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Compressing Sets and Multisets of Sequences
Christian Steinruecken

Abstract—This article describes lossless compression algo-
rithms for multisets of sequences, taking advantage of the mul-
tiset’s unordered structure. Multisets are a generalisation of sets
where members are allowed to occur multiple times. A multiset
can be encoded naı̈vely by simply storing its elements in some
sequential order, but then information is wasted on the ordering.
We propose a technique that transforms the multiset into an
order-invariant tree representation, and derive an arithmetic
code that optimally compresses the tree. Our method achieves
compression even if the sequences in the multiset are individually
incompressible (such as cryptographic hash sums). The algorithm
is demonstrated practically by compressing collections of SHA-1
hash sums, and multisets of arbitrary, individually encodable
objects.

Index Terms—Arithmetic coding, Bayesian methods, data com-
pression, hash sums, multisets, tree data structures

I. INTRODUCTION

THIS article describes a compression algorithm for mul-

tisets of binary sequences that exploits the disordered

nature of the multisets.

Consider a collection W of N words {w1 ... wN}, each

composed of a finite sequence of symbols. The members of

W have no particular ordering (the labels wn are used here just

to describe the method); such collections occur in e.g. bag-of-

words models. The goal is to compress this collection in such

a way that no information is wasted on the ordering of the

words.

Making an order-invariant representation of W could be as

easy as arranging the words in some sorted order: if both the

sender and receiver use the same ordering, zero probability

could be given to all words whose appearance violates the

agreed order, reallocating the excluded probability mass to

words that remain compatible with the ordering. However, the

correct probability for the next element in a sorted sequence

is expensive to compute, making this approach unappealing.

It may seem surprising at first that a collection of strings

can be compressed in a way that does not involve encoding

or decoding the strings in any particular order. The solution

presented in this article is to store them “all at once” by

transforming the collection to an order-invariant tree repre-

sentation, deriving an adaptive probabilistic model for this

representation, and then compressing the tree using the model.

An example of this technique is presented for collections of

sequences that are independently and identically distributed.

The resulting compressing method is demonstrated practically

for two applications: (1) compressing collections of SHA-1

sums; and (2) compressing collections of arbitrary, individu-

ally encodable objects.

This paper was presented in part at the Data Compression Conference (DCC
2014).

This is not the first time order-invariant source coding

methods have been considered. The bits-back coding approach

puts wasted bandwidth to good use by filling it up with

additional data [1, 2, 3]. However, it does not solve the

problem of compactly encoding only the desired object. Much

more generally, Varshney and Goyal [4, 5, 6] motivate a

source coding theory for compressing sets and multisets.

Reznik [7] gives a concrete algorithm for compressing sets

of sequences, also with a tree as latent representation, using

an enumerative code [8, 9] for compressing the tree shape.

Noting that Reznik’s construction isn’t fully order-invariant,

Gripon et al. [10] propose a slightly more general tree-based

coding scheme for multisets.

Our paper offers a different approach: we derive the exact

distribution over multisets from the distribution over source

sequences, and factorise it into conditional univariate distribu-

tions that can be encoded with an arithmetic coder. We also

give an adaptive, universal code for the case where the exact

distribution over sequences is unknown.

II. COLLECTIONS OF FIXED-LENGTH BINARY SEQUENCES

Suppose we want to store a multiset of fixed length binary

strings, for example a collection of hash sums. The SHA-1

algorithm [11] is a file hashing method which, given any

input file, produces a rapidly computable, cryptographic hash

sum whose length is exactly 160 bits. Each bit digit in

a random SHA-1 hash sum is uniformly distributed, which

renders single SHA-1 sums incompressible. It might therefore

seem intuitive at first that storing N hash sums would cost

exactly N times as much as storing one hash sum. However, an

unordered collection of SHA-1 sums can in fact be stored more

compactly. The potential saving for a collection of N random

hash sums is roughly log
2
N ! bits. For example, the practical

savings for a collection of 5000 SHA-1 sums amount to 10 bits

per SHA-1 sum, i.e. each SHA-1 sum in the collection takes

only 150 bits of space (rather than 160 bits).

A concrete method for compressing multisets of fixed-

length bit strings (such as collections of SHA-1 sums) is

described below. The algorithm makes use of arithmetic

coding to encode values from binomial and Beta-binomial

distributions; details are described in appendices A and B.

