81,504 research outputs found

    Classification and analysis of predictable memory patterns

    Get PDF
    The verification complexity of real-time requirements in embedded systems grows exponentially with the number of applications, as resource sharing prevents independent verification using simulation-based approaches. Formal verification is a promising alternative, although its applicability is limited to systems with predictable hardware and software. SDRAM memories are common examples of essential hardware components with unpredictable timing behavior, typically preventing use of formal approaches. A predictable SDRAM controller has been proposed that provides guarantees on bandwidth and latency by dynamically scheduling memory patterns, which are statically computed sequences of SDRAM commands. However, the proposed patterns become increasingly inefficient as memories become faster, making them unsuitable for DDR3 SDRAM. This paper extends the memory pattern concept in two ways. Firstly, we introduce a burst count parameter that enables patterns to have multiple SDRAM bursts per bank, which is required for DDR3 memories to be used efficiently. Secondly, we present a classification of memory pattern sets into four categories based on the combination of patterns that cause worst-case bandwidth and latency to be provided. Bounds on bandwidth and latency are derived that apply to all pattern types and burst counts, as opposed to the single case covered by earlier work. Experimental results show that these extensions are required to support the most efficient pattern sets for many use-cases. We also demonstrate that the burst count parameter increases efficiency in presence of large requests and enables a wider range of real-time requirements to be satisfied

    Classification and Analysis of Predictable Memory Patterns

    Full text link
    The verification complexity of real-time requirements in embedded systems grows exponentially with the number of applications, as resource sharing prevents independent verification using simulation-based approaches. Formal verification is a promising alternative, although its applicability is limited to systems with predictable hardware and software. SDRAM memories are common examples of essential hardware components with unpredictable timing behavior, typically preventing use of formal approaches. A predictable SDRAM controller has been proposed that provides guarantees on bandwidth and latency by dynamically scheduling memory patterns, which are statically computed sequences of SDRAM commands. However, the proposed patterns become increasingly inefficient as memories become faster, making them unsuitable for DDR3 SDRAM. This paper extends the memory pattern concept in two ways. Firstly, we introduce a burst count parameter that enables patterns to have multiple SDRAM bursts per bank, which is required for DDR3 memories to be used efficiently. Secondly, we present a classification of memory pattern sets into four categories based on the combination of patterns that cause worst-case bandwidth and latency to be provided. Bounds on bandwidth and latency are derived that apply to all pattern types and burst counts, as opposed to the single case covered by earlier work. Experimental results show that these extensions are required to support the most efficient pattern sets for many use-cases. We also demonstrate that the burst count parameter increases efficiency in presence of large requests and enables a wider range of real-time requirements to be satisfied

    How predictable are spontaneous decisions and hidden intentions? Comparing classification results based on previous responses with multivariate pattern analysis of fMRI BOLD signals

    Get PDF
    In two replication studies we examined response bias and dependencies in voluntary decisions. We trained a linear classifier to predict “spontaneous decisions” and in the second study “hidden intentions” from responses in preceding trials and achieved comparable prediction accuracies as reported for multivariate pattern classification based on voxel activities in frontopolar cortex. We discuss implications of our findings and suggest ways to improve classification analyses of fMRI BOLD signals that may help to reduce effects of response dependencies between trials

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    Validation of hardware events for successful performance pattern identification in High Performance Computing

    Full text link
    Hardware performance monitoring (HPM) is a crucial ingredient of performance analysis tools. While there are interfaces like LIKWID, PAPI or the kernel interface perf\_event which provide HPM access with some additional features, many higher level tools combine event counts with results retrieved from other sources like function call traces to derive (semi-)automatic performance advice. However, although HPM is available for x86 systems since the early 90s, only a small subset of the HPM features is used in practice. Performance patterns provide a more comprehensive approach, enabling the identification of various performance-limiting effects. Patterns address issues like bandwidth saturation, load imbalance, non-local data access in ccNUMA systems, or false sharing of cache lines. This work defines HPM event sets that are best suited to identify a selection of performance patterns on the Intel Haswell processor. We validate the chosen event sets for accuracy in order to arrive at a reliable pattern detection mechanism and point out shortcomings that cannot be easily circumvented due to bugs or limitations in the hardware

    Anomaly Detection for Science DMZs Using System Performance Data

    Get PDF
    Science DMZs are specialized networks that enable large-scale distributed scientific research, providing efficient and guaranteed performance while transferring large amounts of data at high rates. The high-speed performance of a Science DMZ is made viable via data transfer nodes (DTNs), therefore they are a critical point of failure. DTNs are usually monitored with network intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such as network I/O interrupts and context switches, which can also be useful in revealing anomalous system performance potentially arising due to external network based attacks or insider attacks. In this paper, we demonstrate how system performance metrics can be applied towards securing a DTN in a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm) for anomaly detection. Our results demonstrate that system interrupts and context switches can be used to successfully detect TCP-SYN floods, suggesting that system performance data could be effective in detecting a variety of attacks not easily detected through network monitoring alone
    • 

    corecore