937 research outputs found

    Statistical Compressed Sensing of Gaussian Mixture Models

    Full text link
    A novel framework of compressed sensing, namely statistical compressed sensing (SCS), that aims at efficiently sampling a collection of signals that follow a statistical distribution, and achieving accurate reconstruction on average, is introduced. SCS based on Gaussian models is investigated in depth. For signals that follow a single Gaussian model, with Gaussian or Bernoulli sensing matrices of O(k) measurements, considerably smaller than the O(k log(N/k)) required by conventional CS based on sparse models, where N is the signal dimension, and with an optimal decoder implemented via linear filtering, significantly faster than the pursuit decoders applied in conventional CS, the error of SCS is shown tightly upper bounded by a constant times the best k-term approximation error, with overwhelming probability. The failure probability is also significantly smaller than that of conventional sparsity-oriented CS. Stronger yet simpler results further show that for any sensing matrix, the error of Gaussian SCS is upper bounded by a constant times the best k-term approximation with probability one, and the bound constant can be efficiently calculated. For Gaussian mixture models (GMMs), that assume multiple Gaussian distributions and that each signal follows one of them with an unknown index, a piecewise linear estimator is introduced to decode SCS. The accuracy of model selection, at the heart of the piecewise linear decoder, is analyzed in terms of the properties of the Gaussian distributions and the number of sensing measurements. A maximum a posteriori expectation-maximization algorithm that iteratively estimates the Gaussian models parameters, the signals model selection, and decodes the signals, is presented for GMM-based SCS. In real image sensing applications, GMM-based SCS is shown to lead to improved results compared to conventional CS, at a considerably lower computational cost

    On the design of linear projections for compressive sensing with side information

    Get PDF
    In this paper, we study the problem of projection kernel design for the reconstruction of high-dimensional signals from low-dimensional measurements in the presence of side information, assuming that the signal of interest and the side information signal are described by a joint Gaussian mixture model (GMM). In particular, we consider the case where the projection kernel for the signal of interest is random, whereas the projection kernel associated to the side information is designed. We then derive sufficient conditions on the number of measurements needed to guarantee that the minimum meansquared error (MMSE) tends to zero in the low-noise regime. Our results demonstrate that the use of a designed kernel to capture side information can lead to substantial gains in relation to a random one, in terms of the number of linear projections required for reliable reconstruction

    Signal reconstruction in the presence of side information: The impact of projection kernel design

    Get PDF
    This paper investigates the impact of projection design on the reconstruction of high-dimensional signals from low-dimensional measurements in the presence of side information. In particular, we assume that both the signal of interest and the side information are described by a joint Gaussian mixture model (GMM) distribution. Sharp necessary and sufficient conditions on the number of measurements needed to guarantee that the average reconstruction error approaches zero in the low-noise regime are derived, for both cases when the side information is available at the decoder or at the decoder and encoder. Numerical results are also presented to showcase the impact of projection design on applications with real imaging data in the presence of side information

    Steered mixture-of-experts for light field images and video : representation and coding

    Get PDF
    Research in light field (LF) processing has heavily increased over the last decade. This is largely driven by the desire to achieve the same level of immersion and navigational freedom for camera-captured scenes as it is currently available for CGI content. Standardization organizations such as MPEG and JPEG continue to follow conventional coding paradigms in which viewpoints are discretely represented on 2-D regular grids. These grids are then further decorrelated through hybrid DPCM/transform techniques. However, these 2-D regular grids are less suited for high-dimensional data, such as LFs. We propose a novel coding framework for higher-dimensional image modalities, called Steered Mixture-of-Experts (SMoE). Coherent areas in the higher-dimensional space are represented by single higher-dimensional entities, called kernels. These kernels hold spatially localized information about light rays at any angle arriving at a certain region. The global model consists thus of a set of kernels which define a continuous approximation of the underlying plenoptic function. We introduce the theory of SMoE and illustrate its application for 2-D images, 4-D LF images, and 5-D LF video. We also propose an efficient coding strategy to convert the model parameters into a bitstream. Even without provisions for high-frequency information, the proposed method performs comparable to the state of the art for low-to-mid range bitrates with respect to subjective visual quality of 4-D LF images. In case of 5-D LF video, we observe superior decorrelation and coding performance with coding gains of a factor of 4x in bitrate for the same quality. At least equally important is the fact that our method inherently has desired functionality for LF rendering which is lacking in other state-of-the-art techniques: (1) full zero-delay random access, (2) light-weight pixel-parallel view reconstruction, and (3) intrinsic view interpolation and super-resolution

    Source Separation in the Presence of Side-information

    Get PDF
    The source separation problem involves the separation of unknown signals from their mixture. This problem is relevant in a wide range of applications from audio signal processing, communication, biomedical signal processing and art investigation to name a few. There is a vast literature on this problem which is based on either making strong assumption on the source signals or availability of additional data. This thesis proposes new algorithms for source separation with side information where one observes the linear superposition of two source signals plus two additional signals that are correlated with the mixed ones. The first algorithm is based on two ingredients: first, we learn a Gaussian mixture model (GMM) for the joint distribution of a source signal and the corresponding correlated side information signal; second, we separate the signals using standard computationally efficient conditional mean estimators. This also puts forth new recovery guarantees for this source separation algorithm. In particular, under the assumption that the signals can be perfectly described by a GMM model, we characterize necessary and sufficient conditions for reliable source separation in the asymptotic regime of low-noise as a function of the geometry of the underlying signals and their interaction. It is shown that if the subspaces spanned by the innovation components of the source signals with respect to the side information signals have zero intersection, provided that we observe a certain number of linear measurements from the mixture, then we can reliably separate the sources; otherwise we cannot. The second algorithms is based on deep learning where we introduce a novel self-supervised algorithm for the source separation problem. Source separation is intrinsically unsupervised and the lack of training data makes it a difficult task for artificial intelligence to solve. The proposed framework takes advantage of the available data and delivers near perfect separation results in real data scenarios. Our proposed frameworks – which provide new ways to incorporate side information to aid the solution of the source separation problem – are also employed in a real-world art investigation application involving the separation of mixtures of X-Ray images. The simulation results showcase the superiority of our algorithm against other state-of-the-art algorithms

    Communications-Inspired Projection Design with Application to Compressive Sensing

    Get PDF
    We consider the recovery of an underlying signal x \in C^m based on projection measurements of the form y=Mx+w, where y \in C^l and w is measurement noise; we are interested in the case l < m. It is assumed that the signal model p(x) is known, and w CN(w;0,S_w), for known S_W. The objective is to design a projection matrix M \in C^(l x m) to maximize key information-theoretic quantities with operational significance, including the mutual information between the signal and the projections I(x;y) or the Renyi entropy of the projections h_a(y) (Shannon entropy is a special case). By capitalizing on explicit characterizations of the gradients of the information measures with respect to the projections matrix, where we also partially extend the well-known results of Palomar and Verdu from the mutual information to the Renyi entropy domain, we unveil the key operations carried out by the optimal projections designs: mode exposure and mode alignment. Experiments are considered for the case of compressive sensing (CS) applied to imagery. In this context, we provide a demonstration of the performance improvement possible through the application of the novel projection designs in relation to conventional ones, as well as justification for a fast online projections design method with which state-of-the-art adaptive CS signal recovery is achieved.Comment: 25 pages, 7 figures, parts of material published in IEEE ICASSP 2012, submitted to SIIM

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page
    • …
    corecore