A. Tree representation for multisets of fixed-length strings

A multiset of binary sequences can be represented with a

binary tree whose nodes store positive integers. Each node

in the binary tree partitions the multiset of sequences into

two submultisets: those sequences whose next symbol is a

0, and those whose next symbol is a 1. The integer count n

stored in the root node represents the total size of the multiset,

and the counts n0, n1 stored in the child nodes indicate the
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Figure 1: The binary tree representing the multiset: { 000,

000, 010, 011, 101, 110, 111 }. The count at each node

indicates the number of strings starting with the node’s prefix:

e.g. there are 7 strings starting with the empty string, 4 strings

starting with 0, 3 strings starting with 1, and 2 strings starting

with 01.

sizes of their submultisets. An example of such a tree and its

corresponding multiset is shown in Figure 1.

To save space, nodes with zero counts may be omitted from

the tree. For a multiset of fixed-length sequences, sequence

termination is indicated by a leaf node, or a node that only

has children with a count of zero. The sequence of branching

decisions taken to reach any given node from the root is called

the node’s prefix. To recover the original multiset from the tree,

it suffices to collect the prefix of each leaf node, including each

prefix as many times as indicated by the leaf node’s count.

A binary tree as described above is unique for any given

collection of binary strings. The tree can be constructed

incrementally, and supports addition, deletion and membership

testing of sequences in O(L) time, where L is the sequence

length. Merging two trees can be done more efficiently than

adding one tree’s sequences to the other individually: the

counts of nodes whose prefixes are equal can simply be added,

and branches missing from one tree can be copied (or moved)

from the other tree. Extracting N sequences from the tree,

either lexicographically or uniformly at random, takes O(L·N)
time.

B. Fixed-depth multiset tree compression algorithm

The previous section showed how a multiset of N binary

sequences of fixed length L can be converted to a tree

representation. This section derives exact conditional proba-

bility distributions for the node counts in the resulting tree,

and shows how the tree can be compactly encoded with an

arithmetic coder.

Suppose that N and L are known in advance. With the

exception of the leaf nodes, the count n at any given node

in the tree equals the sum of the counts of its children,

i.e. n = n0 + n1. If the bits of each string are independent

and identically distributed, the counts of the child nodes

(conditional on their parent’s count) jointly follow a binomial

distribution:

n1 ∼ Binomial(n, θ)
n0 = n− n1

n

n0

0

n1

1 (1)

where θ is the probability of symbol 1. If the symbols 0 and

1 are uniformly distributed (as is the case for SHA-1 sums),

θ should be set to 1

2
. Given the parent count n, only one of

the child counts needs to be communicated, as the other can

be determined by subtraction from n. Since all strings in the

multiset have length L, all the leaf nodes in the tree are located

at depth L, making it unnecessary to communicate which of

the nodes are leaves.

If N and L are known, the tree can be communicated as

follows: Traverse the tree, except for the leaf nodes, starting

from the root (whose count N is already known). Encode one

of child counts (e.g. n1) using a binomial code and recurse

on all child nodes whose count is greater than zero. The

parameters of the binomial code are the count of the parent,

and the symbol bias θ, as shown in equation (1). The tree

can be traversed in any order that visits parents before their

children.

This encoding process is invertible, allowing perfect recov-

ery of the tree. The same traversal order must be followed, and

both N and L must be known (to recover the root node’s count,

and to determine which nodes are leaf nodes). Depending

on the application, N or L can be transmitted first using an

appropriate code over integers. A concrete coding procedure

using pre-order traversal is shown in Algorithm 1.

Application to SHA-1 sums. For a collection of N SHA-1

sums, the depth of the binary tree is L = 160, and the

root node contains the integer N . If the SHA-1 sums in the

collection are random, the distribution over the individual bits

in each sequence is uniform, making a binomial code with bias

θ = 1

2
an optimal choice. However, if the collection is expected

to contain duplicate entries at a rate greater than chance, the

distribution over the counts is no longer binomial with a fixed

bias; in fact, the bias might then be different for each node in

the tree. In such a case, a Beta-binomial code may be more

appropriate, as it can learn the underlying symbol probability

θ independently for each node, rather than assuming it to have

a particular fixed value:

n1 ∼ BetaBin(n, α, β)
n0 = n− n1

(2)

A Beta-binomial coding procedure is described in appendix B.

