement is that each pop function must precisely invert the corresponding append function.

For more detail, including an example implementation with a variational auto-encoder model (VAE),
see the repository https://github.com/bits-back/bits-back.

def append(message, s):
# (1) Sample y according to q(y|s)
# Decreases message length by -log q(y|s)
message, y = posterior_pop(s)(message)

# (2) Encode s according to the likelihood p(s|y)
# Increases message length by -log p(s|y)
message = likelihood_append(y)(message, s)

# (3) Encode y according to the prior p(y)
# Increases message length by -log p(y)
message = prior_append(message, y)

return message

def pop(message):
# (3 inverse) Decode y according to p(y)
message, y = prior_pop(message)

# (2 inverse) Decode s according to p(s|y)
message, s = likelihood_pop(y)(message)

# (1 inverse) Encode y according to q(y|s)
message = posterior_append(s)(message, y)

return message, s

Figure 5: Python implementation of BB-ANS encode (‘append’) and decode (‘pop’)
methods.
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