The tree coding method of Algorithm 1 can be modified to

use a Beta-binomial code by replacing the encoding and de-

coding calls in the subroutine accordingly. In our experiments,

the Beta-binomial parameters were set to α = 1

2
and β = 1

2
.

The practical performance of the algorithm on multisets of

SHA-1 sums is shown in Figure 2. The multisets used in this

experiment contain no duplicate hashes, so the compression

achieved by the algorithm really results from exploiting the

permutation invariance of the multiset rather than any redun-

dancy among the hashes.
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Coding algorithm for multisets of fixed-length sequences

ENCODING DECODING

Inputs: L, binary tree T

A. Encode N , the count of T ’s root node, using a code over

positive integers.

B. Call encode_node(T ).

Input: L Output: binary tree T

A. Decode N , using the same code over positive integers.

B. Return T ← decode_node(N,L).

subroutine encode_node(t):

If node t is a leaf:

1) Return.

Otherwise:

1) Let t0 and t1 denote the children of t, and n0 and

n1 the children’s counts.

2) Encode n1 using a binomial code, as n1 ∼
Binomial(n0 + n1, θ).

3) If n0 > 0, call encode_node(t0).
4) If n1 > 0, call encode_node(t1).

subroutine decode_node(n, l):

If l > 0 then:

1) Decode n1 using a binomial code,

as n1 ∼ Binomial(n, θ).
2) Recover n0 ← (n− n1).
3) If n0 > 0, then:

t0 ← decode_node(n0, l − 1).
4) If n1 > 0, then:

t1 ← decode_node(n1, l − 1).
5) Return a new tree node with count n and children t0

and t1.

Otherwise, return null.

Algorithm 1: Coding algorithm for binary trees representing multisets of binary sequences of length L. The form and

construction of the binary tree are described in section II-A. Each tree node t contains an integer count n and two child

pointers t0 and t1. The counts of the children are written n0 and n1. If n0 and n1 are zero, t is deemed to be a leaf, and vice

versa. T denotes the tree’s root node.
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Figure 2: Practical lossless compression performance of the

fixed-depth multiset tree compressor on multisets of SHA-1

sums. For each position on the x-axis, N uniformly distributed

64-bit random numbers were generated and hashed with

SHA-1; the resulting multiset of N SHA-1 sums was then

compressed with each algorithm. The winning compression

method is Algorithm 1 using a binomial code, where N itself

is encoded with a Fibonacci code. The shaded region indicates

the proportion of information used by the Fibonacci code.

The theoretical limit is 160 − 1

N
log

2
N ! bits, assuming N

is known to the receiver. For comparison, gzip was used to

compress the concatenation of the N SHA-1 sums; reaching,

as expected, 160 bits per SHA-1 sum.

III. COLLECTIONS OF BINARY SEQUENCES OF ARBITRARY

LENGTH

The method of the previous section transformed a collec-

tion of fixed-length binary sequences into a binary tree, and

described a compression method for storing the tree in a

space-efficient way. The property that the sequences in the

collection had the same length L was a prerequisite for the

method to work. In this section, the method is generalised to

admit binary sequences of arbitrary length. Two approaches

are considered for encoding the termination of sequences in

the tree: the first approach covers collections of self-delimiting

sequences, which allow the tree to be compressed without

encoding additional information about termination. The second

approach, for arbitrary sequences, assumes a distribution over

sequence lengths and encodes sequence termination directly

in the tree nodes. For either approach, the same binary tree

structure is used as before, except that sequences stored in the

tree can now have any length.

A. Compressing multisets of self-delimiting sequences

Self-delimiting sequences encode their own length, i.e. it

can be determined from the sequence itself whether further

symbols follow or the sequence has ended. Many existing

compression algorithms produce self-delimiting sequences,

e.g. the Huffman algorithm, codes for integers, or suitably

defined arithmetic coding schemes. A multiset of such self-

delimiting sequences has the property that, for any two distinct

sequences in the multiset, neither can be a prefix of the other.
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Figure 3: Experimental compression performance of various

algorithms on multisets of self-delimiting sequences. For each

position on the x-axis, a multiset of N self-delimiting se-

quences was generated by taking N uniformly distributed

integers between 1 and 100 000 and encoding each number

with a Fibonacci code. The multiset of the resulting code

words was then compressed with each algorithm. The y-axis

shows the compressed size in bits divided by N . The flat

concatenation of the sequences in the multiset is included

for reference (achieving zero compression). For comparison,

the source multisets of integers (rather than the multisets of

Fibonacci-encoded integers) were compressed directly with

a Dirichlet-multinomial code. The (barely visible) shaded

regions indicate the amount of information taken up by the

Fibonacci code to encode N itself.

Consider the tree corresponding to such a multiset of binary

strings. Because of the prefix property, all sequences in the

tree will terminate at leaf nodes, and the counters stored in

child nodes always add up to the counter of the parent node.

Consequently, the same compression technique can be used

as for fixed-length sequences. Algorithm 1 applies exactly as

before, with the exception that the end-of-string detector in

the decoder must be modified to detect the end of each self-

delimiting sequence.

Compressing arbitrary multisets. Consider a random

multiset M over an arbitrary space X , whose elements can

be independently compressed to self-delimiting binary strings

(and reconstructed from them). Any such multiset M can

be losslessly and reversibly converted to a multiset W of

self-delimiting sequences, and W can be compressed and

decompressed with the tree coding method as described above.

Alternative. A random multiset M is most effectively

compressed with a compression algorithm that exactly matches

M’s probability distribution; we’ll call such an algorithm a

direct code for M. When a direct code is not available or

convenient, the indirect method of first mapping M to W
might be a suitable alternative.

Experiment. Experimental results of this approach on

random multisets of self-delimiting sequences are shown in

Figure 3. Each multiset was generated by drawing N uni-

form random integers and converting these integers to self-

delimiting sequences with a Fibonacci code [12, 13].1 The

Beta-binomial variant of the tree coder wins over the binomial

variant, and closely follows the trajectory of a Dirichlet-

multinomial code for the underlying multisets of integers.

B. Encoding string termination via end-of-sequence markers

Consider now a multiset containing binary sequences of

arbitrary length, whose sequences lack the property that their

termination can be determined from a prefix. This is the most

general case. In this scenario, it is possible for the multiset to

contain strings where one is a prefix of the other, for example

01 and 011. To encode such a multiset, string termination

must be communicated explicitly for each string. Luckily, the

existing tree structure can be used as before to store such

multisets; the only difference is that the count of a node need

not equal the sum of the counts of its children, as terminations

may now occur at any node, not just at leaf nodes. Both child

counts therefore need to be communicated. An example of

such a tree is shown in Figure 4.

The counter n stored in each node still indicates the number

of sequences in the collection that start with that node’s prefix.

The number of terminations nT at any given node equals the

difference of the node’s total count n and the sum of its child

counts n0 and n1.

Suppose that the number N = |W| of sequences in the

multiset W is distributed according to some distribution D

over positive integers, and that the length of each sequence

wn ∈ W is distributed according to some distribution L.

Given D and L, a near-optimal compression algorithm for

the multiset W can be constructed as follows.

First, form the tree representation of W , following the

construction described in the previous section. The count of

the root node can be communicated using a code for D. Each

node in the tree has a count n, child counts n0 and n1, and

an implicit termination count nT fulfilling n = n0 + n1 + nT.

Assuming that the bits at the same position of each sequence

are independent and identically distributed, the values of n0,

n1 and nT are multinomially distributed (given n).

The parameters of this multinomial distribution can be

derived from L as follows: The n sequences described by

the current node have a minimum length of d, where d is the

node’s depth in the tree (the root node is located at depth

0). Out of these n sequences, n0 continue with symbol 0,

n1 continue with symbol 1, and nT terminate here. Given the

sequence length distribution L, the probability for a sequence

that has at least d symbols to have no more than d symbols

is given by a Bernoulli distribution with bias θT(d), where:

θT(d) :=
L(d)

1−
∑

k<d
L(k)

(3)

Consequently, the number of terminations nT at depth d (out

of n possible sequences) is binomially distributed with:

nT ∼ Binomial(n, θT(d)) (4)

1The Fibonacci code was chosen for elegance. However, any code over
integers could be used, e.g. an exponential Golomb code [14] or the ω-code
by Elias [15].
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The binary tree representing the multiset:

{ 0, 00, 000, 01, 10, 10, 101, 11, 110, 111 }.

The count at each node indicates the number of strings starting with that node’s prefix.

For example, there are 10 strings starting with the empty string, 4 starting with 0, and

6 starting with 1, etc.

Out of the four strings starting with 0, two continue with 0, one continues with 1, and

one reached its termination.

If the root node’s count were 12 rather than 10, the multiset would include two empty

strings as well.

Figure 4: Binary tree representing a multiset of ten binary sequences. This tree follows the same basic structure as the tree in

Figure 1, but admits sequences of variable length. The tree representation is unique for each multiset.

Writing θT for the probability of termination at the local node,

and θ1 and θ0 for the occurrence probabilities of 1 and 0, the

joint distribution over n0, n1 and nT can be written as follows:

(nT, n0, n1) ∼ Mult(θT, θ0 (1−θT) , θ1 (1−θT)) (5)

where θ1 = 1−θ0. The encoding procedure for this tree needs

to encode a ternary (rather than binary) choice, but the basic

principle of operation remains the same. Algorithm 1 can be

modified to encode (nT, n0, n1) using a multinomial code.

Note that, as described above, θT is a function of the length

distribution L and the current node depth d. In principle, it is

possible to use a conditional length distribution that depends

on the prefix of the node, as the node’s prefix is available to

both the encoder and the decoder. Similarly, θ0 and θ1 could

in principle be functions of depth or prefix.

IV. CONCLUSIONS

We proposed a novel and simple data compression algorithm

for sets and multisets of sequences, and illustrated its use

on collections of cryptographic hash sums. Our approach

is based on the general principle that one should encode a

permutation-invariant representation of the data, in this case

a tree, with a code that matches the distribution induced by

the data’s generative process. When the distribution of the

source sequences is known, the tree is optimally compressed

with a nested binomial coding scheme; otherwise, a Beta-

binomial coding scheme can be used. The Beta-binomial code

is universal in that it learns the symbol distribution of the

sequences in the multiset (even for symbol distributions that

are position or prefix dependent).

One might regard the coding algorithms presented in this

paper either as lossless compression for sets and multisets, or

as lossy compression methods for lists: when the order of a

list of elements isn’t important, bandwidth can be saved.

Future work could address multisets of sequences whose

elements are not independent and identically distributed, by

combining the above approach with probabilistic models of

the elements.

APPENDIX A

A BINOMIAL CODE

The binomial distribution describes the number of successes

in a set of N independent Bernoulli trials. It is parametrised by

natural number N and success probability θ, and ranges over

positive integers n ∈ {0 . . .N}. A binomial random variable

has the following probability mass function:

Binomial(n |N, θ) =

(

N

n

)

· θn(1− θ)N−n (6)

Encoding a binomial random variable with an arithmetic coder

requires computing the cumulative distribution function of

the binomial distribution. A method for doing this efficiently

might utilise the following recurrence relation:

Binomial(n+ 1 |N, θ)

=
N − n

n+ 1
·

θ

1− θ
· Binomial(n |N, θ)

(7)

The cumulative binomial distribution can then be computed as

follows. Initialise BΣ ← 0, and B ← (1 − θ)N . To encode a

binomially distributed value n, repeat for each k from 1 . . . n:

BΣ := BΣ +B (8)

B :=
N − k

k + 1
·

θ

1− θ
· B (9)

The interval [BΣ, BΣ+B) is then a representation of n that

can be used with an arithmetic coder.

APPENDIX B

A BETA-BINOMIAL CODE

The Beta-binomial compound distribution results from inte-

grating out the success parameter θ of a binomial distribution,

assuming θ is Beta distributed. It is parametrised by an integer

N and the parameters α and β of the Beta prior:

BetaBin(n |N,α, β)

=

∫

Binomial(n |N, θ) · Beta(θ | α, β)dθ (10)

=

(

N

n

)

·
Γ(α+β)

Γ(α)Γ(β)
·
Γ(α+n)Γ(β+N−n)

Γ(α+β+N)
(11)

5



Just like for the binomial distribution, there is a recurrence

relation which can speed up the computation of the cumulative

Beta-binomial distribution:

BetaBin(n+ 1 |N,α, β)

=
N−n

n+1
·

α+n

β+N−n−1
· BetaBin(n |N,α, β)

(12)

The method from appendix A can be modified accordingly,

yielding a Beta-binomial coding scheme.
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